纳米二氧化钛结构与光催化性能关系
- 格式:docx
- 大小:86.96 KB
- 文档页数:4
纳米TiO2材料的制备及其光催化性能研究随着经济的发展,人们生活水平的提高,人们逐渐意识到可持续发展的重要。
环境问题已严重影响现代文明的发展,有机污染物具有持久性的特点而长期威胁人类健康,开发和设计仅利用太阳能即可完成对有机污染物降解的新材料将会是解决环境问题的有效方法之一。
纳米TiO2作为一种光催化材料,具有优异的物理和化学性质,因而被广泛应用和重点研究。
本文就纳米TiO2材料的制备及其光催化性能展开探讨。
标签:纳米TiO2;光催化;制备方法;光催化效能引言半导体光催化技术是解决环境污染与能源短缺等问题的有效途径之一。
以二氧化钛为代表的光催化剂在染料敏化太阳能电池、锂离子电池、光伏器件以及光催化领域表现出明显的使用优势.但是TiO2本身的弱可见光吸收、低电导率、高载流子复合速率限制了其在工业生产中的进一步使用。
科技工作者一般通过掺杂、半导体复合、燃料敏化、表界面性质改性等方法提高TiO2的光电化学性能,使其能在生产实践中广泛应用。
1、TiO2材料简介TiO2在自然界中的主要存在形态为金红石、锐钛矿和板钛矿三种晶型,其中金红石是TiO2的高温相,锐钛矿和板钛矿两种形态是TiO2的低温相。
在三种晶型中光催化活性最好的为锐钛矿型TiO2。
锐钛矿型TiO2的禁带宽度为3.2eV 与之对应的激发波长为387nm。
所以,TiO2作为光催化剂在紫外光条件下具有催化活性,在可见光下一般没有活性。
只有对它的结构进行改性,使它的禁带宽度得以缩小,才可以实现材料在可见光条件下的催化降解反应。
改性的方式目前主要有以下几种方法:通过改变晶体内部结构来改变催化剂禁带宽度的离子掺杂方法,通过形成异质结改变能带结构的半导体复合法,提高催化剂对光的吸收能力的表面光敏化法,增大催化剂比表面积使晶粒细化的负载载体法等。
光催化材料中电子e一和空穴h十的浓度会影响有机物的降解速度。
粒径的减小能够使表面原子增加,使光催化剂吸收光的效率显著提高,使其表面e一和h十的浓度增大,从而提高光催化剂的催化活性。
不同掺杂二氧化钛的电子和晶体结构与光催化性能的关系1龙明策a,柴歆烨a,周保学a,蔡伟民*a,刘光增b(a 上海交通大学环境科学与工程学院,上海,200240b 山东大学化学系,山东,济南,250100)E-mail:wmcai@, long_mc@摘 要:对未掺杂、氮掺杂、碘掺杂和铂掺杂的锐钛矿TiO2进行了第一性原理计算。
结果表明,三种掺杂TiO2带隙中都产生新的能带。
这些新出现的能带是掺杂TiO2响应可见光的原因。
而且铂掺杂TiO2的带隙缩小,响应波长更宽。
铂掺杂和碘TiO2的能带位置明显下移,表明其具有更强的氧化性。
偏态密度分析表明掺杂元素提供的轨道参与了价带和导带的构成。
通过对晶体结构的分析和TiO6八面体偶极矩的计算,发现I掺杂后晶体结构明显畸变,其次是铂掺杂,氮掺杂几乎无畸变。
而这种变形能促进载流子的迁移,提高光催化活性。
计算结果很好地解释了未掺杂和掺杂TiO2在可见光照射下的光催化活性差异。
关键词:第一性原理 可见光 掺杂 光催化 电子结构1. 引言在光催化研究中,由于TiO2具有众多的优越性,如稳定、高效、价廉、无毒等[1],因此大部分光催化研究集中在TiO2上。
然而由于TiO2的禁带宽度约为3.2eV(锐钛矿),光催化活性仅限于紫外光范围。
然而自然光中的主要部分是可见光,所以研究者们在掺杂改性TiO2上进行了大量的努力,以使其吸收波长范围拓展到可见光区。
近来非金属掺杂TiO2的研究已经成为关注的热点[2-7]。
