微合金元素对钢性能的影响
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
N,V,B,Ti对钢铁性能的影响N元素1、铁素体溶解氮的能力很低。
当钢中溶有过饱和的氮,在放置较长一段时间后或随后在200~300℃加热就会发生氮以氮化物形式的析出,并使钢的硬度、强度提高,塑性下降,发生时效。
钢液中加入Al、Ti或V进行固氮处理,使氮固定在AlN、TiN或VN中,可消除时效倾向。
2、氮能提高钢的强度,低温韧性和焊接性,增加时效敏感性。
3、氮的有益作用:1)N亦是强烈的A体形成元素,在这点上它与Ni相似,比Ni作用强27倍,特别在不锈钢中得到广泛注意。
它有可能是代替Ni的重要元素之一,特别与Ni其同作用,稳定A体效果更好,尤利代Ni。
2)N还可在复杂的A体钢中借氮化物的析出而产生弥散硬化。
因此,可在无显著成绩脆性的情况下提高它的热强性。
3)N能提高高铬钢,特别是含V的的高铬工具钢的热硬性。
N能使这些钢的二次硬度的回火温度的间段增大,并使此间段向更高温方面移动,所以可得到较好的综合性能,在高铬钢中N还能改善其热加工性能。
4)N在铁素体中可促使A体形成,由于γ相的出现,可减小晶粒粗化倾向,所以可改善钢的韧性和焊接性能。
5)N对磁钢的影响较大:如当N溶解在钢中的固溶体状态存在时会使矫顽力稍增而磁导率降低,当形成AlN、FeN等非金属夹杂影响就加剧。
N还是引起硅钢片磁时效的主要因素之一。
一般说一定数量的夹杂对得到取向组织是有益的。
所以它可阻碍位向不适合的晶粒生长。
从而使取向合适的晶粒加速成长。
N对取向冷轧变压的质量也有很大影响,过多或过少的含N量都不易使N量使冷轧硅钢片获得大晶粒和高磁性。
适宜的含量是N =0.01~0.1%或更低至0.001%,但要获得更好磁性,最好能在热处理后将冷轧硅钢片中残留N除去。
6)钢的表面渗N,可使它得到高的表面硬度(RC70)500~600℃中进行和耐磨性,高的疲劳极限和抗蚀性(600~700℃中进行)。
7)铬锰钢中加入0.35~0.45%以上的N即可得单一的A体组织。
钢中微合金元素的作用机理钢是一种合金,其主要成分是铁和碳。
微合金元素是添加在钢中的少量杂质元素,包括钛、铌、钒、铝、锰、铬等。
这些微合金元素的添加对钢的性能具有重要的影响。
以下是钢中微合金元素的作用机理。
首先,微合金元素可以提高钢的强度和硬度。
微合金元素的加入可以阻碍晶界流动和位错的运动,从而限制了晶界滑移和位错滑动,降低了钢的塑性变形能力,提高了钢的强度和硬度。
此外,微合金元素还可以形成致密的析出物,如碳化物、氮化物、硫化物等,这些析出物可以增加钢的硬度,从而提高钢的抗拉强度和硬度。
其次,微合金元素可以改善钢的韧性和冷加工性能。
微合金元素的加入可以阻碍晶界弥散,提高了钢的晶界精细度,从而改善了钢的韧性和抗冲击性能。
同时,微合金元素也可以细化钢的晶粒尺寸,提高钢的塑性变形能力,使钢具有较好的冷加工性能。
第三,微合金元素可以提高钢的耐腐蚀性能。
微合金元素的加入可以改善钢的晶界耐蚀性能,减少晶界的腐蚀敏感性。
此外,微合金元素也可以与一些有害杂质元素结合,形成稳定的化合物,减少了钢中有害元素的溶解和析出,从而提高钢的耐腐蚀性能。
另外,微合金元素还可以改变钢的相变行为。
