matlab概率统计
- 格式:pdf
- 大小:685.31 KB
- 文档页数:50
matlab概率统计一、概述Matlab是一种广泛使用的数学软件,可以用于数值计算、数据分析、图形绘制等多个领域。
其中,概率统计是Matlab中一个重要的应用领域。
通过Matlab的概率统计工具箱,用户可以进行各种概率分布的模拟、参数估计、假设检验等操作。
二、Matlab中常用的概率分布在Matlab中,有很多常见的概率分布都已经内置好了。
这些分布包括但不限于:1. 正态分布(normpdf, normcdf, norminv)2. t分布(tpdf, tcdf, tinv)3. F分布(fpdf, fcdf, finv)4. 卡方分布(chi2pdf, chi2cdf, chi2inv)5. 伽马分布(gampdf, gamcdf, gaminv)6. 贝塔分布(betapdf, betacdf, betainv)7. 均匀分布(unifpdf, unifcdf, unifinv)8. 指数分布(exppdf, expcdf, expinv)9. 泊松分布(poisspdf, poisscdf, poissinv)10. 二项式分布(binopdf, binocdf, binoinv)11. 超几何分布(hygepdf, hygecdf, hygeinv)12. 对数正态分布(lognpdf, logncdf, logninv)13. 韦伯分布(wblpdf, wblcdf, wblinv)14. 威布尔分布(weibpdf, weibcdf, weibinv)三、概率分布的模拟在Matlab中,可以使用rand函数来生成服从均匀分布的随机数。
如果需要生成服从其他概率分布的随机数,可以使用相应的概率分布函数。
例如,要生成100个服从正态分布的随机数,可以使用以下代码:```matlabmu = 0; % 正态分布的均值sigma = 1; % 正态分布的标准差x = mu + sigma .* randn(100, 1); % 生成100个服从正态分布的随机数```四、参数估计在实际应用中,我们常常需要根据样本数据来估计未知参数。
如何在Matlab中进行概率统计分析在科学研究和数据分析领域,概率统计分析是一项重要的工具。
Matlab作为一种功能强大的数值计算和数据分析的软件平台,在概率统计分析方面有着广泛的应用。
本文将探讨如何在Matlab中进行概率统计分析,并介绍一些常用的技巧和方法。
一、数据导入和预处理在进行概率统计分析之前,首先需要将数据导入Matlab中,并对数据进行预处理。
Matlab提供了各种函数和工具箱,可以简化数据导入和预处理的过程。
例如,使用`xlsread`函数可以将Excel中的数据导入Matlab,使用`csvread`函数可以导入CSV格式的数据。
在数据预处理阶段,常见的操作包括数据清洗、去除异常值、填充缺失值等。
Matlab中的统计工具箱提供了一系列函数,如`fillmissing`、`rmoutliers`等,可以方便地进行数据预处理。
二、描述性统计分析描述性统计分析是对数据的基本特征进行总结和描述,如均值、方差、百分位数等。
Matlab提供了一系列函数,如`mean`、`std`、`prctile`等,可以方便地进行描述性统计分析。
下面以一个示例来说明如何使用Matlab进行描述性统计分析。
假设我们有一组身高数据,可以使用`mean`和`std`函数计算平均身高和身高的标准差:```matlabheight = [165, 170, 175, 180, 185];mean_height = mean(height);std_height = std(height);```三、概率分布拟合概率分布拟合是将观察到的数据拟合到一个概率分布模型中,以了解数据的分布特征。
Matlab中的统计工具箱提供了丰富的函数,可以进行概率分布的拟合和参数估计。
常见的概率分布包括正态分布、指数分布、泊松分布等。