Asahi 等通过基于第一性原理的理论计算以及实验证明了通过N掺杂,TiO2可以缩小带隙,在可见光下表现出更强的光催化活性[2]。
Valentine等比较了N掺杂的锐钛矿和金红石TiO2 的电子结构,并且阐释了试验观察到的氮掺杂锐钛矿和金红石TiO2 的光催化活性差异[3]。
其他的非金属原子,如C[4]、S[5]等也可以作为阴离子被掺杂进TiO2 晶胞,这种掺杂被认为是取代了TiO2 晶体结构中的O原子。
光催化纳米二氧化钛与光照的关系光催化纳米二氧化钛与光照的关系光催化纳米二氧化钛是一种应用广泛的光催化材料,其性质与光照密切相关。
光照可以提供能量激发纳米二氧化钛中的电子和空穴,从而促进催化反应的进行。
本文将从纳米二氧化钛的结构和性质入手,探讨光照对其催化效果的影响。
我们来了解一下纳米二氧化钛的基本特性。
纳米二氧化钛是一种具有高度结晶性的半导体材料,具有优良的光催化性能。
其晶体结构为四方晶系,晶格中的氧原子围绕着钛原子排列形成三维网状结构。
而纳米二氧化钛的晶粒尺寸通常在1-100纳米之间,具有较大的比表面积和较高的光吸收率。
这使得纳米二氧化钛能够有效地吸收光能并产生电子空穴对。
在光照条件下,纳米二氧化钛表面被吸收的光子能量可以激发其原子或分子中的电子从价带跃迁到导带,形成电子空穴对。
这些电子和空穴对具有高度的活性,可以参与催化反应。
光照可以提供足够的能量,使得纳米二氧化钛中的电子和空穴得以激发,从而促进光催化反应的进行。
光照还可以改变纳米二氧化钛的表面状态,进一步影响其催化性能。
光照下,纳米二氧化钛表面的电荷状态和氧含量会发生变化,从而改变其表面活性位点的密度和分布。
这些表面活性位点可以吸附反应物分子,提供催化反应所需的活化能。
因此,光照可以调控纳米二氧化钛的表面性质,从而影响其催化效果。
光照条件下的纳米二氧化钛还可以发生光生电化学反应。
在光照条件下,纳米二氧化钛表面吸附的水分子可以被光激发产生电子和空穴。
这些电子和空穴可以在纳米二氧化钛表面发生氧化还原反应,从而促进水的分解或有机物的降解。
光生电化学反应是光催化过程中的一个重要环节,光照的强度和波长对其效果有着重要影响。
需要注意的是,光照强度和波长对光催化纳米二氧化钛的影响是复杂的。
过强的光照会导致电子和空穴的复合速率增加,从而降低光催化反应的效率。
而不同波长的光照对纳米二氧化钛的激发效果也有差异,不同催化反应所需的光照条件也不尽相同。
因此,合理选择光照条件对于光催化纳米二氧化钛的催化效果至关重要。
纳米二氧化钛光催化原理
纳米二氧化钛光催化是一种通过利用纳米二氧化钛作为催化剂,利用光照下光生电荷的特性来促进光化学反应的过程。
纳米二氧化钛催化的原理主要涉及到两个关键步骤:光吸收和电子传输。
首先是光吸收过程。
纳米二氧化钛具有广阔的能带结构,光能可以在其表面被吸收。
当光能与纳米二氧化钛相互作用时,电子将被激发至较高的能级,并产生电荷分离。
其次是电子传输过程。
激发后的电荷(电子空穴对)会被分离并迁移到纳米二氧化钛的表面。
电子通常会迁移到导电带上,而空穴则会迁移到价带上。
这种电子与空穴分离产生的电荷极化会使纳米二氧化钛具有催化活性。
纳米二氧化钛表面的催化活性可用于促进光化学反应。
光照下,纳米二氧化钛表面的电荷分离状态会引发一系列反应,例如光解水、光催化氧化有机物等。
电子和空穴分别参与氧化还原反应,从而促进了催化反应的进行。
总的来说,纳米二氧化钛光催化利用了纳米二氧化钛催化剂的特殊性质,通过光生电荷的产生和传输,促进了光化学反应的发生。
这种技术在环境净化、能源转换和有机合成等领域有着广泛的应用前景。
