防洪物资调运问题的数学模型
- 格式:pdf
- 大小:145.58 KB
- 文档页数:4
数学建模防洪物资调运问题Document serial number【UU89WT-UU98YT-UU8CB-UUUT-目录摘要防洪物资调运问题实质是个运筹学网络规划中的最短路问题。
由于灾害发生地点和时间具有较大随机性,结合实际情况,我们对其建立了相应的模型。
前三问是提前做好物资的储备,所以我们假设时间相对较宽裕。
将运输分为三个阶段,分别为:“使储备库优先达到预测库存”、“使各库存都达到预测值”和“使各库存在允许最大库存范围内尽可能的多”。
使用图论中的方法将交通网络图转化成数学图形,并用Floyd算法求出企业至各储备库及仓库的运输资金最少的各条路线,即将高等公路转化为普通路线后的等效最短路线。
第一阶段:使储备库达到预测值,以总运费最少为目标建立模型,求出具体调运量。
第二阶段:达到预测库存前以调运时间最少为目标建立模型,求出每条路线前期的调运量。
再按照以当天库存与预测库存相对差值的最大值尽可能小为原则建立模型,如果相对差值相同,远距离优先运输建立模型,求出各路线每天的具体调运量。
第三阶段:达到预测后以调运费用最少为目标建立模型,求出每条路线后期的调运量。
在同等考虑储备库的情况下,以同样的原则建立模型,求出各路线每天的具体调运量。
同时根据问题三的要求,求得20天后各仓库和储存库的物资量如下表所示:问题四中的紧急调运的问题,我们的首要目标是使防洪物资尽可能早的运输到储备库及仓库。
此时,我们不再考虑运费资金问题,以实际路程最短为目标求出各企业与仓库间的最优路线。
同样将运输分为两个阶段(第一阶段为到达库存前,第二阶段达到预测库存后)都以调运时间最短即以最短路为目标建立模型,求出各路线的调运量。
本文通过以上模型结合处理实际问题时目标不同,分别求出了合理的运输路线和调运量以及调运时间和费用,同时还考虑到路线中断等其它情况,具有较大的灵活性和实用性。
关键词防洪物资调运线性规划模型 LINGO软件 Floyd算法一、问题重述与分析1、问题的重述我国是一个气候多变的国家,各种自然灾害频频发生,其中各流域的洪涝灾害尤其严重。
防洪物资调运问题解答概要(1)问题1建立普通公路费用的赋权完全图),,()1(11W E V G =和高等级公路费用的赋权完全图),,()2(22W E V G =,由1G 和2G 合成一个新的费用赋权完全图),,(W E V G =,其中),min()2()1(W W W =,其中),min()2()1(W W 表示)1(W 和)2(W 的逐个元素取最小。
计算的Matlab 程序如下:a=zeros(42); %输入普通公路距离矩阵a(1,2)=40;a(1,33)=60;a(1,34)=45;a(2,3)=35;a(2,7)=50;a(2,9)=62;a(3,10)=42;a(3,36)=50;a(4,6)=30;a(4,30)=70;a(6,40)=30; a(6,41)=48;a(9,27)=40;a(9,31)=52;a(9,40)=28;a(10,12)=52;a(12,13)=80;a(13,20)=68;a(14,23)=50;a(15,18)=58;a(15,25)=46; a(15,42)=28;a(16,21)=58; a(16,23)=65;a(17,23)=52;a(18,19)=22; a(18,23)=45;a(19,22)=72; a(19,26)=28;a(20,22)=80;a(20,24)=50;a(21,22)=45;a(24,26)=30;a(25,26)=18;a(26,27)=70;a(28,29)=60;a(28,42)=32;a(29,30)=62;a(30,39)=15;a(31,32)=50;a(32,34)=25; a(32,35)=98; a(32,38)=68; a(32,39)=62;a(33,36)=40; a(33,37)=38;a(37,38)=35;a(41,42)=26;a=a+a';a(find(a==0))=inf;a=a*1.2;b=zeros(42); %输入高等级公路距离矩阵b(8,28)=50;b(8,14)=36;b(14,17)=56;b(4,29)=40;b(4,5)=10;b(5,40)=38;b(27,40)=32;b(13,27)=50;b(35,39)=102;b(5,39)=85;b(5,6)=28;b(6,11)=32;b(11,25)=40;b(18,25)=30;b(16,18)=75;b(8,15)=38;b(11,15)=56;b(11,27)=48;b(7,27)=70;b(7,10)=48;b=b+b';b(find(b==0))=inf;b=b*2;c=min(a,b);for i=1:42c(i,i)=0;endpath=zeros(42); n=42;for k=1:nfor i=1:nfor j=1:nif c(i,j)>c(i,k)+c(k,j)c(i,j)=c(i,k)+c(k,j);path(i,j)=k;endendendendind=[24,41,34,28,23,35,31,22,36,29,38 27,30];fyzhen=c(ind,ind)fyzhen2=fyzhen;fyzhen2(find(fyzhen2==0))=10000dlmwrite('myda1.txt',fyzhen2)(2)问题2用13,,2,1L =j 分别表示企业1,企业2,企业3,仓库1,…,仓库8,储备库1,储备库2,把它们分别看成是13个点。
防洪物资调运问题模型的建立及求解本文将题目所给出的防洪物资调运问题转化为图论中的最短路问题求解及一个多目标规划问题求解。
关于问题一,本文建立了关于交通网络的最短路问题,并分别采取了dijkstra算法和floyd算法对其进行了求解。
求解得出了任意一对起点和终点之间运输费用最小的路线,建立了该地区的交通网络数学模型。
对于问题二,根据客观需要,建立各仓库及储备库最终库存的合理度函数,并结合目标建立多目标规划模型,通过求解模型,得到具体的调运方案。
我们将问题三调运过程看成是一个多阶段性的静态过程。
讨论运输周期的长短(即阶段的数量)对整个模型的影响,最终得出最合适的方案。
问题四仍旧通过问题一和问题二的模型建立过程,根据新情况重新建立该地区的交通网络数学模型,并利用新模型解决新问题。
最后我们分析了最终解的稳定性,可延拓性等,提出了该模型所具有的优缺点。
本文的最终模型稳定,可扩展性好,算法简单,复杂度低,有效的解决了本文所提出的所有问题。
一.问题的重述(略)二.模型的假设1.一定要满足各个仓库的最低库存量,否则整个问题系统就是一个极不稳定合理的系统。
2.运输使用的运输工具足够多,可以一次性满足运输的需求。
3.运输费用没有规模成本,小规模运输和大规模运输中单位数量的物资运输成本相等。
4.每条公路都没有承载上限,既在不中断情况下不会出现因为堵车原因不能同多的情况。
5.运输的速度足够快,任何一次运输调度都可以在一天内完成。