下面以正态分布为例,演示如何在Matlab中进行概率分布拟合:```matlabdata = randn(1000, 1); % 生成1000个服从正态分布的随机数pd = fitdist(data, 'Normal'); % 拟合正态分布mu = pd.mu; % 估计的均值sigma = pd.sigma; % 估计的标准差```四、假设检验假设检验是概率统计分析的重要内容,用于验证关于总体参数的假设。
Matlab中的概率统计分析概率统计分析是一门重要的统计学分支,可应用于各行各业。
在数据科学领域中,通过概率统计分析,我们可以对数据集进行探索性分析、建模以及预测。
Matlab作为一种流行的科学计算软件,提供了丰富的工具和函数来进行概率统计分析。
本文将介绍一些常见的概率统计分析方法以及它们在Matlab中的应用。
一、描述统计分析描述统计分析是通过对数据进行总结和可视化,来了解数据的分布和特征。
Matlab提供了多种函数和工具来进行描述统计分析。
例如,我们可以使用`mean`函数来计算数据的均值,使用`std`函数计算标准差。
此外,还可以通过`histogram`函数绘制直方图、通过`boxplot`函数绘制箱线图等。
二、概率分布及参数估计在概率统计分析中,概率分布是描述随机变量的函数。
在Matlab中,我们可以使用各种内置的概率分布函数,如正态分布、二项分布、泊松分布等。
这些函数可以用来计算随机变量在给定参数下的概率密度函数、累积分布函数等。
参数估计是概率统计分析的重要内容之一。
根据已有的样本数据,我们可以通过最大似然估计等方法来估计概率分布的参数。
在Matlab中,可以使用`fitdist`函数进行参数估计。
该函数可以根据给定的数据和概率分布类型,自动计算出最佳的参数估计结果。
三、假设检验假设检验用于验证关于总体参数的假设,并对观察到的样本数据进行统计推断。
Matlab提供了一系列的函数来进行假设检验。
例如,`ttest`函数可以用于t检验,`chi2gof`函数可以用于卡方检验等。
四、参数估计的抽样分布参数估计的抽样分布是概率统计分析中的重要概念之一。
通过对参数估计结果进行大量次数的模拟重复,可以得到参数估计的分布情况。
在Matlab中,通过使用`random`函数,我们可以生成服从特定概率分布的随机数。
结合循环语句,可以进行大量次数的模拟实验,进而得到参数估计的抽样分布。
五、相关性分析相关性分析用于研究两个或多个变量之间的相关关系。
matlab概率统计函数Matlab是一种流行的科学计算软件,其中包含了丰富的概率统计函数,可以用来进行统计分析、建模和预测等工作。
本文将介绍一些常用的Matlab概率统计函数及其应用。
1. normpdf函数:该函数用来计算正态分布的概率密度函数值。
对于给定的均值和标准差,可以使用该函数计算某个特定值的概率密度。
例如,可以使用normpdf函数计算身高在某个范围内的概率密度。
2. normcdf函数:该函数用来计算正态分布的累积分布函数值。
对于给定的均值和标准差,可以使用该函数计算某个特定值以下的累积概率。
例如,可以使用normcdf函数计算身高小于某个数值的累积概率。
3. binopdf函数:该函数用来计算二项分布的概率密度函数值。
对于给定的试验次数和成功概率,可以使用该函数计算在指定次数内出现特定成功次数的概率。
例如,可以使用binopdf函数计算在10次抛硬币试验中出现5次正面朝上的概率。
4. binocdf函数:该函数用来计算二项分布的累积分布函数值。
对于给定的试验次数和成功概率,可以使用该函数计算在指定次数内出现不超过特定成功次数的累积概率。
例如,可以使用binocdf函数计算在10次抛硬币试验中不超过5次正面朝上的累积概率。
5. poisspdf函数:该函数用来计算泊松分布的概率密度函数值。
对于给定的平均发生率,可以使用该函数计算在指定时间内发生特定次数的概率。
例如,可以使用poisspdf函数计算在一小时内发生3次事故的概率。
6. poisscdf函数:该函数用来计算泊松分布的累积分布函数值。
对于给定的平均发生率,可以使用该函数计算在指定时间内发生不超过特定次数的累积概率。
