高速铁路信号系统集成关键技术
- 格式:docx
- 大小:37.45 KB
- 文档页数:3
高速铁路系统集成简介作者:张辉张心刚来源:《无线互联科技》2013年第12期摘要:本文介绍了高速铁路系统建设目标和系统构成,主要包括工务工程系统、牵引供电系统、列车运行控制系统、高速列车系统、运营调度系统、客运服务系统六个部分,使大家对其有个简单认识。
关键词:高速铁路;系统集成高速铁路是信息技术、自动控制技术和新材料、新工艺等多种技术门类、多专业综合的高新技术集成,代表了当今世界铁路技术的最高成就。
发达国家的实践表明,由基础设施、动车组、通信信号、牵引供电、运营调度、旅客服务六个主要子系统购成的高速铁路,具有很强的系统性,各子系统之间既自成体系,又相互关联、相互影响。
特别是动车组、通信信号和运营调度系统,三者之间既有大量硬件接口,又有很多软件联系,对整体性和系统性的要求非常高。
在高速铁路建设中,必须尊重科学,尊重客观规律,认真吸取国外高速铁路建设的经验和教训,高度重视系统集成工作,确保各子系统相互匹配,相互兼容,整体优化,协调运转。
1 系统建设目标高速铁路系统集成的目标是要集中人力资源、管理资源、设计资源、施工资源及装备制造资源,实现高速铁路系统在技术上的优化配置,达到一流工程质量、一流装备水平、一流运营管理的目标。
2 系统构成高速铁路系统可以划分为工务工程系统、牵引供电系统、列车运行控制系统、高速列车系统、运营调度系统、客运服务系统六个部分,如图所示。
2.1 工务工程系统工务工程系统是一个庞大的系统,涉及路基、桥涵、隧道和轨道等专业工程,还涉及路基与桥梁的过渡,路基与隧道的过渡、桥梁与隧道的过渡,以及路基和桥隧等线下基础与轨道结构的衔接等。
与普速铁路相比采用了很多新技术和新工艺,其设计和施工控制标准高。
为了达到高速铁路线路的运营要求,高速铁路工务工程系统既要为高速运行的机车车辆提供高平顺性与高稳定性的轨面条件,又要保证线路各个组成部分具有一定的坚固性与耐久性,时期在运营条件下保持良好的状态。
同时,要求建立严格的线路状态检测和保障轨道持久高平顺的科学管理系统。
高速铁路四电系统集成通信信号工程重点工程施工方法1.1 通信系统重点难点工程的施工方法及措施根据本工程的情况,在通信工程中,光缆接续质量的好坏,直接影响传输信号的质量,列为重点难点工程。
光缆接续施工在光传输系统中是至关重要的环节,选用先进的熔接机、光时域反射仪(OTDR)双向监测接续。
杜绝在雨天、大雾天及仪器仪表临界环境进行接续作业,接续时做好防尘工作,避免因灰尘、沙粒影响接续施工及接续的质量。
依据光缆接头盒安装说明书及技术交底书安装骨架(收容盘)。
为防止感应电压的累积,光缆的铠装层、金属护套和加强芯在接头处断开并且不接地。
调整好工作台固定支架上光缆的距离,使两侧光缆基本平直对应。
将光纤熔接机及接续专用工具,擦洗干净放置在操作台上。
光纤接续采用熔接法,先按顺序在每根光纤上用编码纸编上号,再在一侧光纤穿入光纤热熔加强芯。
光纤接续完毕后对接头点进行检查,出现接头点有焊纹、接点成球状、接头变细、变粗、轴向偏差、气泡等现象必须重新接续。
光缆接续施工测试,采用“终端光纤环接,测试点随接续点移动的双向监测法”,用光时域反射仪(OTDR)实时监视接续质量。
具体施工方法如下:在测试端将光时域反射仪(OTDR)通过尾纤用V型槽或耦合管连接被测光纤,将被测光纤A通过尾纤接入OTDR的光发送输出端。
根据被测光缆接续处距OTDR的距离,在OTDR上设置好起始位置、测试距离、折射率等参数,启动发送光脉冲。
OTDR的荧光屏上即可显示出被测光纤的背向散射曲线,然后把被测接头处的曲线移至荧光屏的中间,通过放大曲线,在接续处左右两边各设置两个标记,使该两标记逼近背向散射曲线,将中心标记设在接续点下降沿的起始位置,此时OTDR即可计算出接头点的接续损耗值。