6.运输的最小单位为百件。
7.工厂的物资的生产以一天为最小周期,即每天统一将生产出来的物资入库。
8.本题只考虑运输费用,不考虑货物装卸、储存等其他费用。
三.符号系统inf:表示正无穷x(i=1~8)表示仓库1~8的库存,ix(i=9,10)表示储备库1,2的库存,iy(i=1,2,3)表示企业 1,2,3的库存,imi(i=1~8)表示仓库1~8的最小库存mi(i=9,10)表示储备库1,2的最小库存g(i=1~8)表示仓库1~8的预测库存,ig(i=9,10)表示储备库1,2的预测库存,iM(i=1~8)表示仓库1~8的最大库存,iM(i=9,10)表示储备库1,2的最大库存ih(i=1~8)为仓库1~8的合理度函数ih(i=9,10)为储备库的合理度函数i四.问题的分析1.将该地区的公路交通网转换为求解无向图中个节点间最短路问题。
防洪物资调运问题黄权 解三健 曹兴进 (中国矿业大学,徐州 221008)摘 要我们的模型主要用于解决如何在最少运费的情况下将必需物资调运到各个仓库以达到防洪的目的。
对于问题一:我们采用赋权连通图的图论法,把两地的运费作为它们之间线路的权值,然后利用“画圈去大”原则进行最小总权值的求解。
然后,我们又引入了动态规划中的顺序递推法进行两地之间运费最短路的选择。
对于问题二:我们首先利用顺序递推法求解出任两地之间的运费最短路径。
同时,由于要重点保证国家储备库,我们引进加权系数1α、2α进行调运量的限制。
由于仓库3与仓库5的现有库存量大于预测库存量,我们考虑是否应将两库超过预测库存量的那部分空闲物资进行调运,进而建立了两个模型。
然后,我们分别运用线性规划的方法,给出目标函数,归纳如下:∑∑∑===++=310099318112)(i i i i i i j ij ij b C b C b C MinZ αα结合各自的约束条件,我们利用LINDO 软件进行解模,求出两者的最优调运量及总运费。
之后,进行两者总运费的比较,得出最终的最优调运方案。
对于问题三:我们利用问题二的结果求出每个企业必要的最低生产天数i t ,若企业的i t <20天,则它所供给的仓库以及储备库就已达到预测库存量。
若企业的i t >20天,则可以用比例求解出20天后该企业向每个仓库以及储备库的调运量,进而可以求出20天后各库的库存量。
对于问题四:当某路段遭破坏而不能保证某仓库的储存量时,我们考虑了三种方案。
一为寻找次短路线进行物资的重新调运;二为从其他企业向供应源中断的仓库进行物资调配;三为进行整体线路的重新调配。
最后进行三者总运费的比较,确定了最经济合理的调配方案。
一、问题重述(略)二、模型假设1、各企业的生产日期为无限。
即在洪水之前各个企业均已将全部物资调运到相应的仓 库。
2、在整个的生产过程中,生产费用不予考虑。
3、仓库的物资的储存费、转运费不予考虑。
防洪物资调运问题我们的模型主要用于解决如何在最少运费的情况下将必需物资调运到各个仓库以达到防洪的目的。
对于问题一:我们采用赋权连通图的图论法,把两地的运费作为它们之间线路的权值,然后利用“画圈去大”原则进行最小总权值的求解。
然后,我们又引入了动态规划中的顺序递推法进行两地之间运费最短路的选择。
对于问题二:我们首先利用顺序递推法求解出任两地之间的运费最短路径。
同时,由于要重点保证国家储备库,我们引进加权系数1α、2α进行调运量的限制。
由于仓库3与仓库5的现有库存量大于预测库存量,我们考虑是否应将两库超过预测库存量的那部分空闲物资进行调运,进而建立了两个模型。
然后,我们分别运用线性规划的方法,给出目标函数,归纳如下:∑∑∑===++=310099318112)(i i i i i i j ij ij b C b C b C MinZ αα结合各自的约束条件,我们利用LINDO 软件进行解模,求出两者的最优调运量及总运费。
之后,进行两者总运费的比较,得出最终的最优调运方案。
对于问题三:我们利用问题二的结果求出每个企业必要的最低生产天数i t ,若企业的i t <20天,则它所供给的仓库以及储备库就已达到预测库存量。
若企业的i t >20天,则可以用比例求解出20天后该企业向每个仓库以及储备库的调运量,进而可以求出20天后各库的库存量。
对于问题四:当某路段遭破坏而不能保证某仓库的储存量时,我们考虑了三种方案。
一为寻找次短路线进行物资的重新调运;二为从其他企业向供应源中断的仓库进行物资调配;三为进行整体线路的重新调配。
最后进行三者总运费的比较,确定了最经济合理的调配方案。
一、问题重述(略)二、模型假设1、各企业的生产日期为无限。
即在洪水之前各个企业均已将全部物资调运到相应的仓库。
2、在整个的生产过程中,生产费用不予考虑。
3、仓库的物资的储存费、转运费不予考虑。
4、各个企业向仓库转运的过程不予考虑,即转运的时间抽象为0。
防洪调度模型内容概述说明以及解释1. 引言1.1 概述本文旨在介绍防洪调度模型,该模型主要用于洪水管理和应对洪灾。
洪灾是一种具有广泛影响的自然灾害,给人民的生命财产安全带来巨大威胁。
因此,建立有效的防洪调度模型对于减少损失和提高灾害管理能力非常重要。
1.2 文章结构本文分为五个部分进行论述。
首先,引言部分将简要介绍文章的背景和目的。
其次,防洪调度模型部分将详细描述该模型的概述、原理解释以及应用场景。
接着,调度策略与方法部分将列举并解释几种常用的应对洪灾的策略。
然后,实施与评估指标部分将说明该模型的具体实施流程以及评估指标的解释,并通过实际案例进行分析。
最后,在结论与展望部分,我们将总结主要结论并展望未来可能采取的改进措施。
1.3 目的本文旨在深入探讨防洪调度模型,并为相关研究人员、工程师和政府决策者提供参考和指导。
通过对该模型的详细介绍和分析,我们希望能够增加人们对洪灾管理的认识,并为防洪工作提供一种科学、可行的指导方案。
通过合理地应用防洪调度模型,我们可以更好地预测和应对洪灾,最大限度地减少损失,并保障人民生命安全与财产安全。
2. 防洪调度模型2.1 模型概述防洪调度模型是一个用于预测和控制河流水位以减少洪水危害的数学模型。
该模型通过对河流中的水位、降雨量、入流量等相关因素进行监测和分析,提供了一种合理的方法来确定最佳的调度策略,以确保河流在洪水期间能够有效地处理和排放过多的水。
2.2 模型原理解释防洪调度模型基于一系列复杂的数学公式、理论和算法。
首先,通过对历史数据进行统计和分析,模型可以生成一组与环境条件相对应的概率分布函数。
然后,结合实时监测数据和气象预报信息,模型可以预测未来一段时间内的降雨量、入流量等因素。
基于这些预测结果,防洪调度模型使用优化算法来确定最佳的调度策略。
该策略旨在使河流中的水位保持在可控范围内,并且尽可能减少导致洪水发生或扩大的风险。
常见采用贪心算法、动态规划等优化方法来解决具体问题。