例如,可以使用poisscdf函数计算在一小时内不超过3次事故的累积概率。
7. hist函数:该函数用来绘制直方图。
通过将数据分成若干个区间,该函数可以显示每个区间的频数或频率。
例如,可以使用hist函数绘制一组数据的身高分布直方图。
MATLAB概率统计1. 概述概率统计是数学中的一个重要分支,用于研究随机现象的规律性和不确定性。
MATLAB作为一种强大的数值计算和数据可视化工具,提供了丰富的函数和工具箱,使得概率统计分析变得简单而高效。
本文将介绍MATLAB中常用的概率统计函数和方法,并结合实例进行详细说明。
2. 概率分布2.1 常见概率分布函数在概率统计中,常见的概率分布函数有正态分布、均匀分布、二项分布等。
MATLAB 提供了相应的函数来生成这些概率分布。
•正态分布:normrnd函数用于生成服从正态分布的随机数。
x = normrnd(mu, sigma, [m, n]);其中,mu表示均值,sigma表示标准差,[m, n]表示生成随机数矩阵的大小。
•均匀分布:unifrnd函数用于生成服从均匀分布的随机数。
x = unifrnd(a, b, [m, n]);其中,a和b表示均匀分布区间的上下界。
•二项分布:binornd函数用于生成服从二项分布的随机数。
x = binornd(n, p, [m, n]);其中,n表示试验次数,p表示成功的概率。
2.2 概率密度函数和累积分布函数除了生成随机数,MATLAB还提供了计算概率密度函数(PDF)和累积分布函数(CDF)的函数。
•概率密度函数:对于连续型随机变量,可以使用normpdf、unifpdf等函数计算其概率密度函数值。
y = normpdf(x, mu, sigma);其中,x表示自变量的取值,mu和sigma表示正态分布的均值和标准差。
•累积分布函数:使用normcdf、unifcdf等函数可以计算连续型随机变量的累积分布函数值。
y = normcdf(x, mu, sigma);其中,参数的含义同上。
对于离散型随机变量,可以使用相应的离散型概率分布函数来计算其概率质量函数(PMF)和累积分布函数(CDF)。
3. 统计描述3.1 均值与方差均值和方差是统计学中常用的描述统计量,MATLAB提供了相应的函数来计算均值和方差。
Matlab 第4章概率统计本章介绍MATLAB在概率统计中的若干命令和使用格式,这些命令存放于MatlabR12\Toolbox\Stats中。
4.1 随机数的产生4.1.1 二项分布的随机数据的产生命令参数为N,P的二项随机数据函数binornd格式R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。
R = binornd(N,P,m) %m指定随机数的个数,与R同维数。
R = binornd(N,P,m,n) %m,n分别表示R的行数和列数例4-1>> R=binornd(10,0.5)R =3>> R=binornd(10,0.5,1,6)R =8 1 3 7 6 4>> R=binornd(10,0.5,[1,10])R =6 8 4 67 5 3 5 6 2>> R=binornd(10,0.5,[2,3])R =7 5 86 5 6>>n = 10:10:60;>>r1 = binornd(n,1./n)r1 =2 1 0 1 1 2>>r2 = binornd(n,1./n,[1 6])r2 =0 1 2 1 3 14.1.2 正态分布的随机数据的产生命令参数为μ、σ的正态分布的随机数据函数normrnd格式R = normrnd(MU,SIGMA) %返回均值为MU,标准差为SIGMA 的正态分布的随机数据,R可以是向量或矩阵。
R = normrnd(MU,SIGMA,m) %m指定随机数的个数,与R同维数。