微合金元素的加入可以改变钢的析出序列和析出相,影响钢的相变行为。
例如,铌和钒可以用于控制钢中的碳化物析出,阻止奥氏体向珠光体的相变,从而提高钢的强韧性。
此外,微合金元素还可以优化钢的热处理工艺。
微合金元素的介入可以降低钢的回火敏感性和退火脆性,提高钢的热处理硬化能力,使钢在热处理过程中获得较好的组织和性能。
总的来说,钢中微合金元素的作用机理包括限制晶界滑移和位错滑动、形成致密的析出物、改善晶界精细度和抗腐蚀性能、提高韧性和冷加工性能、改变相变行为和优化热处理工艺等。
这些作用机理使得钢中微合金元素的加入可以显著改善钢的性能,提高钢的使用性能和工艺性能。
甘肃冶金 2000年12月第4期谈微合金元素N b 、V 、T i 在钢中的作用Ξ杨作宏 陈伯春(酒泉钢铁公司 甘肃 嘉峪关 735100)摘 要 论述了N b 、V 、T i 在钢中的存在形态,分析了提高钢的强韧性,改善可焊性的微观机理及在钢中的重要作用。
关键词 可能性 形态 溶度积 作用1 引言在钢中质量分数低于011%左右,而对钢的性能和微观组织有显著或特殊影响的合金添加元素,称为微合金元素;N b 、V 、T i 是其中最为重要的微合金元素。
在钢中添加微量的N b 、V 、T i ,可保证钢在碳当量较低的情况下,通过其碳、氮化物质点(尺寸小于5nm )的弥散析出及N b 、V 、T i 的固溶,细化晶粒,极大地提高钢的强度、韧性,特别是低温韧性,使钢具有良好的可焊性、使用性。
因此,研究N b 、V 、T i 在钢中的作用机理和微观行为,对钢的品种开发,生产高质量、高附加值的产品如船板、管线钢等有重要的作用。
2 Nb 、V 、T i 在钢中作用的微观基础211 形成碳化物和氮化物的可能性 图1 一些金属元素形成氧化物、硫化物、碳化物和氮化物的能力和它们的沉淀强化能力N b 、V 、T i 是碳化物和氮化物的形成元素,这些元素在比较低的浓度下就能满足这种要求。
在周期表中,它们的位置彼此靠得很近。
图1指出,对于一定的金属元素,从 组到 组,形成氧化物、硫化物、碳化物和氮化物的可能性是逐渐增强的(从右上角至左下角)。
形成沉淀强化所需要的碳化物或氮化物,N b 、V 、T i 有同等的倾向。
212 在钢中的存在形态N b 、V 、T i 为强碳化物形成元素,常温时,在钢中大部分以碳化物、氮化物、碳氮化物形式存在,少部分固溶在铁素体中,在脱氧不完全的钢中,也会2Ξ收稿日期:2000204205出现氧化物T i O 2、V 2O 3等。
这对N b 、V 、T i 是一种浪费,且氧化物对性能有害,应避免。
在普通碳钢通常依靠加入碳来提高强度,这样就造成了提高碳含量的同时必然降低钢的塑性和韧性。
使普碳钢不能满足强度与韧性的更好组合,由此人们开始研究不增加碳含量,加入其它元素来提高强度,也就是保持低碳钢的韧性前提下,利用微合金化提高强度。
此类钢的综合力学性能比低碳结构钢有很大的改善,而与普通合金钢相比,其添加的合金元素又如此之少,按重量百分比,再继之以控制冷却,才能使钢的性能更佳,此类钢使用之前一般不再进行热处理。
微合金化元素在钢中的作用主要是细化晶粒,阻碍再结晶进行以及析出强化。
1Nb的作用在超低碳贝氏体钢(ULCB)的整个发展过程中,微量Nb起着独特的作用。
这类钢中C含量已经降到0.05%,又不加入较多合金元素,因此强化主要靠位错强化,析出强化特别是组织强化。