防洪物资调运的优化模型本文首先将题中所给的交通图抽象成一张无向图,以每百件物资在各边上运输所需费用为权值赋给各边.利用弗洛伊德(Floyd)算法求出各点之间的最短路径,滤去无用数据,找出我们需要的两单位之间的最短路径,所得结果即为问题1所要求的最优公路交通网数学模型(见表2和图3).对于问题2,在重点保证国家储备库的前提下,将问题抽象为一个多阶段单目标的规划问题,以总的运输费用最低为目标,采用带模糊条件的物资调运系统(GTSWFC)模型并且引入惩罚函数对物资进行优化调运.其具体调运过程分成四个阶段:第一阶段,只给储备库调运物资,使其达到预测库存量;第二阶段,只给八个仓库调运物资,直到满足其预测库存量;第三阶段,重新考虑储备库,只给它们调运物资,并使其达到最大库存量;第四阶段,只给八个仓库调运物资,直至所有仓库及企业自己的库存都达到最大.对于问题3,运用问题2中带模糊条件的物资调运系统(GTSWFC)模型可以解答出问题3,得到20天后各库的库存量为对于问题4,在汛期来临后,需改进对问题2所建的模型,即在其基础上分三种情况来考虑:情况一,灾情在调运过程的第一阶段发生;情况二,灾情在第二阶段发生;情况三,灾情在调运过程的第三阶段或第四阶段发生.在情况一和情况二中,各个仓库或储备库未达到其预测库存量,此时情况紧急,根据问题1的方法,求出两个单位之间运输所耗时间最少的路径.通过引入“虚拟”运输时间量化“紧急程度越大的单位,就尽量多运输”这一模糊行为,以总的运输所耗时间最少为目的改进带模糊条件的物资调运系统(GTSWFC)模型.在情况三中,由于各个仓库和储备库都已达到预测库存量,此时视为情况不紧急状态,可以以总运输费用最少为目标确定路径.通过所建防洪物资调运的优化模型,在现实生活中,可以根据实际情况,做出合理的决策,使得总的运输费用或所耗时间达到最优,减少损失,为防洪抗洪工作提供可性行方法.1.问题的重述(略)2.模型的假设1.为了简化问题,我们按照题中附件1所示按照各单位的顺序依次标号,如1表示企业1,5表示仓库2,13表示储备库2等;2.取企业1、企业2和企业3的预测库存和最低库存都为0;3.为了做好某种防洪抗涝物资的储备,假设在问题2的解决中没有发生洪灾,并且公路交通不受影响;4.根据实际情况,假设高速公路的平均速度是普通公路的两倍;5.假设有充足的运输车供调运物资;6.由于企业是输出单位,故假设各企业之间是不运输物资的.3.符号说明ijk x : 表示在灾情未发生时,第k 阶段从单位i 到单位j 的每天调运量,其中(,1,,13;1,,4)i j k ==; ij x : 表示灾情发生后, 从单位i 到单位j 的每天调运量;i a : 表示单位i 的现有库存量,其中(1,,13)i =; i b : 表示单位i 的预测库存量,其中(1,,13)i =; i c : 表示单位i 的最大库存量,其中(1,,13)i =; i e : 表示单位i 的最小库存量,其中(1,,13)i =;ij d : 表示在灾情未发生时,从单位i 到单位j 的每百件物资的最低运费, ij d (,1,,13)i j =可以表示为:22;ij i j d i j i j ⨯+⨯⎧⎪=⨯⎨⎪⨯⎩高速公路路程普通公路路程 1.2,(从到需要经过高速公路和普通公路)高速公路路程(从到只经过高速公路)普通公路路程 1.2(从到只经过普通公路)ij d ': 表示在灾情发生后,从单位i 到单位j 的每百件物资的最低运费; k n : 表示在灾情未发生时,第k 阶段调运方案所需的时间; n : 表示在灾情发生后,调运物资所耗费的时间;ij t : 表示在灾情未发生时,从单位i 到单位j 调运每百件物资所耗费的时间; ij t : 表示在灾情发生后,从单位i 到单位j 调运每百件物资所耗费的时间;i h :表示在灾情发生后,(4,,13)i =地的物资相对紧缺程度;k z : 表示在灾情未发生时,第k 阶段总的运费; z : 表示在灾情发生后,总的运输所耗时量.4.问题的分析及模型的建立与求解4.1 问题1的解答 4.1.1 问题1的分析题中指出,现在是提前为防洪抗涝做准备.我们可以认为,在这个过程中,灾情还未发生,时间比较充裕.因此,在决定交通网络的模型时,我们只考虑两个单位之间运输成本最低的路线.很显然,可以把问题抽象成求任意两点间的最小路径问题.4.1.2 问题1模型的建立与求解在题目所给的交通图中,以标有数字的公路交汇点为顶点,交汇点之间的连线为边,将其余无用边和顶点删除,形成一幅无向图.再以每百件物资在各边上运输所需费用为权值赋给各边,有以下两种情况:图 1 图 2 情形1.两公路交汇点之间是普通公路(如图1):在图1中,我们给交汇点20和交汇点22之间的路线重新赋予权值,新的权值=两交汇点之间的距离⨯普通公路的单位运输成本,即80⨯1.2=96;情形2.两公路交汇点之间是高速公路(如图2):在图2中,我们给交汇点7和交汇点27之间的路线重新赋予权值,新的权值=两交汇点之间的距离⨯高速公路的单位运输成本,即70⨯2=140.从而,我们得到了任意两交汇点间路线新的权值(见表1):表1路线权值路线权值路线权值路线权值[1]~[2] 48 [6]~[11] 64 [14]~[17]112 [25]~[26] 21.6[1]~[33] 72 [7]~[10] 96[15]~[42]33.6 [26]~[27] 84[1]~[34] 54 [7]~[27] 140 [15]~[18]69.6 [27]~[40] 64[2]~[3] 42 [8]~[15] 76 [15]~[25]55.2 [28]~[29] 72[2]~[7] 60 [8]~[14] 72 [16]~[21]69.6 [28]~[42] 38.4[2]~[9] 74.4 [8]~[28] 100 [16]~[23]78 [29]~[30] 74.4[3]~[10] 50.4 [9]~[27] 48 [16]~[18]150 [30]~[39] 18[3]~[36] 60 [9]~[40] 33.6 [17]~[23]62.4 [31]~[32] 60[4]~[6] 36 [9]~[31] 62.4 [18]~[19]26.4 [32]~[34] 30[4]~[5] 20 [10]~[12]62.4[18]~[23]54 [32]~[39] 74.4[4]~[29] 80 [11]~[25] 80 [18]~[25] 60 [32]~[38] 81.6[4]~[30] 84 [11]~[27] 96 [19]~[22] 86.4 [32]~[35] 117.6 [5]~[6] 56 [11]~[15] 112 [19]~[26] 33.6 [33]~[36] 48 [5]~[40] 76 [12]~[13] 96 [20]~[22] 96 [33]~[37] 45.6 [5]~[39] 170 [13]~[27] 100 [20]~[24] 60 [35]~[39] 204 [6]~[40] 36 [13]~[20] 81.6 [21]~[22] 54 [37]~[38] 42 [6]~[41]57.6[14]~[23]60[24]~[26]36[41]~[42]31.2问题转化为求该无向图的任意两点的最小路径.针对该无向图,我们利用弗洛伊德(Floyd)算法[4]来求出各点之间的最短路径,其基本思想是:假设求从顶点i v 到j v 的最短路径.