施工技术--最详细的深基坑工程安全事故总结及坍塌案例分析(工程人必读)
- 格式:doc
- 大小:18.50 KB
- 文档页数:9
施工技术最详细的深基坑工程安全事故总结及坍塌案例分析(工程人必读)第一篇:施工技术最详细的深基坑工程安全事故总结及坍塌案例分析(工程人必读)施工技术最详细的深基坑工程安全事故总结及坍塌案例分析(工程人必读!)深基坑工程是最近30多年中迅速发展起来的一个领域,由于高层建筑、地下空间的发展,深基坑工程的规模之大、深度之深,成为岩土工程中事故最为频繁的领域,给岩土工程界提出了许多技术难题,当前,深基坑工程已成为国内外岩土工程中发展最为活跃的领域之一。
深基坑工程概念住房和城乡建设部《危险性较大的分部分项工程安全管理办法的通知》规定:深基坑工程指开挖深度超过5m(含5m)或地下室3层以上(含3层),或深度虽未超过5m,但地质条件和周围环境及地下管线特别复杂的基坑土方开挖、支护、降水工程。
深基坑工程特点当前我国各大城市深基坑工程主要突出了以下四个特点:①深基坑距离周边建筑越来越近由于城市的改造与开发,基坑四周往往紧贴各种重要的建筑物,如轨道交通设施、地下管线、隧道、天然地基民宅、大型建筑物等,设计或施工不当,均会对周边建筑造成不利影响。
②深基坑工程越来越深随着地下空间的开发利用,基坑越来越深,对设计理论与施工技术都提出的更难的要求。
如无锡恒隆广场基坑深近27m,上海中心深基坑达30m,均已挖入了承压水层。
下图为宁波嘉和中心二期项目基坑,平均开挖深度18.3m,最大挖深25.9m,整体为3层地下室布局,局部有夹层。
③ 基坑规模与尺寸越来越大图为天津西站二期项目基坑,总面积为39000m2,基坑周长达855m。
④施工场地越来越紧凑图为宁波春江花城二期项目基坑全景,地下室距离外墙用地红线仅3.5m。
深基坑工程安全质量问题深基坑工程安全质量问题类型很多,成因也较为复杂。
在水土压力作用下,支护结构可能发生破坏,支护结构形式不同,破坏形式也有差异。
渗流可能引起流土、流砂、突涌,造成破坏。
围护结构变形过大及地下水流失,引起周围建筑物及地下管线破坏也属基坑工程事故。
工程施工塌方案例分析1. 概述工程施工中遭遇塌方是一种严重的事故,不仅会造成人身伤亡和财产损失,还会导致工期延误和环境污染等问题。
因此,对于工程施工中的塌方事故,需要进行详细的分析和调查,找出事故发生的原因和责任,并提出相应的防范和处理措施,以避免类似事故再次发生。
本文将通过一个工程施工塌方案例,进行详细的分析和讨论。
2. 案例描述2018年8月,某地区一家施工单位在进行山地路基开挖工程时,发生了一起严重的塌方事故。
事故发生时,有3名工人被埋在了塌方中,其中2人被迅速挖掘出来并送往医院抢救,最终成功获救,但另一名工人被困在塌方下面长达3个小时,最终抢救无效,不幸遇难。
此次塌方事故导致了工程现场的停工,并对周边环境造成了一定的影响。
3. 事故原因分析3.1 工程设计问题在该案例中,工程设计问题可以说是导致塌方事故的主要原因之一。
经过调查发现,原始的山地路基设计并没有考虑到地质条件和土壤稳定性等因素,而是简单地进行了施工图纸的绘制。
在挖掘山地路基时,山体的稳定性并未得到充分评估,从而导致了塌方事故的发生。
3.2 施工工艺和方法问题另外,施工工艺和方法问题也是导致塌方事故的重要原因之一。