二氧化钛纳米管在光催化的介绍和特点中的应用二氧化钛纳米管在光催化的应用,哎呀,这可真是一个有趣的主题!二氧化钛,咱们就叫它TiO2吧,大家都比较熟悉。
这东西在我们生活中其实很常见,比如说白色颜料、太阳能电池等。
而这些纳米管,可谓是小小的奇迹,表面上看起来不起眼,实际上却有着不一般的能力。
想象一下,微小的TiO2纳米管在阳光照射下,活像一位超级英雄,瞬间变得强大无比,开始处理那些污染物,真是让人感到惊叹。
光催化,听起来好像高大上,其实就是利用光的能量来推动化学反应。
TiO2在这个过程中可是个主力军,阳光一来,它就开始发挥自己的光辉作用。
这个过程就像是一场精彩的表演,TiO2把太阳光变成了能量,随后开始分解空气中的有害物质,嘿,真是环保小能手!想象一下,如果我们的城市都用上这种材料,空气质量可得多好多啊,简直就是让人忍不住想要为它打call!TiO2纳米管的特点也很吸引人,首先是它的表面积大,能和更多的污染物接触。
就像一个大网,能捕捉到那些小小的坏分子。
这玩意儿不仅稳定,耐高温,甚至可以在酸碱环境中保持自己的“酷”。
不管是雨打风吹,它都能安然无恙,继续工作,这点真是让人佩服得五体投地。
更有趣的是,TiO2的光催化过程是自发的,换句话说,太阳一照,它就自动工作,不需要我们再去添油加醋。
这种省心省力的特性,真是让人觉得,哎,这科技真是给力。
想想我们在家里用的那些清洁剂、消毒剂,很多时候都是化学反应的结果。
而TiO2的光催化,简直就像是给环境“洗澡”,不仅干净,还不怕伤害生态,真的是环保的小帮手。
TiO2纳米管的应用可不止于此。
在水处理方面,它也大显身手。
比如说,利用它来处理污水,污染物一碰到TiO2,咻的一声,就被分解得干干净净。
水清了,鱼也快乐了,整个生态系统都得到了保护。
想象一下,能喝到这么干净的水,生活的质量一下子就上去了,真是美滋滋。
说到这里,大家可能会问,TiO2有没有什么缺点呢?当然也有,毕竟没有完美的东西。
改性纳米二氧化钛的光催化性能研究一、本文概述随着全球环境问题的日益严峻,光催化技术以其独特的优势在环境保护和能源转换领域受到了广泛关注。
作为光催化领域的重要研究对象,纳米二氧化钛(TiO₂)因其优良的光催化性能、稳定性以及低廉的成本,被广泛应用于太阳能光解水制氢、空气净化、污水处理等领域。
然而,传统的纳米二氧化钛存在光生电子-空穴对复合速率快、可见光响应范围窄等问题,限制了其在实际应用中的性能。
因此,对纳米二氧化钛进行改性,提高其光催化性能,具有重要的研究意义和应用价值。
本文旨在研究改性纳米二氧化钛的光催化性能,通过对其改性方法的探索,以期提高其在可见光下的光催化活性,拓宽其应用范围。
文章将介绍纳米二氧化钛的基本性质、光催化原理以及改性方法的研究进展。
将详细阐述本文所采用的改性方法,包括掺杂、负载贵金属、构建异质结等,以及改性后的纳米二氧化钛的表征手段。
通过对比实验,分析改性前后纳米二氧化钛在光催化性能上的差异,探讨改性方法对光催化性能的影响机制。
通过本文的研究,期望能为纳米二氧化钛的光催化性能改性提供新的思路和方法,推动其在环境保护和能源转换领域的应用发展。
也希望为相关领域的研究人员提供有益的参考和借鉴。
二、改性纳米二氧化钛的制备方法改性纳米二氧化钛的制备方法众多,各有其独特的优势和应用场景。
以下是几种常见的改性纳米二氧化钛制备方法:溶胶-凝胶法:溶胶-凝胶法是一种通过无机物或金属醇盐的水解和缩聚反应制备纳米材料的方法。
在这种方法中,通过控制水解和缩聚的条件,可以得到均匀稳定的溶胶,进一步通过热处理,溶胶转化为凝胶,最终得到改性纳米二氧化钛。
水热法:水热法是一种在高温高压下进行化学反应的方法。