近年来的研究表明,微量Nb在超低碳贝氏体钢(ULCB)中的作用,主要体现在以下两个方面。
1)微量Nb抑制变形再结晶行为,加剧变形奥氏体中的应变积累,大幅度提高相变前组织中的位错密度。
超低碳贝氏体钢(ULCB)的优良综合性能主要来自钢的组织细化以及贝氏体中的高位错密度,再实现这一目标,首先需要在控轧过程中,在非再结晶区轧制时引入大量高密度畸变区,这些高密度畸变区在随后的冷却过程中成为相变核心,大幅度促进相变组织细化。
同时,要在发生切变形型贝氏体相变过程中,能把相当一部分变形位错保留在贝氏体基体中,从而大幅度提高贝氏体基体强度。
为了达到这一点,要求钢种有相当高的热轧再结晶终止温度以及抑制冷却时扩散型铁素体转变的能力,合金成分设计充分考虑了Nb及Nb—B这方面的作用。
2)微量Nb与B、Cu的复合作用加快了诱导析出,稳定变形位错结构。
微量Nb加入贝氏体钢中的第二个作用是,这类钢高温非再结晶轧制阶段会应变诱导形成极细的Nb(C、N)析出物。
这些析出物主要析出在变形晶界及变形位错网上,它们阻碍了位错的恢复以及消失的过程,稳定了位错结构,为随后冷却过程相变形核提供更多机会,同时组织新相的长大,最终细化组织。
合金元素对钢的性能影响合金是由两种或两种以上的金属或非金属元素组成的材料。
将合金元素添加到钢中可以改变钢的性能。
这种改变可能包括增加钢的强度、硬度、耐腐蚀性能、热处理性能等。
本文将详细探讨合金元素对钢的主要性能影响。
一、合金元素对钢的强度和硬度的影响1.铬(Cr):铬是一种常用的合金元素。
它可以提高钢的硬度和耐高温性能。
铬在钢中形成稳定的氧化层,可以防止钢发生锈蚀。
此外,铬还可以提高钢的强度,使其更难弯曲和变形。
2.锰(Mn):锰是一种常见的合金元素。
它可以提高钢的强度、硬度和耐磨性能。
特别是在高温下,锰可以提高钢的硬度和强度,使其具有更好的耐磨性能。
3.钼(Mo):钼是一种重要的强化元素。
它可以提高钢的强度、韧性和耐热性能。
钼可以在钢中形成硬质的碳化物,使钢具有更好的耐磨性和抗冲击性。
此外,钼还可以提高钢的耐高温性能。
4.钛(Ti)和铌(Nb):钛和铌是常用的微合金元素。
它们可以提高钢的强度和硬度,同时也可以细化钢中的晶粒。
这些微合金元素还可以提高钢的高温强度和阻止钢的再结晶。
二、合金元素对钢的耐腐蚀性能的影响1.铬(Cr):铬是一种重要的防腐蚀元素。
它可以在钢的表面形成稳定的铬氧化层,防止钢被氧化和锈蚀。
铬还可以提高钢的耐腐蚀性能,使钢适用于潮湿和腐蚀性环境。
2.镍(Ni):镍也是一种常用的防腐蚀元素。
它可以提高钢的耐酸性和耐碱性,因为镍本身具有优异的化学稳定性。
镍还可以改善钢的韧性和抗磨性能。
3.铜(Cu):铜可以提高钢的抗腐蚀性能。
它可以形成一层稳定的氧化膜,保护钢表面不受腐蚀。
此外,铜还可以提高钢的韧性和耐磨性能。
三、合金元素对钢的热处理性能的影响1.钼(Mo):钼可以提高钢的热处理稳定性。
钼的加入可以使钢的晶界更加稳定,抑制晶粒长大,提高钢的热稳定性和热处理硬化能力。
2.钛(Ti)和铌(Nb):钛和铌是常用的微合金元素,可以提高钢的热稳定性和抗热衰退性能。
它们可以在钢中形成稳定的碳化物,细化晶粒并防止晶粒长大。
