解析几何综合问题圆与椭圆双曲线抛物线等章节综合学案练习(五)带答案人教版高中数学高考真题汇编
- 格式:doc
- 大小:426.50 KB
- 文档页数:8
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.以抛物线24y x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0 C .22x +y -x=0D .22x +y -2x=0(汇编福建理)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的右准线与x 轴的交点为M ,以椭圆的长轴为直径作圆O ,过点M 引圆O 的切线,切点为N ,若△OMN 为等腰直角三角形,则椭圆的离心率为 .3.已知实数0p >,直线3420x y p -+=与抛物线22x p y=和圆222()24p p x y +-=从左到右的交点依次为,A B C D 、、、则AB CD的值为 ▲ .高考资源网w 。
w-w*k&s%5¥u 评卷人得分三、解答题4.已知椭圆C :x 24+y 2=1,过点(m ,0)作圆x 2+y 2=1的切线l 交椭圆G 于A 、B 两点.(1)求椭圆C 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值.5.已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .(1)①若圆O 过椭圆的两个焦点,求椭圆的离心率e ; ②若椭圆上存在点P ,使得90APB ∠=,求椭圆离心率e 的取值范围;(2)设直线AB 与x 轴、y 轴分别交于点M ,N ,求证:2222a b ONOM+为定值.Oxy6.已知椭圆2221(01)y x b b+=<<的左焦点为F ,左、右顶点分别为A 、C ,上顶点为B .过F 、B 、C 作⊙P ,其中圆心P 的坐标为(m ,n ). (Ⅰ)当m +n >0时,求椭圆离心率的范围; (Ⅱ)直线AB 与⊙P 能否相切?证明你的结论.7.设椭圆)22(18:222>=+a y ax M 焦点坐标为F 1(-c,0), F 2(c,0),点Q 是椭圆短轴上的顶点,且满足122c QF QF +=. (I )求椭圆M 的方程;(II )设A,B 是圆与()12:22=-+y x N 与y 轴的交点,P 是椭圆M 上的任一点,求PA PB ⋅的最大值.(III )设P 0是椭圆M 上的一个顶点,EF 为圆()12:22=-+y x N 的任一条直径,求证00P E P F ⋅为定值。
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于
(A )9π (B )8π (C )4π (D )π
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.已知121(0,0),m n m n
+=>>当mn 取得最小值时,直线22y x =-+与曲线x x m
+1y y n =的交点个数为 ▲ 3.若直线mx +ny =4和圆O :x 2+y 2=4没有公共点,则过点(m ,n )的直线与椭。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的右准线与x 轴的交点为M ,以椭圆的长轴为直径作圆O ,过点M 引圆O 的切线,切点为N ,若△OMN 为等腰直角三角形,则椭圆的离心率为 .F(-c,0)A(-1,0)C(1,0)B(0,b)y xo3.已知椭圆221:12x C y +=和圆222:1C x y +=,椭圆1C 的左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为12,24+求证:;AP OP ⊥(2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.评卷人得分三、解答题4.在平面直角坐标系xOy 中,已知圆1C :22(1)16x y -+=,圆2C :22(1)1x y ++=,点S 为圆1C 上的一个动点,现将坐标平面折叠,使得圆心2(10)C -, 恰与点S 重合,折痕与直线1SC 交于点P .(1)求动点P 的轨迹方程;(2)过动点S 作圆2C 的两条切线,切点分别为M N 、,求MN 的最小值; (3)设过圆心2(10)C -, 的直线交圆1C 于点A B 、,以点A B 、分别为切点的两条切线交于点Q ,求证:点Q 在定直线上.5.已知椭圆2221(01)y x b b+=<<的左焦点为F ,左右顶点分别为A,C 上顶点为B ,过F,B,C 三点作⊙P ,其中圆心P 的坐标为(,)m n .(1) 若椭圆的离心率32e =,求⊙P 的方程; (2)若⊙P 的圆心在直线0x y +=上,求椭圆的方程.6.已知椭圆2221(01)yx bb+=<<的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).