通过将反应物置于特制的高压反应釜中,加热至一定温度,使反应物在水热条件下进行反应,从而制备出改性纳米二氧化钛。
微乳液法:微乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成微乳液,然后在微乳液中进行化学反应的方法。
第 页(共 页)课 程 ___________ 实验日期:年 月曰专业班号 _____ 别 ______________ 交报告日期: 年 月 日姓名__学号报告退发:(订正、重做)同组者 _____________ 次仁塔吉 __________ 教师审批签字:实验名称 _________________ 纳米二氧化钛粉的制备及其光催化活性的测试、实验目的1. 了解制备纳米材料的常用方法,测定晶体结构的方法。
2. 了解XRD 方法,了解X-射线衍射仪的使用,高温电炉的使用3. 了解光催化剂的(一种)评价方法、实验原理1.纳米TiO 2的制备① 纳米材料的定义:纳米材料指的是组成相或者晶相在任意一维度上尺寸小于 100nm 的材料。
纳米材料由于其组成粒子尺寸小, 有效表面积大,从而呈现出小尺寸效应, 表面与界面效应等。
② 纳米TiO 2的制备方法:溶胶凝胶法,水热法,火焰淬火掺杂法,阳极氧化法,电泳沉积 再阳极氧化法,高温雾化法,溅射法,光沉积法,共沉淀法。
本实验采取最基本的,利用金属醇盐水解的方法制备纳米 TiO 2,主要利用金属有机醇盐能溶于有机溶剂,且可以水解产生氢氧化物或氧化物沉淀。
该方法的优点:①粉体的纯度高,②可制备化学计量的复合金属氧化物粉末。
西安交通大学化学实验报告③制备原理:利用钛酸四丁酯的水解,反应方程如下Ti OC4H9 4 4出0 =Ti OH 4 4C4H9OHTi OH 4 Ti OC4H9 4=TiO2 4C4H9OHTi OH 4 Ti OH 4=TiO2 4H2O2. TiO 2的结构及表征我们通过实验得到的TiO 2是无定形的,二氧化钛通常有如下图上所示的三种晶状结构:A:板钛矿B:锐钛矿C:金红石无定形的TiO2在经过一定温度的热处理后,会向锐钛矿型转变,温度更高会变成金红石型。
我们可以通过X-射线衍射仪测定其晶体结构。
纳米TiO 2的景行对其催化活性影响较大,由于锐钛矿型TiO 2晶格中含有较多的缺陷和缺位,能产生较多的氧空位来捕获电子,所以具有较高的活性;而具有最稳定晶型结构的金红石型TiO2,晶化态较好,所以几乎没有光催化活性。
纳米二氧化钛光催化性能的测试一、实验导读1.半导体光催化剂半导体介于导体和绝缘体之间,在未激发的具有能带结构的半导体电子结构中,大多数电子处于价带内,而导带内则因能级较高处于电子缺乏状态。
导带和价带的过渡区称为带隙或禁带,其能量之差被称为能隙或禁带宽度,用E g表示,E g的大小代表了价带电子跃迁至导带的难易程度。
纳米TiO2等半导体的主要特征——宽禁带的存在,其优异独特的电、磁、光学等性质的表现也是由于它的存在而导致的。
宽禁带半导体其价带上的电子一旦受到一个具有高于其禁带宽度能量hv 的光照射后,能使其分子轨道中的电子(e-)离开价带(VB)跃迁到导带(CB)上,并在价带上产生相应的光生空穴(h+),同时在导带上形成光生电子(e-)。
在电场的作用下,两者发生分离,纳米半导体粒子因其尺寸很小,光激发产生的电子和空穴很快到达纳米粒子表面,导致原本不带电的粒子表面的二个不同部分出现了极性相反的二个微区——光生电子和光生空穴。
价带空穴是良好的氧化剂,导带电子是良好的还原剂,在半导体光催化反应中,与吸附在催化剂表面的污染物分子发生氧化还原反应。
跃迁到导带上的电子和价带上的空穴可能重新复合,并产生热能或以辐射方式散发掉。