对IF钢组织性能影响因素的分析IF钢(Interstitial Free Steel)又叫无间隙原子钢,是继沸腾钢与铝镇静钢之后自动化工业广泛应用的又一代深冲用钢。
IF钢的特点是含碳量很低,参加Ti 和Nb之后,形成Ti和Nb的C、N化合物。
由于钢中无间隙原子,而使其具有优异的深冲性能:高塑性应变比、高延伸率、高硬化指数以及较低的屈强比,并具有优异的非时效性,因此被誉为第三代超深重用钢而广泛应用于汽车制造等行业[1]。
IF钢按添加的微合金元素不同,通常分为Ti—IF钢、Nb—IF钢和(Nb+Ti)一IF钢,影响IF钢组织性能的因素有很多,总结起来有两大类:一是材质本身的因素,包括所含化学成分的影响,二是加工工艺的影响。
下面分别就两方面的影响因素予以具体阐述。
首先,介绍一下IF钢的成型性及其评价。
〔一〕IF钢的成型性及其评价汽车用钢板几乎全部经过冲压成型,所以成型性的好坏是材料面临的首要问题。
所谓成型性是指钢板在承受变形过程中抵抗失效的能力。
它除了与材料本身特性有关外还与变形条件有关。
评价钢板成型性能的指标有两大类,即根本成型性能指标和模拟成型性能指标。
前者是对材料本身性能的反映,取决于材料生产过程中的冶金因素;后者是对材料在*种变形条件下成型性能的反映,与具体的变形工艺有关。
与上述两大类成型性能指标相对应的实验方法中,应用最广泛的的成型性能实验是单向拉伸实验,而Swift冲杯实验、扩孔实验、极限拱高实验都是模拟成型性能实验。
单向拉伸实验获得两个主要的根本成型指标:加工硬化指数(n值)和塑性应变比(r值),同时还可获得屈服强度(Ys)、拉伸强度(Ts)和延伸率等。
加工硬化指数(n值)是钢板在塑性变形过程中形变强化能力的一种量度,是评价板材在拉胀时成形性能的指标。
钢板在成形过程中,变形大的部位首先硬化,n值越高,硬化程度越强,变形越困难,促使变形小的部位的金属向变形大的部位流动,使整体钢板变形区域均匀,从而提高了钢板的成形性能。
残余奥氏体和微合金元素对冷轧高强 汽车钢性能的影响刘仁东 王 旭 郭金宇 徐荣杰 王科强 (鞍钢集团钢铁研究院,辽宁鞍山 114009)摘 要:综述了残余奥氏体和微合金元素(V、Nb)对 TRIP 钢、TWIP 钢、及Q&P 钢等冷轧高强汽车钢性能的影响。
介绍了高强汽车钢获得残余奥氏体的成分 体系和连续退火工艺,阐述了残余奥氏体含量、形貌及其稳定性对高强汽车钢性 能的影响。
介绍了微合金元素(V、Nb)对冷轧高强汽车钢强度、成形性、延迟 断裂等个性化性能的影响。
关键词:残余奥氏体,微合金元素,TRIP 钢,TWIP 钢,Q&P 钢,强塑积,成形 性,延迟断裂1前言近年来,实现汽车轻量化和提高安全性成为汽车工业的主要发展趋势。
而采用高强汽车用钢是满足汽车发展需求的重要技术措施。
目前研究开发的冷轧高强 汽车用钢主要为以 DP、TRIP 等钢种为代表的第一代汽车用钢,以 TWIP 钢为代表 的第二代汽车用钢,以 Q&P 钢和中锰钢为代表的第三代汽车用钢[1,2]。
通常,这 些钢种中均部分或全部含有残余奥氏体。
残余奥氏体对高强汽车钢强度、塑性、 成形性等综合性能有着重要影响。
奥氏体含量不同,高强钢的强塑积不同。
奥氏 体的数量、 形态、 稳定性是通过合理的成分体系设计和连续退火工艺优化获得的。