(Ⅰ)当m+n>0时,求椭圆离心率的范围;(Ⅱ)直线AB与⊙P能否相切?证明你的结论.7.中心在原点,焦点在x轴上的椭圆C的焦距为2,两准线间的距离为10.设A(5,0),B(1,0).(1)求椭圆C的方程;(4分)(2)过点A作直线与椭圆C只有一个公共点D,求过B,D两点,且以AD为切线的圆的方程;(6分)(3)过点A作直线l交椭圆C于P,Q两点,过点P作x轴的垂线交椭圆C于另一点S.若→AP= t→AQ(t>1),求证:→SB= t→BQ (6分)【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. 3. 评卷人得分三、解答题4.命题立意:本题主要考查直线、圆、椭圆基础知识,考查运算求解、综合应用能力.解:(1)由题意得121124PC PC PC PS C C +=+=>,故P 点的轨迹是以C 1、C 2为焦点,4为长轴长的椭圆,则24 1a c ==,,所以2a =,3b =, 故P 点的轨迹方程是22143y x +=.(5分) (2)法1(几何法) 四边形SMC 2N 的面积=211222SC MN SM MC SM ⋅=⋅⨯=,所以222222212cos 21sin 21SM MN MSC MSC SC SC ==∠=-∠=-,(9分)从而SC 2取得最小值时,MN 取得最小值, 显然当(3 0)S -,时,SC 2取得最大值2,所以m i n 12134MN =-=.(12分)法2(代数法) 设S (x 0,y 0),则以SC 2为直径的圆的标准方程为()()()()22220000112222x y x yx y -+-+-=+,该方程与圆C 2的方程相减得,()00010x x y y x +++=,(8分)则圆心2C 到直线MN 的距离()220011d x y ==++22000121x y x +++,因为()2200116x y -+=,所以22000152x y x +=+, 从而01164d x =+,[]03 5x ∈-,,故当03x =-时d m a x 12=,因为221MN d =-,所以()2m i n 1212MN =-=3.(12分)(3)设( )Q m n ,,则“切点弦”AB 的方程为()1(1)16m x ny --+=,将点(-1,0)代入上式得7m =-, R n ∈, 故点Q 在定直线7x =-上.(16分) 5.6.(本小题满分15分)解:(Ⅰ)设F 、B 、C 的坐标分别为(-c ,0),(0,b ),(1,0),则FC 、BC 的中垂线 分别为12c x -=,11()22b y x b -=-. ……………………………………………………2分 联立方程组,解出21,2.2cx b c y b -⎧=⎪⎪⎨-⎪=⎪⎩……………………………………………………………4分 21022c b c m n b --+=+>,即20b bc bc -+->,即(1+b )(b -c )>0, ∴b >c . ……………………………………………………………………………………6分 从而22b c >即有222a c >,∴212e <.……………………………………………………7分 又0e >,∴0e <<22. …………………………………………………………………8分 (Ⅱ)直线AB 与⊙P 不能相切.…………………………………………………………………9分由AB k b =,22102PB b c b b k c --=--=2(1)b c b c +-. ………………………………………………10分 如果直线AB 与⊙P 相切,则b ·2(1)b c b c +-=-1. ………………………………………12分 解出c=或2,与<c<1矛盾,………………………………………………………14分 所以直线AB与⊙P不能相切. …………………………………………………………15分7.(1)设椭圆的标准方程为22221(0)x y a b a b +=>>依题意得:222,210,c a c=⎧⎪⎨=⎪⎩,得1,5,c a =⎧⎪⎨=⎪⎩ ∴24b =所以,椭圆的标准方程为22154x y +=. ……………4分(2)设过点A 的直线方程为:(5)y k x =-,代入椭圆方程22154x y +=得;2222(45)50125200k x k x k +-+-= (*)依题意得:0∆=,即2222(50)4(450)(12520)0k k k -+-= 得:55k =±,且方程的根为1x = 45(1,)5D ∴± ……………7分 当点D 位于x 轴上方时,过点D 与AD 垂直的直线与x 轴交于点E , 直线DE 的方程是:455(1)5y x -=-, 1(,0)5E ∴ ……………8分 所求圆即为以线段DE为直径的圆,故方程为:232524()()5525x y -+-=……………9分 同理可得:当点D 位于x 轴下方时,圆的方程为:232524()()5525x y -++=.