R = normrnd(MU,SIGMA,m,n) %m,n分别表示R的行数和列数例4-2>>n1 = normrnd(1:6,1./(1:6))n1 =2.1650 2.31343.02504.0879 4.8607 6.2827>>n2 = normrnd(0,1,[1 5])n2 =0.0591 1.7971 0.2641 0.8717 -1.4462>>n3 = normrnd([1 2 3;4 5 6],0.1,2,3) %mu为均值矩阵n3 =0.9299 1.9361 2.96404.12465.0577 5.9864>> R=normrnd(10,0.5,[2,3]) %mu为10,sigma为0.5的2行3列个正态随机数R =9.7837 10.0627 9.42689.1672 10.1438 10.59554.1.3 常见分布的随机数产生常见分布的随机数的使用格式与上面相同表4-1 随机数产生函数表4.1.4 通用函数求各分布的随机数据命令求指定分布的随机数函数random格式y = random('name',A1,A2,A3,m,n) %name的取值见表4-2;A1,A2,A3为分布的参数;m,n指定随机数的行和列例4-3 产生12(3行4列)个均值为2,标准差为0.3的正态分布随机数>> y=random('norm',2,0.3,3,4)y =2.3567 2.0524 1.8235 2.03421.9887 1.94402.6550 2.32002.0982 2.2177 1.9591 2.01784.2 随机变量的概率密度计算4.2.1 通用函数计算概率密度函数值命令通用函数计算概率密度函数值函数pdf格式Y=pdf(name,K,A)Y=pdf(name,K,A,B)Y=pdf(name,K,A,B,C)说明返回在X=K处、参数为A、B、C的概率密度值,对于不同的分布,参数个数是不同;name为分布函数名,其取值如表4-2。
1MATLAB 概述MATLAB 是 MATrix LABoratory(“矩阵实验室”)的缩写,是由美国MathWorks 公司开发的集数值计算、符号计算和图形可视化三大基本功能于一体的,功能强大、操作简单的语言。
是国际公认的优秀数学应用软件之一。
20世纪80年代初期,Cleve Moler与John Little等利用C语言开发了新一代的MATL AB语言,此时的MATLAB语言已同时具备了数值计算功能和简单的图形处理功能。
1984年,Cleve Moler与John Little等正式成立了Mathworks公司,把MATLAB语言推向市场,并开始了对MATLAB工具箱等的开发设计。
1993年,Mathworks公司推出了基于个人计算机的M ATLAB 4.0版本,到了1997年又推出了MATLAB 5.X版本(Release 11),并在2000年又推出了MATLAB 6版本(Release 12)。
现在,MATLAB已经发展成为适合多学科的大型软件,在世界各高校,MATLAB已经成为线性代数、数值分析、数理统计、优化方法、自动控制、数字信号处理、动态系统仿真等高级课程的基本教学工具。
特别是最近几年,MATLAB在我国大学生数学建模竞赛中的应用,为参赛者在有限的时间内准确、有效的解决问题提供了有力的保证。
概括地讲,整个MATLAB系统由两部分组成,即MATLAB内核及辅助工具箱,两者的调用构成了MATLAB的强大功能。
MATLAB语言以数组为基本数据单位,包括控制流语句、函数、数据结构、输入输出及面向对象等特点的高级语言,它具有以下主要特点:1)运算符和库函数极其丰富,语言简洁,编程效率高,MATLAB除了提供和C语言一样的运算符号外,还提供广泛的矩阵和向量运算符。
利用其运算符号和库函数可使其程序相当简短,两三行语句就可实现几十行甚至几百行C或FORTRAN的程序功能。
2)既具有结构化的控制语句(如for循环、while循环、break语句、if语句和switch语句),又有面向对象的编程特性。
3)图形功能强大。
它既包括对二维和三维数据可视化、图像处理、动画制作等高层次的绘图命令,也包括可以修改图形及编制完整图形界面的、低层次的绘图命令。
4)功能强大的工具箱。
工具箱可分为两类:功能性工具箱和学科性工具箱。
功能性工具箱主要用来扩充其符号计算功能、图示建模仿真功能、文字处理功能以及与硬件实时交互的功能。