在这次工程施工中,施工方采用了传统的土方开挖和挖土车运输的方式,没有采取一些先进的施工方法和技术。
由于路基开挖过程中的振动和压实作用,导致了土方的松动和失稳,最终引发了塌方事故。
3.3 监理和管理问题此外,监理和管理问题也是该事故发生的原因之一。
在该工程施工现场,监理单位并未对施工方的施工过程和工艺进行严格的监督和检查,导致了施工方在施工过程中的一些违规行为没有得到及时的制止和纠正。
同时,施工方在施工现场的管理和安全措施也存在一定的漏洞,没有能够及时发现和排除隐患。
3.4 其他因素除了上述原因之外,一些其他因素也可能会对塌方事故的发生产生影响。
比如施工现场的气象条件、地质地形等自然因素,以及施工人员的安全意识和技术水平等因素,都有可能会对事故的发生造成影响。
建筑质量事故分析实例摘要:最近几年来,在对工程质量事故鉴定工作中,我收集了一些典型的工程质量事故案例。
这些案例涉及基本建设程序、工程地质勘察、工程设计、工程施工、材料供应以及质量检测等各方面。
现列举一部分,供大家参考。
关键词:质量事故实例案例一:某工厂新建一生活区,共14 幢七层砖混结构住宅(其中10幢为条形建筑,4幢为点式建筑)。
在工程建设前,厂方委托一家工程地质勘察单位按要求对建筑地基进行了详细的勘察。
工程于一九九三年至一九九四年相继开工,一九九五年至一九九六年相继建成完工。
一年后在未曾使用之前,相继发现10幢条形建筑中的6幢建筑的部分墙体开裂,裂缝多为斜向裂缝,从一楼到七楼均有出现,且部分有呈外倾之势;3幢点式住宅发生整体倾斜。
后来经仔细观察分析,出现问题的9幢建筑均产生严重的地基不均匀沉降,最大沉降差达160mm 以上。
事故发生后,有关部门对该工程质量事故进行了鉴定,审查了工程的有关勘察、设计、施工资料,对工程地质又进行了详细的补勘。
经查明,在该厂修建生活区的地下有一古河道通过,古河道沟谷内沉积了淤泥层,该淤泥层系新近沉积物,土质特别柔软,属于高压缩性、低承载力土层,且厚度较大,在建筑基底附加压力作用下,产生较大的沉降。
凡古河道通过的9栋建筑物均产生了严重的地基不均匀沉降,均需要对地基进行加固处理,生活区内其它建筑物(古河道未通过)均未出现类似情况。
该工程地质勘察单位在对工程地质进行详勘时,对所勘察的数据(如淤泥质土的标准贯入度仅为3,而其它地方为7~12)未能引起足够的重视,对地下土层出现了较低承载力的现象未引起重视,轻易的对地基土进行分类判定,将淤泥定为淤泥质粉土,提出其承载力为100kN,Es为4Mpa.设计单位根据地质勘察报告,设计基础为浅基础,宽度为2800mm,每延米设计荷载为270kN,其埋深为- 1.4m~2m左右。
该工程后经地基加固处理后投入正常使用,但造成了较大的经济损失,经法院审理判决,工程地质勘察单位向厂方赔偿经济损失329万元。
•简介:随着高层建筑和市政建设的发展,基坑支护不仅成为建筑施工的一个热点、难点,更是安全事故多发环节,尤其是今年雨季降雨量较往年大、事故发生率高的情况下,更应该广泛引起设计、施工、监理等部门的高度重视,本文用一个工程基坑塌方实例说明影响基坑支护安全的主要因素和对我们进行安全控制所产生的启示。
•关键字:土方坍塌,事故分析,基坑塌方随着高层建筑和市政建设的发展,基坑支护不仅成为建筑施工的一个热点、难点,更是安全事故多发环节,尤其是今年雨季降雨量较往年大、事故发生率高的情况下,更应该广泛引起设计、施工、监理等部门的高度重视,下面用一个工程基坑塌方实例说明影响基坑支护安全的主要因素和对我们进行安全控制所产生的启示。