但是当半导体光催化剂存在表面缺陷、合适的俘获剂、或者电场作用等因素时,电子和空穴的合并就得到了拟制。
同时纳米半导体粒子所具有的量子尺寸效应使其导带和价带能级变为分立的能级,能隙变宽,使其电子-空穴对具有更正的价带电位和更负的导带电位,因而具有更高的氧化能力和还原能力。
而且粒子越小,电子和空穴达到粒子表面的速度越快,电荷分离效果越好,电子与空穴复合几率反而越小,从而提高了纳米半导体的光催化活性。
作为半导体光催化剂的材料众多,包括TiO2、ZnO、WO3、SnO2、ZrO2等多种金属氧化物,CdS、FeS、MoS2等多种硫化物半导体。
TiO2等半导体纳米微粒,由于其表面的电子结构及晶体结构,具有特殊的表面效应、体积效应、量子尺寸效应、宏观量子隧道效应以及介电限域效应以外,还拥有高效的光催化活性,热稳定性好,价格低廉,对人体无毒、无害、无二次污染等特点,使其成为新兴的环保材料。
毕业设计(论文)纳米二氧化钛的制备与光催化性能研究1 绪论二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。
二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。
二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑[1];它又具有锌白一样的持久性。
二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。
在过去的研究中,用半导体粉末对水、油和空气中的有毒有机化合物进行光催化降解和完全矿化引起了人们的大量关注。
由于抗光腐蚀性,化学稳定性,成本低,无毒和强氧化性,二氧化钛被作为应用最广泛的光催化剂来光降解水和空气中的有毒化合物。
但是二氧化钛具有较大的带隙(锐钛矿相二氧化钛为3.20ev)因此,只有较小一段太阳光区域,大约为2%~3%紫外光区可被应用[2]。
人们尝试用各种制备方法,如贵金属掺杂、氧化物复合、表面修饰等等方法,防止和减少电子与空穴的复合,提高催化剂的光催化活性。
众所周知,吸附和催化的效率与固体的孔径及表面积有关,因此,对二氧化钛进行修饰、改性及增大比表面积是提高光量子效率和增大反应速率的一个有效的方法与途径。
1.1 TiO2的结构与基本性质1.1.1物理常数及结构特征表1 TiO的物理常数1.1.2 TiO2的结构特征在自然界中,TiO2存在三种晶型结构,即金红石、锐钛矿和板钛矿。
这些结构的区别取决于TiO68-八面体的连接方式,图1-1是TiO68-八面体的两种连接方式,锐钛矿结构是由TiO68-八面体共边组成,而金红石和板钛矿结构则是由TiO68-八面体共顶点且共边组成。
锐钛矿TiO2中的每个八面体与周围8个八面体相连,金红石TiO2中每个八面体与周围10个八面体相连。
事实上锐钛矿可以看做是一种四面体结构,而金红石和板钛矿则是晶格稍有畸变的八面体结构[3]。
简单地认为锐钛矿比金红石活性高是不严谨的,它们的活性受其晶化过程的一些因素影响。
纳米二氧化钛结构与光催化性能关系
XXX
XXX
摘要纳米级二氧化钛由于具有无毒、化学稳定性好、比表面积大、成本低等优异性能深受
科研工作者的关注。
其所具有的光催化性能使其在降解大气及水体中污染物领域具有广阔前景。
本文从纳米二氧化钛结构出发,阐述纳米二氧化钛光催化机理,并简要说明不同元素掺
杂纳米二氧化钛后对其光催化性能的影响。
关键词纳米二氧化钛;光催化;结构;掺杂
自1972年FuJiShima和HonclallJ发现TiO2单晶电极在紫外光照射下可分解水及Bard将光电化学理论扩展到半导体微粒光催化后,TiO2作为一种半导体光催化剂吸引诸多学者的研