高强汽车用钢除满足强度、塑性等常规性能指标外,还要不断满足汽车用户 实际应用过程中的个性化要求,如强度大于 980MPa 级的超高强度 TRIP 钢,抗延 迟断裂的 TWIP 钢,高屈服强度的 TWIP980 钢,高扩孔性的 Q&P 钢等。
微合金元 素在提高高强汽车钢的个性化性能方面的作用越来越突出。
为此,将主要介绍残 余奥氏体和微合金元素对冷轧高强汽车用钢性能的影响。
22.1冷轧高强汽车钢获得残余奥氏体的成分体系和连续退火工艺第一代冷轧 TRIP 钢的成分体系和连续退火工艺17TRIP 钢主要是利用残余奥氏体的相变诱发塑性产生 TRIP 效应来提高钢的强 塑性,为保证一定含量和稳定的奥氏体存在,常用的合金体系有 0.20%C-1.5%Si-1.5%Mn 系列、0.20%C-0.30%Si-1.8%Mn-1.2%Al(低硅)系列、 0.20%C-0.30%Si-1.8%Mn-0.06%P(低硅)系列[3]。
钢材中各微量元素对其性能的作用不论是板材还是建材,各种材质的质量和性能是根据不同的需要而确实的,而钢材不同的质量要求和级别要求的不同就是靠其中的微量元素来决定的,例如我们经常用的低合金板,它本身就为五个级别Q345(A、B、C、D、E),五个级别的不同就是靠其中的S、P等微量元素的含量不同来区分的,微量元素含量不同它们所具有性能也有所不同。
那么钢材中各微量元素对本身性能会产生什么作用呢?庞志刚就收集了一些各微量元素对钢材性能的影响资料,大家可以了解一下:(1)碳:含碳量越高,钢的硬度就越高,但是它的可塑性和韧性就越差。
(2)硫:是钢中的有害杂物,含硫较高的钢在高温进行压力加工时,容易脆裂,通常叫作热脆性。
(3)磷:能使钢的可塑性及韧性明显下降,特别的在低温下更为严重,这种现象叫作冷脆性,在优质钢中,硫和磷要严格控制。
但从另方面看,在低碳钢中含有较高的硫和磷,能使其切削易断,对改善钢的可切削性是有利的。
(4)锰:能提高钢的强度,能消弱和消除硫的不良影响,并能提高钢的淬透性,含锰量很高的高合金钢(高锰钢)具有良好的耐磨性和其它的物理性能。
(5)硅:它可以提高钢的硬度,但是可塑性和韧性下降,电工用的钢中含有一定量的硅,能改善软磁性能。
(6)镍:能提高钢的强度和韧性,提高淬透性,含量高时,可显著改变钢和合金的一些物理性能,提高钢的抗腐蚀能力。
(7)硼:当钢中含有微量的(0.001-0.005%)硼时,钢的淬透性可以成倍的提高。
(8)铝:能细化钢的晶粒组织,阻抑低碳钢的时效,提高钢在低温下的韧性,还能提高钢的抗氧化性,提高钢的耐磨性和疲劳强度等。
(9)钨:能提高钢的红硬性和热强性,并能提高钢的耐磨性。
(10)铬:能提高钢的淬透性和耐磨性,能改善钢的抗腐蚀能力和抗氧化作用。
(11)钒:能细化钢的晶粒组织,提高钢的强度,韧性和耐磨性,当它在高温熔入奥氏体时,可增加钢的淬透性;反之,当它在碳化物形态存在时,就会降低它的淬透性。
微合金元素对钢性能的影响
【摘要】钒、钛、铌等微合金元素都可以通过细化晶粒和沉淀强化来提高钢的强度,但由于其作用机理及强化强度受到本身特性和工艺条件的影响而不同,且对抑制再结晶的能力表现不同,具体表现为铌>钛>钒。
【关键词】微合金化元素;作用机理;析出;裂纹
1.引言
微合金元素如钒、钛、铌等,在钢中由于其碳氮化物可以调节形变奥氏体的再结晶行为和阻止晶粒长大,间接起到细化晶粒的作用,并对钢产生沉淀强化,从而提高钢材的强度和韧性,因此在钢材生产中得到了越来越多的应用。