一、工程实例简介:北京市海淀区某办事处办公楼工程为原址拆迁重建工程,基础深度地表以下-9.0m,地质情况:地表下-4.10m范围内为房渣土,-4.10m~-5.20m为粉质、砂质粘土,-5.20m以下为细卵石层;周围环境:西侧、北侧为马路,东侧紧邻一栋六层住宅楼和一处自行车棚,南侧槽边围墙外3m为一带地下夹层的变电室。
经物探证实东、西、北、三面地下皆无管线,而南侧地下管线复杂,且槽边位置遗留一道3.5m高原建筑物地下室混凝土墙体。
因此支护设计为基坑东、西、北三面采取土钉支护,南侧采取悬臂桩支护。
二、事故经过:本基坑工程整体施工采取由北向南、边挖边支的方式,在灌注桩施工完毕后第二天凌晨,基坑南侧发生整体塌方,原建筑物地下室混凝土墙体及其后土体整体滑移、下沉,随后从破损的墙体边缘不断向外冒水,塌方程度进一步加剧,很快整个坑底被水浸泡,所幸没有人员伤亡。
三、原因分析事故发生后,有关部门立即采取补救措施,并对事故原因展开多方面调查分析,结果如下:(1)设计因素:本基坑支护工程的设计和施工单位为两家独立单位,设计单位受施工单位委托,在未对现场作充分考察的情况下作出方案设计,后查实设计在地面荷载取值时并未考虑原有建筑物地下室混凝土外墙的重量,只按照地表超载值为30Kpa计算,而实际中除了配电室的重力作用,原有建筑物地下室混凝土外墙产生的局部超载值高达87.5Kpa!如此巨大差异之下,边坡安全稳定系数根本无法保证。
施工时从以下几点把关。
3.1施工顺序拆除改造工程的施工顺序至关重要本,工程施工顺序为(1)开挖柱基坑浇注墩混凝土及墩顶抬梁(2)将A轴线和B轴线上的纵墙上的门窗洞口砌实(3)找出空心板在墙上的支承位置(4)将有关空心板在墙上打好支撑然后在墙上凿出洞口塞入钢支座见图5(5)按设计图将梁的纵筋穿过钢支座及箍筋并绑好见图5(6)绑扎好柱筋(7)在斜装的梁侧模板之上口处灌入混凝土插入振动棒浇注抬墙梁混凝土(8)拆除抬墙下部墙体。
3.2墙体的拆除纵横墙的拆除必须在抬墙梁的混凝土达到设计强度后,才可进行拆除时应注意以下几点:(1)拆墙前在需拆除的墙段上事先每1000mm开一道槽,以便在拆墙时减小对原有建筑的震动。
(2)拆墙时从跨中向二端拆。
(3)为避免抬墙梁承受瞬间荷载,控制拆墙速度在拆墙过程中随时监控上部砌体及抬墙梁的动态。
3.3混凝土浇注混凝土的和易性要好,否则易造成蜂窝麻面。
混凝土中宜掺适量微膨剂,并加强振捣,增加梁的密实度,混凝土浇注方向宜从一头向另一头推进,并且留出排气孔,以便梁内空气排出混凝土标号采用C30。
4结束语随着社会经济的不断发展,许多10 ̄20年前建成的临街砖混结构房屋其底层被改造,成为商业门面入口或大厅等,当将原来小开间砖混结构房屋的纵墙和横墙同时拆除,以形成大开间时可采用拆墙增加梁柱的技术,由于采取了以上措施,原建筑在拆除纵横墙体的过程中未发生任何问题,改造后房屋使用近一年未见任何异常现象,在本文中结合工程实例对砖混结构房屋底层拆墙增加梁柱的施工技术作了十分粗浅的分析,旨在抛砖引玉。
使之更加完善和实用。
■(作者单位:茂名职业技术学院)深基坑工程施工的事故问题与对策□刘耀全1基坑工程事故的技术分析通过查阅国内140余起基坑工程事故的分析资料,可以将造成事故的原因归纳为五个方面,即建设单位管理问题、基坑工程勘察问题、基坑工程设计问题、基坑工程施工问题和基坑工程监理问题等。