……10分 (3)设11(,)P x y ,22(,)Q x y 由AP =t AQ 得:12125(5)x t x y ty -=-⎧⎨=⎩, ……………12分代入22112222154154x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩122332x t t x t =-+⎧⎪∴⎨-=⎪⎩(**) ……………14分 要证SB =tBQ ,即证12121(1) 1 2x t x y ty -=-⎧⎨=⎩()()由方程组(**)可知方程组(1)成立,(2)显然成立.∴SB tBQ = ……………16分。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) (A )12(B )1(C )2(D )4第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O A 1A 2B 1 B 2xy (第17O 的两条切线,切点分别为,A B .若90APB ∠=,则椭圆离心率e 的取值范围是▲ . 3.已知121(0,0),m n m n+=>>当mn 取得最小值时,直线22y x =-+与曲线x x m+1y yn =的交点个数为评卷人得分三、解答题4..已知双曲线22221(0,0)x y a b a b-=>>的左右焦点为1F 、2F ,P 是右支上一点,212PF F F ⊥,1OH PF ⊥于H ,111,[,]92OH OF λλ=∈(1)当13λ=时,求双曲线的渐近线方程; (2)求双曲线的离心率的取值范围;(3)当离心率最大时,过1F 、2F ,P 的圆截y 轴线段长为8,求该圆的方程.5.在平面直角坐标系xOy 中,如图,已知椭圆E :22221(0)y x a b a b+=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B .设直线11A B 的倾斜角的正弦值为13,圆C 与以线段2OA 为直径的圆关于直线11A B 对称.(1)求椭圆E 的离心率;(2)判断直线11A B 与圆C 的位置关系,并说明理由; (3)若圆C 的面积为π,求圆C 的方程.6.已知椭圆2221(01)y x b b+=<<的左焦点为F ,左、右顶点分别为A 、C ,上顶点为B .过F 、B 、C 作⊙P ,其中圆心P 的坐标为(m ,n ). (Ⅰ)当m +n >0时,求椭圆离心率的范围; (Ⅱ)直线AB 与⊙P 能否相切?证明你的结论.7.已知椭圆1:C 22221(0)x y a b a b+=>>的右焦点为F ,上顶点为A ,P 为1C 上任一点,MN 是圆2:C 22(3)1x y +-=的一条直径.若与AF 平行且在y 轴上的截距为32-的直线l 恰好与圆2C 相切.(Ⅰ)求椭圆1C 的离心率;(7分)(Ⅱ)若PM PN ⋅的最大值为49,求椭圆1C 的方程.(8分)【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C 本题考查抛物线的相关几何性质及直线与圆的位置关系 法一:抛物线y 2=2px (p >0)的准线方程为2p x -=,因为抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,所以2,423==+p p法二:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切与点(-1,0) 所以2,12=-=-p p第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. 212e ≤< 3.评卷人得分三、解答题4.5.(1)设椭圆E 的焦距为2c (c >0), 因为直线11A B 的倾斜角的正弦值为13,所以2213b a b =+, 于是228a b =,即228()a a c =-,所以椭圆E的离心率22147.84c e a === …………4分(2)由144e =可设()40a k k =>,14c k =,则2b k =, 于是11A B 的方程为:2240x y k -+=, 故2OA 的中点()20k ,到11A B 的距离d =2423k kk +=, …………………………6分 又以2OA 为直径的圆的半径2r k =,即有d r =,所以直线11A B 与圆C 相切. …………………………8分(3)由圆C 的面积为π知圆半径为1,从而12k =, …………………………10分设2OA 的中点()10,关于直线11A B :2220x y -+=的对称点为()m n , , 则21,141222022n m m n ⎧⋅=-⎪-⎨+⎪-⋅+=⎩. …………………………12分 解得42133m n ==, .所以,圆C 的方程为()()22421133x y -+=-.…………………14分6.