(i v ,…,k v )和(k v ,…,j v )分别是从i v 到k v 和从k v 到j v 的中间顶点的序号不大于1k -的最短路径,则将(i v ,…,k v ,…,j v )和已经得到的从i v 到j v 且中间顶点序号不大于1k -的最短路径相比较,其长度较短者便是从i v 到j v 的中间顶点的序号不大于k 的最短路径.这样,在经过n 次比较后,最后求得的必是从i v 到j v 的最短路径.按此方法,可以同时求得各对顶点间的最短路径.由此可根据该算法,用C++语言编写程序(见附件)求出每对顶点之间的最短路径.在得到的结果中,将无用的结果滤去,筛选出我们需要的各单位之间的最短路径,见表2:表2路 线权值路 线权值 企业1→仓库1 24→26→25→15→42→28 184.8仓库1→储备库1 28→42→41→6→40→27 227.2 企业1→仓库2 24→26→19→18→23 150仓库1→储备库2 28→29→30146.4 企业1→仓库3 24→26→27→9→31→32→35408仓库2→仓库3 23→18→19→26→27→9→31→32→35486 企业1→仓库4 24→26→27→9→31 230.4仓库2→仓库423→18→19→26→27→9→31308.4 企业1→24→26→19→22204 仓库2→23→18→19→22166.8仓库5仓库5企业1→仓库624→26→27→9→2→3→36344.4仓库2→仓库623→18→19→26→27→9→2→3→36422.4企业1→仓库724→26→25→15→42→28→29256.8仓库2→仓库723→18→15→42→28→29267.6企业1→仓库824→26→27→9→31→32→38372仓库2→仓库823→18→19→26→27→9→31→32→38450企业1→储备库124→26→27120仓库2→储备库123→18→19→26→27198企业1→储备库224→26→25→11→6→4→3321.6仓库2→储备库223→18→15→42→28→29→30342企业2→仓库141→42→2869.6仓库3→仓库435→32→31177.6企业2→仓库241→42→15→18→23188.4仓库3→仓库535→32→31→9→27→26→19→22492企业2→仓库341→6→40→9→31→32→35367.2仓库3→仓库635→32→34→1→33→36321.6企业2→仓库441→6→40→9→31189.6仓库3→仓库735→32→39→30→29284.4企业2→仓库541→42→15→18→19→22247.2仓库3→仓库835→32→38199.2企业2→仓库641→6→40→9→2→3→36 303.6仓库3→储备库135→32→31→9→27288企业2→仓库741→42→28→29141.6仓库3→储备库235→32→39→30210企业2→仓库841→6→40→9→31→32→38331.2仓库4→仓库531→9→27→26→19→22314.4企业2→储备库141→6→40→27157.6仓库4→仓库631→9→2→3→36238.8企业2→储备库241→6→4→30177.6仓库4→仓库731→32→39→30→29226.8企业3→仓库134→32→39→30→29→28268.8仓库4→仓库831→32→38141.6企业3→仓库234→32→31→9→27→26→19→18→23486仓库4→储备库131→9→27110.4企业3→仓库334→32→35147.6仓库4→储备库231→32→39→30152.4企业3→仓库434→32→3190仓库5→仓库622→19→26→27→9→2→3→36428.4企业3→仓库534→32→31→9→27→26→19→22404.4仓库5→仓库722→19→18→15→42→28→29326.4企业3→仓库634→1→33→36174仓库5→仓库822→19→26→27→9→31→32→38456企业3→仓库734→32→39→30→29196.8仓库5→储备库122→19→26→27204企业3→仓库834→32→38111.6仓库5→储备库222→19→18→15→42→28→29→30400.8企业3→储备库134→32→31→9→27200.4仓库6→仓库736→3→2→9→40→6→4→29362企业3→储备库234→32→39→30122.4仓库6→仓库836→33→37→38135.6仓库1→仓库228→42→15→18→23195.6仓库6→储备库136→3→2→9→27252仓库1→仓库328→29→30→39→32→35356.4仓库6→储备库236→33→1→34→32→39→3296.4仓库1→仓库428→42→41→6→40→9→31259.2仓库7→仓库829→30→39→32→38248.4仓库1→仓库528→42→15→18→19→22254.4仓库7→储备库129→4→6→40→27216仓库1→仓库628→42→41→6→40→9→2→3→36373.2仓库7→储备库229→3074.4仓库1→仓库728→2972仓库8→储备库138→32→31→9→27252仓库1→仓库828→29→30→39→32→38320.4仓库8→储备库238→32→39→30174储备库1→储备库227→40→6→4→30220表2中,只给出了从单位i到单位j(i j)的最短路径, 单位j到单位i的最短路径可将从单位i到单位j的最短路径反序排列便可得到,单位成本相同.下面,再将上面求得的各单位之间最短路径综合起来,算出它们的合集,所得结果即为该地区公路交通网的模型.如图3所示:图34.2 问题2的解答 4.2.1 问题2的分析问题2要求我们在重点保证国家级储备库的情况下,给出包括调运量及调运路线的合理的调运方案. 我们可以综合各企业、仓库和储备库的不同情形,考虑灾情未发生时,以总的运输费用最低为目标,将调运过程分成四个阶段:首先,重点考虑储备库,只给储备库调运物资,达到其预测库存量为止.第二个阶段只给八个仓库调运物资,以满足它们的预测库存.第三个阶段,重新重点考虑储备库,只给它们调运物资,直到满足它们的最大库存;第四阶段,将多余的物资调往八个仓库,直至所有仓库及企业自己的库存都到达最大.4.2.2 问题2模型的建立我们规定第k 阶段从单位i 到单位j 的调运量为ijk x ,每百件最低运输成本为ij d .若满足i j =,则0ijk x =,且0ij d =.