同时还可以统计出,首先,由于施工单位施工质量差、不严格遵守施工规程等诸多因素结合在一起而引发的基坑事故占总数的47%。
施工技术最详细的深基坑工程安全事故总结及坍塌案例分析(工程人必读!!)深基坑工程是最近30多年中迅速发展起来的一个领域,由于高层建筑、地下空间的发展,深基坑工程的规模之大、深度之深,成为岩土工程中事故最为频繁的领域,给岩土工程界提出了许多技术难题,当前,深基坑工程已成为国内外岩土工程中发展最为活跃的领域之一。
深基坑工程概念住房和城乡建设部《危险性较大的分部分项工程安全管理办法的通知》规定:深基坑工程指开挖深度超过5m(含5m)或地下室3层以上(含3层),或深度虽未超过5m,但地质条件和周围环境及地下管线特别复杂的基坑土方开挖、支护、降水工程。
深基坑工程特点当前我国各大城市深基坑工程主要突出了以下四个特点:①深基坑距离周边建筑越来越近由于城市的改造与开发,基坑四周往往紧贴各种重要的建筑物,如轨道交通设施、地下管线、隧道、天然地基民宅、大型建筑物等,设计或施工不当,均会对周边建筑造成不利影响。
②深基坑工程越来越深随着地下空间的开发利用,基坑越来越深,对设计理论与施工技术都提出的更难的要求。
如无锡恒隆广场基坑深近27m,上海中心深基坑达30m,均已挖入了承压水层。
下图为宁波嘉和中心二期项目基坑,平均开挖深度18。
3m,最大挖深25.9m,整体为3层地下室布局,局部有夹层.③基坑规模与尺寸越来越大图为天津西站二期项目基坑,总面积为39000m2,基坑周长达855m。
④施工场地越来越紧凑图为宁波春江花城二期项目基坑全景,地下室距离外墙用地红线仅3。
5m。
深基坑工程安全质量问题深基坑工程安全质量问题类型很多,成因也较为复杂。
在水土压力作用下,支护结构可能发生破坏,支护结构形式不同,破坏形式也有差异。
渗流可能引起流土、流砂、突涌,造成破坏.围护结构变形过大及地下水流失,引起周围建筑物及地下管线破坏也属基坑工程事故。
粗略地划分,深基坑工程事故形式可分为以下三类:1)基坑周边环境破坏在深基坑工程施工过程中,会对周围土体有不同程度的扰动,一个重要影响表现为引起周围地表不均匀下沉,从而影响周围建筑、构筑物及地下管线的正常使用,严重的造成工程事故。
引起周围地表沉降的因素大体有:基坑墙体变位;基坑回弹、隆起;井点降水引起的地层固结;抽水造成砂土损失、管涌流砂等。
因此如何预测和减小施工引起的地面沉降已成为深基坑工程界亟需解决的难点问题。
2)深基坑支护体系破坏包括以下4个方面的内容:①基坑围护体系折断事故主要是由于施工抢进度,超量挖土,支撑架设跟不上,是围护体系缺少大量设计上必须的支撑,或者由于施工单位不按图施工,抱侥幸心理,少加支撑,致使围护体系应力过大而折断或支撑轴力过大而破坏或产生大变形.下图为2011年杭州某深基坑围护桩折断事故。
②基坑围护体整体失稳事故深基坑开挖后,土体沿围护墙体下形成的圆弧滑面或软弱夹层发生整体滑动失稳的破坏。
下图为某深基坑围护整体失稳破坏事故。
③基坑围护踢脚破坏由于深基坑围护墙体插入基坑底部深度较小,同时由于底部土体强度较低,从而发生围护墙底向基坑内发生较大的“踢脚"变形,同时引起坑内土体隆起。
下图为某深基坑发生“踢脚”破坏。