究。
由于TiO2具有良好的化学稳定性、抗磨损性、较大的比表面积、无毒、成本低以及可以直接利用自然光等优点,利用TiO2光催化氧化法处理水中有机污染物等方面有广阔的应
用前景。
然而TiO2半导体光催化剂在实际应用中存在一些缺陷如:带隙较宽(E =3.2eV),只有在入小于387.5 nm的紫外光激发下价带电子才能跃迁到导带上形成光生电子和空穴分离,而紫外光在自然光中仅占3%〜5%,因此对自然光的利用率不高。
另外半导体载流子的复合率很高,导致光量子效率很低,提高TiO2纳米粒子的光催化效率是利用TiO2光催化剂的关键。
为了改善TiO2的光催化性能,研究工作者关于TiO2的制备方法、掺杂、催化剂载体、
热处理等方面做了许多研究,其中掺杂因其容易实现、效果明显、应用范围广泛,而成为研
究热点。
⑴
1、纳米二氧化钛结构及其光催化机理
1.1二氧化钛晶型
纳米二氧化钛具有锐钛矿,板钛矿及金红石型结构,其中以锐钛矿型光催化性能最好。
其晶胞结构如下(其中红色为O,白色为Ti ):
锐钛矿型:
板钛矿型:
金红石型:
1.2纳米二氧化钛催化机理
当阳光尤其是紫外光照射到半导体TiO2微粒上时,形成光生电子--空穴对。
在电场的作
用下,电子与空穴有效分离并迁移到TiO2微粒表面的不同位置。
光生空穴有很强的获得电子
能力,可夺取吸附于半导体微粒表面的有机物或溶剂中的电子,使原本不吸收入射光的物质活化而被氧化;电子受体则通过接受TiO2微粒表面的电子被还原,水溶液中的光催化氧化还
原反应就在TiO2微粒表面进行。
吸附于TiO2微粒表面的水分子被光生空穴氧化后,生成氧化能力和反应活性极强的氢氧自由基(• OH),上述机理表示如下:
TiO2 + hv T h+ + e+ (1)
H O + h+ T• OH + H+ (2)
光生电子还原水中的溶解氧,通过反应(3)~(7)生成过氧化氢自由基(H2O-)和过氧化氢
(H 2Q )。
过氧化氢借助反应(8)~(11),依次生成氢氧自由基。
H+ + e- T H•(3)
Q + e- T• O 2⑷
• O' + H • T HO'2(5)
HO2 + h+ T HO2 •⑹
2HO, T O2 + H 2O2⑺
(8)
fQ + • 02 T• OH+ OH-+ O
2
f Q + hv T 2 • OH(9)
H Q + e- T• OH+ OH-(10)
OH+ h+ T• OH(11)
• OH是水中存在的反应活性最强的氧化剂,对作用物无选择性,其对细胞的DNAT制和细胞
膜代谢带来有害的影响。
TiO 2微粒膜本身对微生物细胞无毒性和杀灭作用,只有在太阳光尤其是紫外光照射下
才具有杀灭细菌的作用。
TiO2微粒光催化杀菌有直接和间接反应两种不同的机理。
光激发
TiO2和细胞间的直接反应是光生电子和光生空穴直接和细胞壁、细胞膜或细胞的组成成分反应,导致功能单元失活而令细胞死亡。
例如在大肠杆菌被光激发的TiO2微粒完全杀死时,细胞内辅酶A的含量下降而二聚体辅酶A的含量上升。
这是因为光激发TiO2产生电子空穴对,导带中的光生电子转移给Q等电子受体,价带中的光生空穴则接受辅酶A的电子,从而使辅
酶A通过双硫键键合形成二聚体而导致辅酶A失活。
另一机理则是光激发Ti02与细胞的间接反应,即光生电子或光生空穴与水或水中的溶解氧反应,形成氢氧自由基(• OH)和过氧化氢自由基(HO2-)等活性氧类,这些活性自由基的反应活性和氧化能力最强。
它们可与细胞壁、细胞膜或细胞内的组成成分发生生化反应,这已被许多实验研究所证实。