但是,控制不好,AlN和(Nb、Ti、V)的碳氮化物大量在晶界析出,会促使钢的塑性降低,产生表面横裂纹。
因此研究微合金元素在钢材中行为变化及对钢材性能的影响规律,为实际生产中提供一定的理论基础。
2.微合金化元素对钢性能的影响
“微合金化”是指这些元素在钢中含量较低,通常低于1%(质量分数)[l],目前大量使用的是铌、钒、钛等,其特点是能与碳、氮结合成碳化物、氮化物和碳氮化物,这些化合物在高温下溶解,在低温下析出。
其作用表现在:在加热时阻碍原始奥氏体晶粒长大;在轧制过程中抑制再结晶及再结晶后的晶粒长大;在低温时起到强析出强化的作用。
通过合金元素的固溶及其固态反应,影响微结构乃至结构、组织和组分,从而使金属获得要求的性能[2]。
国内外许多学者对微合金元素在钢中的应用做了大量的研究工作,己经基本掌握了微合金元素在钢中的作用规律[3],如表1所示。
2.1钒
2.1.1 钒微合金化理论基础
钒在微合金钢中单独加入时主要形成VC、VN和V(N、C),属中间相,其化学式可在VC~V4C3之间变化。
钒在钢中的固溶量随温度的升高而迅速增大,而VC、VN的量则相应下降,但在较低的加热温度下,其碳化物可以完全溶解(至少是绝大部分)到奥氏体中,因此V的利用率高,对沉淀强化的贡献大,成为非调质钢中的主要的和常用的微量添加元素,为钛和铌所不及。
钒的碳化物土要以相间沉淀的形式析出,在α相区内析出量不多,并与α相保持共格关系。
相间析出物呈点带状分布,每条点带近似平行,析出物以相界为析出源,点带间距随冷却速度的增加而减小。
V可使沉淀相体积分数增加,沉淀相的密度增加和间距减小,从而能提高钢的综合性能。
2.1.2 钒在生产上的应用
钒由于在奥氏体中固溶度大,在常规的加热温度下,钒易溶于钢中,且其可以实现粗大奥氏体组织完全再结晶碎化,因此,钒适宜于钢材直扎的工艺特性。
任浩的研究表明:当N<0.005%时,钒对横向裂纹影响很小,但是,当氮含量高(0.02%)时,横向裂纹可能在含钒0.15%的钢种出现,然而在浇铸50mm 的薄板时,钒氮钢的表面质量要优于含铌钢[4];而由于钒对形变奥氏体基体的再结晶过程阻碍作用较小,并且奥氏体再结晶温度区间较宽,钒微合金钢广泛采用再结晶控制轧制工艺。
2.2钛
2.2.1 钛微合金化理论基础
钛容易形成氧化物,在脱氧完全的情况下,先后形成氮化物、碳硫化物、碳氮化物和碳化物,在钢中主要以TiC或Ti(C、N)的形式存在。
当钛含量较低时,钛首先结合钢中的氮,几乎全部形成TiN,钢中的硫以MnS形式存在,当含量增加到3.4N%时,开始形成Ti4C2S2,此时MnS和Ti4C2S2共存。
当钛含量增加到可将钢中的氮和硫全部固定时,MnS全部被Ti4C2S2代替,其沉淀强化作用很小。
而钛含量继续增加,多余的钛与碳结合形成TiC,细小而弥散的TiC 在低温时析出起沉淀强化作用。
钛的固溶度非常低,在钢材Ti含量适宜(0.01%~0.02%)时才能同时满足各方面的要求,更低的Ti含量将不能得到足够体积分数的TiN来有效阻止晶粒粗化。
虽较高的Ti含量将导致粗大的液析TiN的出现而不能起到阻止晶粒长大的作用,但超出Ti/N理想化学配比的Ti将以固溶Ti形式或以细小TiC质点形式而显著阻止再结晶。