④坑内滑坡导致基坑内撑失稳在火车站、地铁车站等长条形深基坑内区放坡挖土时,由于放坡较陡、降雨或其他原因引起的滑坡可能冲毁基坑内先期施工的支撑及立柱,导致基坑破坏。
下图为2009年杭州地铁1号线凤起路站坑内土体滑坡引起的支撑体系破坏。
3)土体渗透破坏包括以下3个方面内容:①基坑壁流土破坏在饱和含水地层(特别是有砂层、粉砂层或者其他的夹层等透水性较好的地层),由于围护墙的止水效果不好或止水结构失效,致使大量的水夹带砂粒涌入基坑,严重的水土流失会造成地面塌陷.下图为某深基坑止水帷幕渗漏、桩间流土事故。
②基坑底突涌破坏由于对承压水的降水不当,在隔水层中开挖基坑时,当基底以下承压含水层的水头压力冲破基坑底部土层,将导致坑底突涌破坏。
下图为上海某深基坑坑底内发生承压水突涌。
③基坑底管涌破坏在砂层或粉砂底层中开挖基坑时,在不打井点或井点失效后,会产生冒水翻砂(即管涌),严重时会导致基坑失稳。
下图为湖南浯溪水电站二期深基坑出现管涌.以上深基坑工程安全质量问题,只是从某一种形式上表现了基坑破坏,实际上深基坑工程事故发生的原因往往是多方面的,具有复杂性,深基坑工程事故的表现形式往往具有多样性。
深基坑工程实例--广州海珠城广场基坑坍塌海珠城广场基坑周长约340m,原设计地下室4层,基坑开挖深度为17m。
该基坑东侧为江南大道,江南大道下为广州地铁二号线,二号线隧道结构边缘与本基坑东侧支护结构距离为5。
7m;基坑西侧、北侧邻近河涌,北面河涌范围为22m宽的渠箱;基坑南侧东部距离海员宾馆20m,海员宾馆楼高7层,采用φ340锤击灌注桩基础;基坑南侧两部距离隔山一号楼20m,楼高7层,基础也采用φ340锤击灌注桩。
该工程地质情况从上至下依次为:填土层,厚0.7~3.6m;淤泥质土层,层厚0。
5~2.9m;细砂层,个别孔揭露,层厚0.5~1。
3m;强风化泥岩,顶面埋深为2.8~5。
7m,层厚0。
3m;中风化泥岩,埋深3。
6~7。
2m,层厚1。
5~16。
7m;微风化岩,埋深6。
0~20.2m,层厚1.8~12.84m.由于本工程岩层埋深较浅,因此原设计支护方案如下:1)基坑东侧、基坑南侧偏东34m、北侧偏东30m范围内,上部5.2m采用喷锚支护方案,下部采用挖孔桩结合钢管内支撑的方案,挖孔桩底标高为▽—20.0m。
基坑西侧上部采用挖孔桩结合预应力锚索方案,下部采用喷锚支护方案。
基坑南侧、北侧的剩余部分,采用喷锚支护方案。
后由于±0.00标高调整,后实际基坑开挖深度调整为15.3m。
2)本基坑在2002年10月31日开始施工,2003年7月施工至设计深度15.3m,后由于上部结构重新调整,地下室从原设计4层改为5层,地下室开挖深度从原设计的15.3m增至19。
6m.由于地下室周边地梁高为0。
7m。
因此,实际基坑开挖深度为20.3m,比原设计挖孔桩桩底深0.3m.3)新的基坑设计方案确定后,2004年11月重新开始从地下4层基坑底往地下5层施工,2005年7月21日上午,基坑南侧东部桩加钢支撑部分最大位移约为40mm,其中从7月20日至7月21日一天增大18mm,基坑南侧中部喷锚支护部分,最大位移约为150mm。
事故过程2005年7月21日12时左右,在广州海珠区江南大道南珠城海广场深基坑发生滑坡,导致三人死亡,4人受伤,地铁二号线停运近一天,7层的海员宾馆倒塌,多加商铺失火被焚,一栋7层居民楼受损,三栋居民被迫转移。