因此,TiO2微粒膜光催化杀菌机理是光生电子和光生空穴及形成于水中的•OH • O+2, HO •和H2O与细胞壁、细胞膜或细胞内的组成成分反应而杀死细菌。
其机理总结如图1所示。
[2]
图!光激发Tig微粒膜杀菌机理
(a)光生空穴的氧化机理;(b)活性氧类的
生化反应机理;(c)活性氧类的生成机理
2、掺杂型纳米二氧化钛
纳米TiO2的杀菌功能在紫外线照射下才具有光催化作用,亦即表现出抗菌、杀菌作用,
且在空气中极易氧化、吸湿、团聚、性能不稳定。
通过掺杂贵金属可以防止电子-空穴对的
复合,促进电子-空穴对的有效分离,从而使二氧化钛抗菌性能更加稳定,这些金属中以银
的抗菌能力最强。
Leo M.Sudnik等应用表面增强Rama光谱检测了沉积于Ti02表面的多晶型银,发现了银离子的光学诱导还原作用,Ag可作为Ti02光化学活性剂。
其特征是该材料不仅
在光照下能产生良好功效,在微弱光甚至无光照条件下同样能产生抗菌效果。
[3]因此,若将纳米二氧化钛与Ag+复合,所得的载银纳米二氧化钛由于Ag掺杂效应,其光
吸收带隙变窄,吸收光移向长波方向,以至具有可见光催化活性。
在无光条件下,可利用Ag+
的杀菌效果,由此大大拓宽了材料的应用范围。
过渡金属掺杂的机理主要是通过引入过渡金属离子在本征半导体中形成间隙、空位、占据本征离子亚晶格等方式形成杂质缺陷,扩展光吸收范围。
同时这些缺陷可能成为光生电子
或空穴的捕获中心使电子与空穴有效分离。
卢安贤等用溶胶一凝胶法制备了Fe—Ti02光催化薄膜,认为[Fe] /[Ti02](摩尔比)为
0.005时薄膜对敌敌畏的降解率最大。
肖美群等应用电化学阳极氧化法制备不同Fe掺杂量的TiO2薄膜,发现掺Fe后TiO2薄膜吸收带边明显向长波方向移动,Fe的浓度为1.08 %的TiO2
薄膜红移现象明显,归因于Fe的3d轨道电子激发到导带上。
不同掺铁方式对TiO2薄膜光催化
活性影响不同,梁园园等以化学纯的钛酸正四丁酯为主要原料采用溶胶凝胶工艺在普通玻璃表面制备表面掺铁与体相掺铁的TiO2薄膜,光催化降解甲基橙溶液时,体相掺铁的最佳剂量
为n(Fe) /n(Ti)=O.12 %,表面掺铁的最佳剂量为n(Fe) /n(Ti)=1.5 %,而表面掺铁薄膜的
最佳光催化表观速率常数比体相掺铁的最佳值要高 1.5倍,根据AES勺谱图分析其原因是表面
掺铁薄膜的铁集中于薄膜外层,与体相掺杂的薄膜相比增加了TiO2的表面缺陷,使电子与空
穴有效分离,有效地转移了电荷,光催化活性得到增强,因而表面掺杂优于体相掺杂。
[1]另外,利用阴离子掺杂,多离子掺杂的实验均有报道,其结果表明多种掺杂元素均对纳米二氧化钛光催化性能有所提高,其更深入的研究及理论仍有待发展。
结语
二氧化钛光催化活性在经过不同离子掺杂后得到很大改善,一般认为掺杂其他元素后使
二氧化钛表面产生更多缺陷能,缩小了光吸收能隙并且有效地阻止光生电子与空穴的复合,从而提高了光催化活性。
同时由于纳米二氧化钛具有巨大比表面积,利用其纳米效应,在抗
菌防腐应用方面具有很大优势。
在科学家的努力下,纳米二氧化钛的各种优越性能不断被发掘出来。
可以推测,在今后一段时间里,纳米二氧化钛材料将在光催化以至更广的领域内发挥重要的作用。
参考文献
[1] 沈毅,任富建,刘红娟•掺杂TiO2的光催化性能研究(稀有金属材料与工程),2006,
35(11)
[2] 李娟红,雷闫盈,王小刚.半导体TiO2纳米微粒膜光催化杀菌机理与性能的研究,材料工程,2006
[3] 郑露,许欣,陈昭斌,杨慧萍,张梦妍.载银纳米二氧化钛水溶液对噬菌体和细菌杀
灭效果的比较研究,现代预防医学2010, 37 ( 5)。