经过计算从单位i 到单位j 的运输成本ij d 如下:000184.8150408230.4204344.4256.8372120321.600069.6188.4367.2189.6247.2303.6141.6331.2157.6177.6000268.8486147.690404.4174196.8111.6200.4122.4184.869.6268.80195.6356.4259.2254.4373.272320.4227.21()ij d =46.4150188.4486195.60486308.4166.8422.4267.6450198342408367.2147.6356.44860177.6492321.6284.4199.2288210230.4189.690259.2308.4177.60314.4238.8226.8141.6110.4152.4204247.2404.4254.4166.8492314.40428.4326.4456204400.8344.4303.6174373.2422.4321.6238.8428.40362135.6252296.4256.8141.6196.872267.6284.4226.8326.43620248.421674.4372331.2111.6320.4450199.2141.6456135.6248.40252174120157.6200.4227.2198288110.42042522162520220321.6177.6122.4146.4342210152.4400.8296.474.41742200⎛⎫⎪⎪ ⎪⎪⎪ ⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪⎝⎭这里我们引入在k 阶段从单位i 到单位j 调运量ijk x 的惩罚函数[6]()ijk f x ,当i i a b >时, ()0ijk f x >(惩罚函数为正值,即表示当单位i 的现有库存量i a 大于其预测库存量i b ,需从单位i 向单位j 调运防洪物资);如果i i a b ≤,那么()0ijk f x =(惩罚函数为0,表示无需从单位i 向单位j 调运防洪物资).其函数如下:0(),0ijk i i ijk i ix a b f x a b >>⎧⎪=⎨≤⎪⎩问题2强调在重点保证国家级储备库的情况下,选择合理的调运方案{}ijk x .该方案需要满足以下四个条件:(1).先对国家级储备库进行调运;(2).依次满足各储备库和仓库的预测库存量,并且最终不能超过其最大库存量;(3).总运费最小;(4).日产量多的企业,适当多运输.满足条件(1)~(4)的物资调运系统称为带模糊条件的系统[5],简记作GTSWFC.系统必须要在优先满足条件(1)的情况下,依次满足各储备库和仓库的预测库存量、最大库存量.因为题中已给出三个企业的日产量,所以要使得系统的总运费最小时,本题中我们认为条件(3)和(4)也应当综合考虑.因为要优先保证国家储备库的库存量,所以我们将调运过程分为四个阶段进行考虑:第一阶段:当国家储备库未达到其预测库存量,此时优先考虑给国家储备库调运物资,即只考虑由可调运出物资的企业或仓库向这两个储备库调运物资,为了满足调运成本最低,可得GTSWFC 模型为:1113111112min ij ij i j z n d x ===∑∑111,12,112121111,13,1131311 0(1,,11;12,13)i i i i ij n x b a n x b a s t x i j ==⎧=-⎪⎪⎪=-⎨⎪⎪⎪≥==⎩∑∑第二阶段:当国家储备库已达到其预测库存量时,此时考虑只给仓库1到仓库8中需要调运物资的仓库调运物资,直到它们的库存量达到预测库存量,并且满足调运过程中所花的费用最小;其GTSWFC 模型为:111122211min ij ij i j z n d x ===∑∑13131113121112121121313124411131122112231212()(403020)()(403020)...4,,11,1,,11i i ij i i i j i ii i ij ij ji i i j j j ij a n n b n x a n n b s t n x n x n x b a i x i j =========⎧++++≥-⎪⎪⎪++++≤⎪⎨⎪⎪+-≤-=⎪⎪≥=⎩∑∑∑∑∑∑∑∑∑第三阶段:完成前两阶段的调运方案后,所有的储备库和仓库都已达到它们的预测量;此时对于多余的物资,仍然按照优先保证国家储备库的原则,在未达到国家储备库的最大库存量的前提下,保证运输费用最低;其GTSWFC 模型是:313333112min ij ij i j z n d x ===∑∑131312314131112312134433,12,31212133,13,3131313()(403020)()(403020) 01,2,3;12,13i ii i i i i i i i i i ij a n n n b a n n n b c c n x b c s t n x b c x i j ======⎧+++++≥⎪⎪⎪+++++≤++⎪⎪⎪⎪+≤⎨⎪⎪+≤⎪⎪⎪⎪≥==⎪⎩∑∑∑∑∑∑ 第四阶段:前三阶段完成后,各个仓库都已达到它们的预测库存量,并且两个储备库已达到其最大库存量.此时我们考虑怎样调运物资,使这8个仓库的库存也达到最大库存,而且所花费的运费最小.具体的GTSWFC 模型为:111144414min ij ij i j z n d x ===∑∑13111234121311131312341134414()(403020)()(403020)...04,,11i i i i i i i i ij j j i ij a n n n n b c c a n n n n c s t n x b c x j =====⎧++++++≥++⎪⎪⎪++++++≤⎪⎨⎪⎪+≤⎪⎪≥=⎩∑∑∑∑∑ 用LINGO 对这四个阶段的模型进行求解,得出在完成各个阶段的调运方案后,每天的调运量ijk x .具体数值如下列表所示:表4(第一阶段每天的调运量1ij x )单位 储备库1 储备库2企业1 600 0 企业2 310 50 企业3 0 500 仓库3 0 150 仓库590完成第一阶段的调运方案,共需费用240796元.表5(第二阶段每天的调运量2ij x )单位 仓库1 仓库2 仓库4 仓库6 仓库7 仓库8 企业1 25 3 12 0 0 0 企业2 15 0 0 0 15 0 企业3 0 0 4 3 0 13 仓库542完成第二阶段的调运方案,共需费用150902.3元.表6(第三阶段每天的调运量3ij x )单位 储备库1 储备库2企业1 40 0 企业2 20 10 企业320完成第三阶段的调运方案,共需费用202933.9元.表7(第四阶段每天的调运量4ij x )单位 仓库1 2 3 4 5 6 7 8 企业1 0 13 0 0 36 0 0 1 企业2 13 0 2 2 0 8 4 0 企业3 0 0 11 0 0 0 0 9完成第四阶段的调运方案,共需费用320643.1元.由前面的模型可以解出经过1234n n n n +++天,各个储备库和仓库都已经达到它们的最大库存量;若此时3个企业继续生产物资,则不到70天,可使3个企业的仓库也达到它们的最大库存量,本题中因为灾害还未发生,物资没有消耗,所以我们认为这3 个企业暂时停止生产.4.3 问题3的解答根据问题2的调运方案模型模型,我们可以解出执行第一阶段的调运方案的时间为11(01)n n <<天,前两个阶段的调运方案所需天数为12n n +,前三个阶段的调运方案所需天数为123n n n ++,这四个阶段的调运方案都执行所需天数为1234n n n n +++天后.