下面是一些事故照片。
事故原因1)本基坑原设计深度只有16.2m,而实际开挖深度为20.3m,超深4。
1m,造成原支护桩成为吊脚桩,尽管后来设计有所变更,但对已施工的围护桩和锚索等构件已无法调整,成为隐患。
2)从地质勘察资料反应和实际开挖揭露,南边地层向坑内倾斜,并存在软弱透水夹层,随着开挖深度增大,导致深部滑动。
3)本基坑施工时间长达2年9个月,基坑暴露时间大大超过临时支护为一年的时间,导致开挖地层的软化渗透水和已施工构件的锈蚀和锚索预应力的损失,强度降低,甚至失效.4)事故发生前在南边坑顶因施工而造成东段严重超载,成为了基坑滑坡的导火线。
5)从施工纪要和现场监测结果分析,在基坑滑坡前已有明显预兆,但没有引起应有的重视,更没有采取针对性的措施,也是导致事故的原因之一.事故调查结果与处理结果于2005年9月20日在《广州日报》公布:对7个建设责任主体及其20名责任人给予行政处罚或处分,其中7名主要负责人因涉嫌触犯刑法被司法机关依法逮捕;对事故发生负有监管责任的14名行政人员给予降级或降级以下的行政处分和责令作出深刻检讨,并责成相关单位对市政府作出书面检查。
深基坑工程施工安全控制要点1)设计、施工安全性报告控制:初步设计阶段施工单位应制定深基坑设计、施工安全性报告.安全性报告应通过专家评审.2)支护结构和土体加固工程施工安全质量控制:地下连续墙、SMW工法、钢或混凝土支撑等基坑支护结构和土体加固施工中涉及安全性能的重要工序的施工质量应满足法规标准和设计要求。
3)安全管理人员监管:作业时,施工单位专职安全生产管理人员应在现场进行管理。
4)基坑临边防护:基坑四周、操作平台等临边处应设置防护栏杆,应牢固可靠。
5)立体交叉作业控制:当应用土代模浇筑混凝土支撑,支撑下的土方开挖后,施工单位应及时清除支撑下粘结的土石。
上下层立体交叉作业时,应设置隔离设施。
6)施工进度控制:施工单位报送的进度计划应满足基坑安全性要求。
深基坑事故防范经验:1)对深基坑工程特点应有深刻的认识,基坑工程时空效应强,环境效应明显,挖土顺序、挖土速度和支撑速度对基坑围护体系受力和稳定性具有很大影响.施工应严格按经审查的施工组织设计进行。
应及时安装支撑(钢支撑),及时分段分块浇筑垫层和底板,严禁超挖。
深基坑围护结构设计应方便施工,深基坑工程施工应有合理工期。
2)基坑工程不确定因素多,应实施信息化施工.监测点设置应符合规范和设计要求。
监测单位应认识科学测试,及时如实报告各项监测数据。
项目各方要重视基坑的监测工作,通过监测施工过程中的土体位移、围护结构内力等指标的变化,及时发现隐患,采取相应的补救措施,确保基坑安全。
3)有多道内支撑的基坑围护体系应加强支撑体系整体稳定性。
考虑到基坑工程施工中,第一道支撑可能产生拉应力,建议第一道支撑采用钢筋混凝土支撑。
对钢支撑体系应改进钢支撑节点连接型式,加强节点构造措施,确保连接节点满足强度及刚度要求。
施工过程中应合理施加钢管支撑预应力.应明确钢支撑的质量检查及安装验收要求,加强对检查和验收工作的监督管理.4)岩土工程稳定分析中,要合理选用分析方法.抗剪强度指标的选用,与其测定方法、安全系数的确定要协调一致。
在土工参数选用时应综合判断,并结合地区工程经验,合理选用。
作为施工方,在有条件的情况下应对设计进行适当的验算,在此基础上提出合理化建议,优化施工组织设计,确保深基坑的安全和实现效益最大化。