2.2.2 钛在生产上的应用
在低合金高强度钢中加入微量钛,可以提高钢的强度,改善钢的冷成形性能和焊接性能。
钛在细化晶粒的同时,还能提供可观的沉淀强化效果,且其活性较大,易于和氮、氧、硫、碳等形成化合物。
与铌、钒微合金技术相比,目前钛微合金技术没有得到广泛应用,主要原因是钛微合金钢性能波动较大,其强化机理还不清楚,限制了钛微合金技术在实际生产上的推广应用。
2.3铌
2.3.1 铌微合金化理论基础
铌在钢中核心作用是细化晶粒来提高钢材的强度和韧性。
其以置换溶质原子存在,对再结晶的抑制作用与其和铁原子尺寸及电负性差异有关,即所谓的溶质拖曳机制,Nb原子比铁原子尺寸大,易在位错线上偏聚,其偏聚浓度也相对增
高,从而对位错攀移产生较强的拖曳作用,表现为在低温区能有效抑制奥氏体再结晶,这种作用高于Ti、Mo、V,是与铁原子尺寸相差较小的Mn、Cr、Ni对再结晶的阻止作用的几十倍或上百倍;在较宽温度区间尽可能地实现薄饼化,并促使晶粒内部产生大量的变形带等具有铁素体形核能力的缺陷位置,最终得到均匀细小的铁素体组织。
铌在钢中可形成NbC~NbC0.87间隙中间相。
在再结晶过程中,因NbC、NbN对位错的钉扎和阻止亚晶界的迁移使再结晶时间大大延长,且随析出量的增加而增大。
在临界温度之上,Nb元素对再结晶的影响表现为溶质拖曳机制;而在此温度之下,则表现为析出钉扎机制。
当Nb和V复合添加时,既能提高钢的强度又能改善钢的韧性,这是因为V固溶温度低,可以起沉淀强化作用,而Nb在较低的均热温度下大部分不溶解,可以起细化晶粒的作用,从而改善微合金的性能。
2.3.2 铌在生产上的应用
由于铌微合金钢的强度、冲击韧性、成形性能、焊接性能均能达到传统流程同类产品的实际水平,促使研究工作者开展了大量铌微合金钢的生产,但许多文献表明[5]:加铌会促进横向裂纹的形成,形成横向裂纹所需铌含量很低,铌含量达到0.01%时,裂纹就急剧增加,因此对铌微合金元素虽然能够提高钢材的性能,但对于生产中技术难点也需以克服。
而结合钢厂生产铌微合金钢遇到的质量问题,我认为,铌微合金钢横向裂纹形成机理为:一方面横向裂纹形成早期阶段,可能位于结晶器内,由于热流不稳定,造成的坯壳收缩不均匀,结晶器振动造成的振痕,因为振痕下的晶粒尺寸较粗大,且凹口形的几何形状也会使应力集中,但缺陷变大,变多主要是在结晶器之后,由于钢材的延展性受到微合金元素影响剧烈,铸坯在出结晶器后,受到各种渠道的应力作用,特别是板坯矫直时的应力作用,当这些应力出现在延展性差的温度范围内,横向裂纹形成严重;另一方面由于铌合金钢的碳氮化物沉淀存在,正好处在铸坯的顶弯和矫直温度范围内产生一个塑性低谷,造成铸坯产生横裂纹等质量问题。
因此从工艺条件上来说,应优化连铸冷却工艺,避免板坯边部和表面温度落入高温塑性低谷区,优化保护渣,保证热流的稳定。
3.结束语
经过多年基础理论研究,钒、钛、铌等微合金元素已成功用于钢材生产,形成了成套的生产技术,产品已广泛应用于国民经济相关行业,取得了良好的经济效益和社会效益。
但是由于钒、钛、铌等不同的合金元素的作用机理不尽相同,导致钢材的成材性能也不尽相同。
因此在生产中应加强对钒、钛、铌等微合金元素对钢材性能的研究以及其不同的工艺条件对钢材性能的影响的研究,提高钒、钛、铌等微合金钢的竞争力,为钢材工业结构调整做出更大的贡献。