当调运方案已经执行了20天时,根据前面的调运方案可知1212320[,]n n n n n ∈+++,所以我们认为方案已经实施20天后,正在执行第三阶段的调运方案.此时仓库1到仓库8已经达到预测库存量,并且在这个阶段仅给两个储备库,所以由问题2的第三阶段调运方案的GTSWFC 模型可以解出第三阶段已向储备库1和储备库2调运的物资量为:33,12,3,13,311879,251.i i i i xx====∑∑从而我们可知20天后各个储备库和仓库的储存量,具体如表8:表8(单位:百件)单位企业 1 企业 2 企业3仓库 1 仓库 2 仓库 3 仓库 4 仓库 5 仓库 6 仓库 7 仓库 8 储备库1储备库2储存量0 0 3 500 600 300 350 400 300 500 600 3879 27514.4 问题4的解答 4.4.1问题4的分析问题4指出因洪水而使得部分交通中断,此时灾情已经发生,我们所给的模型必须考虑解决紧急调运的问题.而在问题2中,我们假设灾情没有发生,是以运输成本最低为目的,分四个阶段来调运物资的.灾情发生后,由于部分路线中断和情况紧急,所以问题2中的模型不再适用于问题4.为此我们在问题2模型的基础上分三种情况来考虑:情况一、灾情在调运过程的第一阶段发生;情况二、灾情在调运过程的第二阶段发生;情况三、灾情在调运过程的第三阶段或第四阶段发生.4.4.2 问题4模型的建立在情况一和情况二中,由于各个仓库和储备库未达到其预测库存量,这里我们为了在最短时间内将防洪物资运送到各个仓库及储备库,只考虑运输所耗的时间,耗时最短的路线为最优路线.由前面的假设可知,灾情发生后高速公路的速度是普通公路的两倍.以任意两顶点间所需时间为其边的权值,除去洪水冲断的路外,应用弗洛伊德(Floyd)算法[1],得出最优路线(见表9):表9i j→路线时间i j→路线时间企业1→仓库1 24→26→25→15→8→28138仓库1→储备库128→8→15→11→2796企业1→仓库2 24→26→25→18→23108仓库1→储备库228→29→30122企业1→仓库3 24→26→25→15→11→6→5→39→35245.5仓库2→仓库323→18→15→11→6→5→39→35254.5企业1→仓库4 24→26→25→15→11→6→5→39→32→31306.5仓库2→仓库423→18→15→11→6→5→39→32→31315.5企业1→仓库5 24→20→22130仓库2→仓库523→18→19→22139企业1→仓库6 24→20→13→27→7→10→3→36294仓库2→仓库623→18→15→11→27→7→10→3→36306企业1→仓库7 24→26→25→15→11→6→5→4→29177仓库2→仓库723→17→14→8→28→29183企业1→仓库8 24→26→25→15→11→6→5→39→32→38324.5仓库2→仓库823→18→15→11→6→5→39→32→38333.5企业1→储备库1 24→20→13→27143仓库2→储备库123→18→15→11→27155企业1→储备库2 24→26→25→15→11→6→5→39→30209.5仓库2→储备库223→18→15→11→6→5→39→30218.5企业2→仓库1 41→42→2858仓库3→仓库435→32→31148企业2→仓库2 41→42→15→18→23157仓库3→仓库535→39→5→40→27→13→20→22301.5企业2→仓库3 41→6→5→39→35155.5仓库3→仓库635→32→34→1→33→36368企业2→仓库4 41→6→5→39→32→31216.5仓库3→仓库735→39→5→4→29118.5企业2→仓库5 41→42→15→18→19→22206仓库3→仓库835→32→38166企业2→仓库6 41→6→11→27→7→10→3→36239仓库3→储备库135→39→5→40→27128.5企业2→仓库7 41→6→5→4→2987仓库3→储备库235→39→3066企业2→仓库8 41→6→5→39→32→38234.5仓库4→仓库531→32→39→5→40→27→13→20→22362.5企业2→储备库1 41→6→11→2788仓库4→仓库631→32→34→1→33→36220企业2→储备库2 41→6→5→39→30119.5仓库4→仓库731→32→39→5→4→29179.5企业3→仓库1 34→32→39→5→4→29→28214.5仓库4→仓库831→32→38118企业3→仓库2 34→32→39→5→6→11→15→18→23290.5仓库4→储备库131→32→39→5→40→27189.5企业3→仓库3 34→32→35123仓库4→储备库231→32→39→30127企业3→仓库4 34→32→31102仓库5→仓库622→20→13→27→7→10→3→36324企业3→仓库5 34→32→39→5→40→27→13→20→22337.5仓库5→仓库722→20→13→27→40→5→4→29233企业3→仓库6 34→1→33→36145仓库5→仓库822→20→13→27→40→5→39→32→38380.5企业3→仓库7 34→32→39→5→4→29154.5仓库5→储备库122→20→13→27173企业3→仓库8 34→32→3895仓库5→储备库222→20→13→27→40→5→39→30265.5企业3→储备库1 34→32→39→5→40→27164.5仓库6→仓库736→3→10→7→27→40→5→4→29211企业3→储备库2 34→32→39→30102仓库6→仓库836→33→37→38113仓库1→仓库2 28→8→14→17→23123仓库6→储备库136→3→10→7→27151仓库1→仓库3 28→29→4→5→39→35178.5仓库6→储备库236→3→10→7→27→40→5→39→30243.5仓库1→仓库4 28→29→4→5→39→32→31239.5仓库7→仓库829→4→5→39→32→38197.5仓库1→仓库5 28→8→15→18→19→22196仓库7→储备库129→4→5→40→2760仓库1→仓库6 28→8→15→11→27→7→10→3→36247仓库7→储备库229→3062仓库1→仓库7 28→2960仓库8→储备库138→32→39→5→40→27207.5仓库1→仓库8 28→29→4→5→39→32→38257.5仓库8→储备库238→32→39→30145储备库1储备库227→40→5→39→3092.5下面,再将上面求得的各单位之间最快路径综合起来,算出它们的合集,所得结果即为该地区公路交通网的模型.如图4所示:图4情况一、灾情在调运过程的第一阶段发生:在问题2的第一阶段中,我们优先考虑国家储备库,只给这两个储备库调运物资,这里我们假设在调运之前,灾情已经发生.