将环回的光纤B接至OTDR,用同样的方法测出光纤接续处的接续损耗。
光纤测试合格后,立即用热熔加强芯加强保护,确保收缩均匀,无气泡。
每接完一根光纤,把余长盘留在收容盘内,光纤接头(加强管)放在收容盘两侧固定槽内。
浅谈铁路通信信号系统联调联试关键技术随着我国高速铁路建设的不断推进和铁路通信信号系统技术的不断发展,铁路通信信号系统联调联试工作变得越来越重要,也越来越复杂。
铁路通信信号系统联调联试是指在铁路通信信号系统的安装和调试过程中,为了确保设备和系统的可靠运行,进行各种测试、调整和验证的过程。
需要通过联调联试对设备、系统进行质量控制和调试,以确保信号系统能够正常地工作,保证列车运行的安全和稳定性。
铁路通信信号系统联调联试的关键技术包括以下几个方面。
一、仿真技术仿真技术是一种通过对实际系统进行模拟来进行测试和验证的技术手段。
通过建立信号转发设备和信号处理设备的仿真模型,并对信号处理设备进行模拟测试,可以在实际设备未安装的情况下预先识别问题,避免因实际系统出现问题而带来的安全风险和经济损失。
二、测试设备测试设备是铁路通信信号系统联调联试的重要工具。
测试设备可以对通信信号系统的各个部件进行测试,并进行常规的可靠性和性能测试,包括静态测试、动态测试、质量测试和稳定性测试等。
测试结果可以为通信信号系统的调整、优化以及其他相关工作提供基础数据,确保通信信号系统满足安全、可靠和性能要求。
三、集成测试集成测试是指在各个信号转发设备的调试阶段,将所有的设备集成到一起进行测试,测试各个部件之间的相互关联和联接情况,测试各个部件的功能和性能是否符合要求。
集成测试应该充分考虑实际情况,模拟各种工作状态,以确保通信信号系统在各种复杂环境和情境下能够正常工作。
四、预设运行模拟预设运行模拟是把铁路客流情况、列车运行速度等因素纳入模拟系统中,对信号设备进行预设的联调测试,通过模拟运营的情况进行测试。
这样做可以有效地模拟实际情况,使得系统在运行前就能发现和解决问题,保证系统的可靠性、稳定性和安全性。
五、联合验证联合验证是指在正式通信信号系统投入使用前,通过与列车安全管理系统一起进行实际的测试和验证,验证该信号系统是否达到预期效果和要求。
高速铁路信号系统的集成化设计与优化随着交通技术的不断发展,高速铁路在现代化交通网络中发挥着至关重要的作用。
高速铁路的快速、高效和安全性能要求对其信号系统的设计和优化提出了更高的要求。
本文将讨论高速铁路信号系统的集成化设计和优化,从而提升铁路的运行效率和安全性。
一、高速铁路信号系统的集成化设计高速铁路信号系统的集成化设计是为了实现各个子系统之间的无缝衔接,提高系统的可靠性和运行效率。
集成化设计需要考虑以下几个方面:1. 轨道电路系统:轨道电路系统可以通过检测轨道上的电信号来判断列车的位置和速度。
集成化设计需要考虑轨道电路系统的布置和维护,确保准确地检测列车的位置和速度信息。
2. 信号机系统:信号机系统负责向列车驾驶员提供行车指示信号,指示列车的行驶速度和安全距离。
集成化设计需要考虑信号机系统的布置和控制,确保准确地提供行车指示信号。
3. 通信系统:通信系统在高速铁路信号系统中起着重要的作用,可以保证不同子系统之间的信息传递和交互。
集成化设计需要考虑通信系统的可靠性和安全性,确保各个子系统之间的信息传递畅通无阻。
4. 控制系统:控制系统是整个高速铁路信号系统的核心,负责对各个子系统进行协调和控制。
集成化设计需要考虑控制系统的智能化和自动化程度,以提高铁路的运行效率和安全性。
二、高速铁路信号系统的优化高速铁路信号系统的优化是为了提升铁路的运行效率和安全性,减少人为错误和故障发生的可能性。
优化工作可从以下几个方面入手:1. 优化信号灯设计:通过优化信号灯的布置和显示方式,可以准确地传达行车指示信息给列车驾驶员,降低人为错误的发生概率。