而学科性工具箱是专业性比较强的,如优化工具箱、统计工具箱、控制工具箱、小波工具箱、图象处理工具箱、通信工具箱等。
5)易于扩充。
除内部函数外,所有MATLAB的核心文件和工具箱文件都是可读可改的源文件,用户可修改源文件和加入自己的文件,它们可以与库函数一样被调用。
MATLAB的安装与启动 MATLAB的安装要用MATLAB 6,首先必须在计算机上安装MATLAB 6应用软件,随着软件功能的不断完善,MATLAB对计算机系统配置的要求越来越高。
下面给出安装和运行MATLAB 6 所需要的计算机系统配置。
MATLAB 6对硬件的要求CPU要求:Pentium II、Pentium III、AMD Athlon或者更高;光驱:8倍速以上;内存:至少64MB,但推荐128MB以上;硬盘:视安装方式不同要求不统一,但至少留1GB用于安装(安装后未必有1GB); 显卡:8位;MATLAB 6对软件的要求Windows95 、Window98、Windows NT或Windows2000; Word97或word2000等,用于使用MATLAB Notebook;Adobe Acrobat Reader 用于阅读MATLAB的PDF的帮助信息。
MATLAB 6的安装和其它应用软件类似,可按照安装向导进行安装,这里不再赘述。
MATLAB的启动和退出与常规的应用软件相同,MATLAB的启动也有多种方式,首先常用的方法就是双击桌面的MATLAB图标,也可以在开始菜单的程序选项中选择MATLAB组件中的快捷方式,当然也可以在MATLAB的安装路径的子目录中选择可执行文件“MATLAB.exe”。
启动MATLAB后,将打开一个MATLAB的欢迎界面,随后打开MATLAB的桌面系统(Desktop)如图2-1所示。
MATLAB的开发环境就是在使用MATLAB的过程中可激活的,并且为用户使用提供支持的集成系统。
这里介绍几个比较重要的如:桌面平台系统、帮助系统和数据交换系统。
MATLAB桌面平台桌面平台是各桌面组件的展示平台,默认设置情况下的桌面平台包括6个窗口,具体如下: MATLAB主窗口MATLAB6比早期版本增加了一个主窗口。
该窗口不能进行任何计算任务的操作,只用来进行一些整体的环境参数的设置。
命令窗口(Command Window)3命令窗口是对MATLAB进行操作的主要载体,默认的情况下,启动MATLAB时就会打开命令窗口。
一般来说,MATLAB的所有函数和命令都可以在命令窗口中执行。
在MATLAB命令窗口中,命令的实现不仅可以由菜单操作来实现,也可以由命令行操作来执行,下面就详细介绍MALTAB命令行操作。
实际上,掌握MALAB命令行操作是走入MATLAB世界的第一步,命令行操作实现了对程序设计而言简单而又重要的人机交互,通过对命令行操作,避免了编程序的麻烦,体现了MA TLAB所特有的灵活性。
例如:%在命令窗口中输入sin(pi/5),然后单击回车键,则会得到该表达式的值 sin(pi/5) ans=0.5878由例可以看出,为求得表达式的值,只需按照MALAB语言规则将表达式输入即可,结果会自动返回,而不必像其他的程序设计语言那样,编制冗长的程序来执行。
当需要处理相当繁琐的计算时,可能在一行之内无法写完表达式,可以换行表示,此时需要使用续行符“……”否则MATLAB将只计算一行的值,而不理会该行是否已输入完毕。
例如:sin(1/9*pi)+sin(2/9*pi)+sin(3/9*pi)+...... sin(4/9*pi)+sin(5/9*pi)+sin(6/9*pi)+...... sin(7/9*pi)+sin(8/9*pi)+sin(9/9*pi) ans=5.6713使用续行符之后MATLAB会自动将前一行保留而不加以计算,并与下一行衔接,等待完整输入后再计算整个输入的结果。
在MATLAB命令行操作中,有一些键盘按键可以提供特殊而方便的编辑操作。
比如:“↑”可用于调出前一个命令行,“↓”可调出后一个命令行,避免了重新输入的麻烦。
当然下面即将讲到的历史窗口也具有此功能。