所以原来问题2中的模型在这里已不再适用.此时我们根据各个储备库和仓库的物资相对紧缺程度进行物资调运.比较各个储备库和仓库的紧缺程度i h ,如果预测库存量小于现有库存量,我们认为其紧缺程度为0;否则,当i h 的值越大,其紧缺程度越大.其中i h 可以表示为:i h -=-第i 个单位的预测库存量现有库存量第i 个单位的现有库存量最低库存量.经计算,可得各个单位的紧缺程度(见表10):表10单位 4 5 6 7 8 9 10 11 12 13i h 3 547 0 1213 0 14 219 1 178即各个储备库和仓库的相对紧缺程度为:仓库2>仓库1>仓库7>仓库8=储备库1>仓库4>储备库2>仓库6.考虑到当某单位的紧缺程度越大,应调运给该单位的物资也就越多.为了量化“紧缺程度越大的单位,就尽量多运输”这一模糊行为.我们作如下处理:对(4,,13)i h i =大的单位,调整调运物资到该单位所耗的时间(1,,13)ji t j =,形成“虚拟”运输时间ji t ,其中ji t 满足i h 越大,相应的ji t 就越小.用ji t 代替ji t 后进行规划,使得调运方案满足总的运输耗时最少.现选取ji t 为:(1)(4,,13;1,,13),ij ij i t t h i j βμ=-==其中β是正参数,反映了紧缺程度和总运输所耗时间在决策中的重要程度.由于这里灾情已经发生,我们认为紧缺程度是很重要的,于是这里β取值要满足一定的情况,本题的情况可以表示为图4:图4记()1()i i f h h βμ=-,则()ij ij i t t f h =.对于01β<<,11ββ=>和,函数()i f h 类似于[0,1]上的“降半凹(凸)分布”(如图4),下面说明ij t 的合理性:(1)显然,ij t 满足0ij ij t t <<;(2)ij t 时连续递减的,即μ越大,则相应的ij t 越小;(3)参数β的选取可使紧缺程度和运输所耗时间的“重要程度”这一模糊概念得到量化;(4)ij t 的选取便于计算和控制.于是综合考虑上面的分析,我们得到GTSWFC 模型为:131314min ij ij i j z n t x ===∑∑1β=1β> 01β<<11()i f h()i h μ1311313131414,,13()(403020) 0,1,,13;ij j ji ij i i i j i ij n x b a j n x b e n s t x i j ====⎧≥-=⎪⎪⎪⎪≤-+++⎨⎪⎪⎪≥=⎪⎩∑∑∑∑情况二、灾情在调运过程的第二阶段发生:第一阶段的调运方案结束后,两个国家储备库已达到其预测库存量,我们认为它们的紧缺程度为0.此时类似情况一的分析,我们只考虑8个仓库的物资相对紧缺程度.可得各单位的相对紧缺程度为(见表11):表11单位 4 5 6 7 8 9 10 11i h 3 547 0 1213 014 2191通过“虚拟”运输时间ji t 来量化“紧缺程度越大的单位,就尽量多运输”这一模糊行为.在满足调运过程中所消耗的时间最少的前提下,得到其GTSWFC 模型为:111111min ij ij i j z n t x ===∑∑1111111111313111411214,,11()(403020) 0,1,,11ij j ji ij ij i i i j i j i ij n x b a j n x n x b a n n s t x i j ======⎧≥-=⎪⎪⎪⎪+≤-++++⎨⎪⎪⎪≥=⎪⎩∑∑∑∑∑∑情况三、灾情在调运过程的第三阶段或第四阶段发生:无论是第三阶段还是第四阶段,各个储备库和仓库都已达到了预测库存量,这里我们认为预测库存量即发生灾情下,物资充足够用的量.此时,按照问题一中的讨论,以总运输费用最低为目标,进行物资调运的分配.此时,除去洪水冲断的路外,利用弗洛伊德(Floyd)算法可得新的路线为(见表11):表11i j →路 线 成本i j →路 线成本 企业1→24→26→25→15→42→28 184.8 仓库1→28→42→41→6→40→27227.2企业1→仓库2 24→26→19→18→23150仓库1→储备库228→29→30146.4企业1→仓库3 24→26→25→15→42→28→29→30→39→32→35541.2仓库2→仓库323→18→15→42→28→29→30→39→32→35552企业1→仓库4 24→26→25→15→42→28→29→30→39→32→31483.6仓库2→仓库423→18→15→42→28→29→30→39→32→31494.4企业1→仓库5 24→20→22156仓库2→仓库523→18→19→22166.8企业1→仓库6 24→20→13→12→10→3→36410.6仓库2→仓库623→18→15→42→41→6→40→9→2→3→36492企业1→仓库7 24→26→25→15→42→28→29256.8仓库2→仓库723→18→15→42→28→29267.6企业1→仓库8 24→26→25→15→42→28→29→30→39→32→38505.2仓库2→仓库823→18→15→42→28→29→30→39→32→38516企业1→储备库1 24→20→13→27241.6仓库2→储备库123→18→15→11→27331.6企业1→储备库2 24→26→25→15→42→28→29→30331.2仓库2→储备库223→18→15→42→28→29→30342企业2→仓库1 41→42→2869.6仓库3→仓库435→32→31177.6企业2→仓库2 41→42→15→18→23188.4仓库3→仓库535→32→39→30→29→28→42→15→18→19→22610.8企业2→仓库3 41→6→4→30→39→32→35387.6仓库3→仓库635→32→34→1→33→36321.6企业2→仓库4 41→6→4→30→39→32→31330仓库3→仓库735→32→39→30→29284.4企业2→仓库5 41→42→15→18→19→22247.2仓库3→仓库835→32→38199.2企业2→仓库6 41→6→40→9→2→3→36 303.6仓库3→储备库135→32→34→1→2→9→27372企业2→仓库7 41→42→28→29141.6仓库3→储备库235→32→39→30210企业2→仓库8 41→6→4→30→39→32→38351.6仓库4→仓库531→32→39→30→29→28→42→15→18→19→22553.2企业2→储备库1 41→6→40→27157.6仓库4→仓库631→32→34→1→33→36264企业2→储备库2 41→6→4→30177.6仓库4→仓库731→32→39→30→29226.8企业3→仓库1 34→32→39→30→29→28268.8仓库4→仓库831→32→38141.6企业3→仓库2 34→32→39→30→29→28→42→15→18→23464.4仓库4→储备库131→32→34→1→2→9→27314.4企业3→34→32→35147.6 