2. 优化信号机设置:根据高速铁路的运行速度和列车数量,合理设置信号机,确保列车在行驶过程中能够按时获得行车指示信号,减少行车延误的可能性。
3. 优化轨道电路系统:通过优化轨道电路的布置和维护,可以提高信号检测的准确性,降低误判出现的概率。
4. 优化通信系统:采用高效可靠的通信技术,确保不同子系统之间的信息传递畅通无阻,减少信息传递延时和丢失的发生。
高速铁路信号系统集成关键技术技术的发展一直是推动铁路运输进步的重要驱动力。
而在高速铁路
系统中,信号系统集成的关键技术发挥着至关重要的作用。
本文将介
绍高速铁路信号系统集成的关键技术,并探讨其对高速铁路运输的影响。
一、ETCS技术
ETCS(European Train Control System)是一种国际通用的列车控制
系统,也是现代化高速铁路信号系统集成的重要技术。
ETCS通过无线
通信技术和地面设备相结合,实现对列车运行状态的监控和控制。
1. ETCS Level 1
ETCS Level 1是最基础的ETCS技术,主要通过与列车上的设备进
行无线通信来实现列车的控制。
这种技术在高速铁路系统中应用广泛,可以提供列车位置、速度等信息,确保列车在不同区段间平稳运行。
2. ETCS Level 2
与ETCS Level 1相比,ETCS Level 2更为复杂和先进。
它不仅可以
提供列车的位置和速度信息,还能实现多列车同时运行和精确调度。
ETCS Level 2通过将地面设备与列车上的设备进行无线通信,实现列
车在高速铁路线路上的自动驾驶和调度。
二、CBTC技术
CBTC(Communication-Based Train Control)技术是另一种高速铁
路信号系统集成的关键技术。
与传统的信号系统相比,CBTC技术基于无线通信技术,可以实现对列车运行和位置的监控和控制。
1. CBTC的工作原理
CBTC技术通过地面设备和列车上的设备之间进行无线通信,获取
列车的位置和速度信息。
地面设备可以实时监控列车的位置,并按需
求进行调度。
同时,列车上的设备也可以通过无线通信技术与地面设
备进行双向交流,实现列车的自动控制。
2. CBTC的优势
相比传统的信号系统,CBTC技术具有以下优势:
首先,CBTC技术可以实现列车的更高运行密度和更短的列车间隔,提高铁路运输的效率。
其次,CBTC技术可以提供更精确的车辆位置和速度信息,提高列
车的运行安全性。
最后,CBTC技术可以实现列车的自动控制和调度,减少人为操作
的干扰,提高运输的可靠性。
三、高速铁路信号系统集成中的挑战与解决方案
尽管高速铁路信号系统集成的关键技术具有重要的意义,但其实施
过程中也面临一些挑战。
首先,技术标准的统一性是一个重要问题。
由于不同地区和不同国
家的铁路系统存在差异,因此需要制定统一的技术标准,以确保不同
系统之间的兼容性。
其次,设备的更新和维护是一个重要的任务。
随着技术的进步和发展,信号系统设备也需要不断更新和维护,以适应不断变化的运输需求。
针对这些挑战,可以采取以下解决方案:
首先,加强国际间的合作和交流,制定统一的技术标准,推动高速
铁路信号系统集成的发展。
其次,注重技术研发和创新,不断提升信号系统设备的性能和功能,满足不断变化的运输需求。
最后,建立完善的设备更新和维护机制,确保信号系统设备的长期
运行和可靠性。
结论
高速铁路信号系统集成的关键技术对于高速铁路运输的发展至关重要。
ETCS和CBTC等技术的应用,使高速铁路运输更加安全、高效。
然而,高速铁路信号系统集成中还存在一些挑战,需要加强技术标准
的制定和设备的更新和维护。
通过持续的努力和创新,高速铁路信号
系统集成的关键技术将为未来的铁路运输带来更多的机遇和挑战。