历史窗口(Command History)历史命令窗口是MATLAB6新增添的一个用户界面窗口,默认设置下历史命令窗口会保留自安装时起所有命令的历史记录,并标明使用时间,以方便使用者的查询。
而且双击某一行命令,即在命令窗口中执行该命令。
当前目录窗口(Current Directory )在当前目录窗口中可显示或改变当前目录,还可以显示当前目录下的文件,包括文件名、文件类型、最后修改时间以及该文件的说明信息等并提供搜索功能。
工作空间管理窗口(Workspace)工作空间管理窗口是MATLAB的重要组成部分。
在工作空间管理窗口中将显示所有目前保存在内存中的MATLAB变量的变量名、数据结构、字节数以及类型,而不同的变量类型分别对应不同的变量名图标。
MATLAB帮助系统完善的帮助系统是任何应用软件必要的组成部分。
MATLAB提供了相当丰富的帮助信息,同时也提供了获得帮助的方法。
首先,可以通过桌面平台的【Help】菜单来获得帮助,也可以通过工具栏的帮助选项获得帮助。
此外,MATLAB也提供了在命令窗口中的获得帮助的多种方法,其调用格式为: 命令+指定参数命 令 说 明doc 在帮助浏览器中显示指定函数的参考信息 help 在命令窗口中显示M文件帮助 helpbrowser打开帮助浏览器,无参数 helpwin 打开帮助浏览器,并且见初始界面置于MATLAB函数 的M文件帮助信息 lookfor 在命令窗口中显示具有指定参数特征函数的M文件帮助 web 显示指定的网络页面,默认为MATLAB帮助浏览器 例如:>>help sin SIN SineSIN(X) is the sine of the elements of X Overloaded methods Help sym/sin .m另外也可以通过在组件平台中调用演示模型(demo)来获得特殊帮助。
第4章 概率统计本章介绍MATLAB在概率统计中的若干命令和使用格式,这些命令存放于MatlabR12\Too lbox\Stats中。
4.1 计算组合数、验证概率的频率定义,计算古典概率4.1.1 计算n k.使用语句n^k58例如计算 115N=5^11 N =48828125 如计算2.85−N=5^(-2.8) N =0.01104.1.2 计算组合数kn C 计算组合数时,使用语句nchoosek(n,k). kn C 例如计算组合数时,输入815C N=nchoosek(15,8) N =64354.1.3 计算排列数 n!计算 n!时,使用语句 factorial(n) 例如 计算12!时,输入 N=factorial(12) N =4790016004.1.4 计算古典概率例如计算概率29816!/p C C =时,输入 p=factorial(6)*nchoosek(8,2)/nchoosek(18,9) p=0.41464.2 随机数的产生4.2.1 二项分布的随机数据的产生命令 参数为N,P的二项随机数据函数 binornd格式 R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。
R = binornd(N,P,m) %m指定随机数的个数,与R同维数。
R = binornd(N,P,m,n) %m,n分别表示R的行数和列数 例4-1>> R=binornd(10,0.5) R = 3>> R=binornd(10,0.5,1,6) R =8 1 3 7 6 4 >> R=binornd(10,0.5,[1,10]) R =6 8 4 67 5 3 5 6 2 >> R=binornd(10,0.5,[2,3]) R =7 5 8 6 5 6 >>n = 10:10:60;>>r1 = binornd(n,1./n) r1 =2 1 0 1 1 2 >>r2 = binornd(n,1./n,[1 6]) r2 =0 1 2 1 3 14.2.2 正态分布的随机数据的产生命令 参数为μ、σ的正态分布的随机数据 函数 normrnd格式 R = normrnd(MU,SIGMA) %返回均值为MU,标准差为SIGMA的正态分布的随机数据,R可以是向量或矩阵。