仓库4→31→32→39→30152.4企业3→仓库4 34→32→3190 仓库5→仓库6 22→20→13→12→10→3→36446.4 企业3→仓库5 34→1→2→9→27→13→20→22 502 仓库5→仓库7 22→19→18→15→42→28→29326.4 企业3→仓库6 34→1→33→36 174 仓库5→仓库8 22→19→18→15→42→28→29→30→39→32→38 574.8 企业3→仓库7 34→32→39→30→29 196.8 仓库5→储备库1 22→20→13→27277.6 企业3→仓库8 34→32→38 111.6 仓库5→储备库2 22→19→18→15→42→28→29→30400.8 企业3→储备库1 34→1→2→9→27 224.4 仓库6→仓库7 36→3→2→9→40→6→4→29362 企业3→储备库2 34→32→39→30 122.4 仓库6→仓库8 36→33→37→38 135.6 仓库1→仓库2 28→42→15→18→23195.6仓库6→储备库1 36→3→2→9→27 224.4 仓库1→仓库3 28→29→30→39→32→35 356.4 仓库6→储备库2 36→33→1→34→32→39→30296.4 仓库1→仓库4 28→29→30→39→32→31 298.8 仓库7→仓库8 29→30→39→32→38 248.4 仓库1→仓库5 28→42→15→18→19→22 254.4 仓库7→储备库1 29→4→6→40→27 216 仓库1→仓库6 28→42→41→6→40→9→2→3→36 373.2 仓库7→储备库2 29→3074.4 仓库1→仓库7 28→2972仓库8→储备库1 38→37→33→1→2→9→27 330 仓库1→仓库8 28→29→30→39→32→38 320.4 仓库8→储备库238→32→39→30 174 储备库1储备库227→40→6→4→30220此时的GTSWFC 模型是:313'11min ij ij i j z d x ===∑∑3131431(403020)4,,13 0,1,2,3ij i j ij j ji ij n x n n x b c j s t x i j ===⎧=++⎪⎪⎪⎪+≤=⎨⎪⎪⎪≥=⎪⎩∑∑∑5.模型优缺点及改进方向5.1 模型的优点(1)本文首先将题中所给的交通图抽象成一张无向图,然后以每百件物资在各边上运输所需费用为权值赋给各边.并利用弗洛伊德(Floyd)算法求出我们所需要的各单位之间的最短路径,从而得出最优的公路交通网数学模型(见表2和图3);(2)在问题2的解答中,为重点保证国家储备库,我们抽象出一个多阶段单目标的规划的GTSWFC模型,运用此模型还可以解出问题3;(3)对于问题4,在汛期来临后,在改进问题2模型的基础上,分三种情况来考虑调运,以使情况紧急和情况不紧急时,相应的总运输耗时和总运输费用最优.5.2 模型的缺点(1)在问题2的建模过程中,我们考虑的是灾情未发生时的情况;(2)在问题4的建模过程中,我们认为情况一的灾情发生时,调运方案还未执行.5.3 模型的改进方向本文的模型只是从单方面(总运输费用或总运输耗时量)考虑最优运输方案.在实际问题中,可以将两方面综合考虑建立一个多阶段多目标的带模糊条件的物资调运系统(GTSWFC)模型.从而使得总运输费用和总运输耗时量同时达到最优,以提高物资调运的综合效率,并能在紧急情况下,保证物资缺乏严重的地方在最短时间内获得它们所需要的物资,以缓解各地的灾情.这样模型的可操作性会更好.。
应急物资运输问题数学建模
随着自然灾害和紧急情况的增加,应急物资运输已成为一个重要的问题。
数学建模可以帮助我们更好地理解和解决应急物资运输的挑战。
首先,我们需要确定应急物资的需求。
这可以通过历史数据、人口密度和灾害类型等因素来确定。
然后,我们需要确定应急物资的供应,包括各种物资的储备量、分布和可用性。
接下来,我们可以使用数学模型来确定最佳的运输方案。
这涉及到确定物资从供应点到需求点的最短路径,以及在紧急情况下的交通状况。
我们可以使用图论和网络优化算法来解决这个问题,例如最短路径算法和最小生成树算法。
此外,我们还需要考虑物资的运输容量和运输成本。
我们可以使用线性规划模型来最大化运输容量,同时最小化运输成本。
这可以帮助我们确定最佳的运输车辆配置和路线规划,以确保物资能够及时到达需求点。
在应急物资运输中,我们还需要考虑安全性和可行性。
数学模型可以帮助我们确定最佳的安全路线,以避免潜在的危险区域。
我们还可以使用模拟和优化方法来评估不同决策方案的风险和影响。
最后,我们还需要考虑协调和合作问题。
应急物资运输涉及多个部门和组织的合作,因此我们需要开发数学模型来优化资源分配和协调。
这可以帮助我们最大化物资的利用率,减少重复运输和浪费。
总之,数学建模可以帮助我们更好地理解和解决应急物资运输的问题。
通过使用数学工具和算法,我们可以确定最佳的运输方案,最大化物资的供应和利用率,并提高应急响应的效率和效果。
物资调运问题的优化模型肖凤莲 涂礼才 何三才摘 要:本题所说的是防洪抗涝物质调运问题。
在此问题中我们求各企业、物资仓库及国家级储备库之间物资的运费每一百件最少的路线,把附件2(生产企业,物资仓库及国家级储备库分布图)的分布图转化为数学直观简图(见模型求解中图1),所得图是连通图,设为()E V G ,=,各个边的权为相连两点每百件物资的运费。
我们利用“破圈法”和“最短路”求任意企业、物资仓库及国家级储备库两两之间及仓库与仓库之间的最优路线,显然我们建立的数学(简单图形)模型是可行的、合理的。
得出最优路线见表二、三、四、五。
我们根据实际情况,在保证国家级储备库的情况下,采用就近原则,在此基础上建立线性规划模型(如下):)))()(())()()(((min 1111111111∑∑∑∑∑∑∑∑∑∑=++==++==++=====⋅+⋅+⋅+⋅+⋅⨯=bi cb b k k i ki a i cb b k k i ikbi cb b k j i b i bj j i j i ji ai bj j i j i w zy xq w z w zy x p A F运用Lingo 软件对我们所建立线性规划问题进行计算。
再把天数为20带入上述线性规划,运用Lingo 运用软件进行计算,可以得到20天后各库的库存量好下:由于汛期路段26—27交通中断,中断路线改为企业1—20—13—储备库1,企业2—6—40—储备库1,其他中断路段对物资运输的路线无影响。
建立线性规划,运用Lingo运用软件求解,其结果见问题4的求解。
此模型简单易懂,容易推广。
运用了LINGO数学软件,提高了计算的速度。
解得的结果符合实际。
关键词:破圈法、最短路、线性规划模型、Lingo.一、问题的重述我国地域辽阔,气候多变,各种自然灾害频频发生,特别是每年在长江、淮河、嫩江等流域经常爆发不同程度的洪涝灾害,给国家和人民财产带来重大损失,防洪抗涝成为各级政府的一项重要工作。