(本小题满分15分)解:(Ⅰ)设F 、B 、C 的坐标分别为(-c ,0),(0,b ),(1,0),则FC 、BC 的中垂线 分别为12c x -=,11()22b y x b -=-. ……………………………………………………2分 联立方程组,解出21,2.2cx b c y b -⎧=⎪⎪⎨-⎪=⎪⎩……………………………………………………………4分 21022c b c m n b --+=+>,即20b bc bc -+->,即(1+b )(b -c )>0, ∴b >c . ……………………………………………………………………………………6分 从而22b c >即有222a c >,∴212e <.……………………………………………………7分 又0e >,∴0e <<22. …………………………………………………………………8分 (Ⅱ)直线AB 与⊙P 不能相切.…………………………………………………………………9分由AB k b =,22102PB b c b b k c --=--=2(1)b c b c +-. ………………………………………………10分 如果直线AB 与⊙P 相切,则b ·2(1)b c b c +-=-1. ………………………………………12分 解出c=或2,与<c<1矛盾,………………………………………………………14分 所以直线AB与⊙P不能相切. …………………………………………………………15分 7.解:(1)直线l 的方程为b x + c y – (3–2)c =0 …………2分因为直线l 与圆C 2: x 2 + (y – 3) 2 = 1相切,所以d =22|332|c c c b c-++=1…………4分可得2 c 2 = a 2,从而e =22…………7分 (2)设P(x , y ),则22222222()()()()PM PN PC C M PC C N PC C N PC C N⋅=++=-+2222PC C N =-= x 2 + (y – 3) 2 – 1 = – (y + 3) 2 + 2 c 2 + 17, ( – c ≤y ≤c ) ………10分(或者设M(x 1, y 1), N(x 2, y 2), P(x , y ),因为x 1 + x 2=0, y 1 + y 2=6, x 1 2+ y 12 – 6 y 1 + 8=0,所以PM PN ⋅=( x 1 – x 2)( x 2 –x 1)+( y 1 – y 2)( y 2 –y 1) =x 2 + y 2 – (x 1 + x 2)x +( x 1 + x 2)y + x 1 x 2+ y 1 y 2= x 2 + y 2 +6y – x 1 2+ y 1(6 – y 1)= x 2 + y 2 +6y +8= – (y + 3)2 + 2c 2+17…………10分)当c ≥3时,(PM PN ⋅)m a x = 2c 2+17=49, 解得c =4,此时椭圆的方程为2213216x y +=…12分 当0<c <3时,(PM PN ⋅)m a x = – (c + 3)2 + 2c 2+17=49, 解得c =523-, 但(523-) – 3=50– 6>0,所以523->3,故c =523-舍去…………14分综上所述,椭圆的方程为2213216x y +=…………15分。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知椭圆221:12x C y +=和圆222:1C x y +=,椭圆1C 的左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为12,24+求证:;AP OP ⊥(2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.3.若直线mx +ny =4和圆O :x 2+y 2=4没有公共点,则过点(m ,n )的直线与椭圆x 25+y 24=1的交点个数为________. 解析:由题意可知,圆心O 到直线mx +ny =4的距离大于半径,即得m 2+n 2<4,所以点(m ,n )在圆O 内,而圆O 是以原点为圆心,椭圆的短半轴长为半径的圆,故点(m ,n )在椭圆内,因此过点(m ,n )的直线与椭圆必有2个交点. 评卷人得分三、解答题4.在平面直角坐标系xOy 中,已知圆1C :22(1)16x y -+=,圆2C :22(1)1x y ++=,点S 为圆1C 上的一个动点,现将坐标平面折叠,使得圆心2(10)C -, 恰与点S 重合,折痕与直线1SC 交于点P .(1)求动点P 的轨迹方程;(2)过动点S 作圆2C 的两条切线,切点分别为M N 、,求MN 的最小值; (3)设过圆心2(10)C -, 的直线交圆1C 于点A B 、,以点A B 、分别为切点的两条切线交于点Q ,求证:点Q 在定直线上.5.已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线n ,交l 于点A ,交M 于另一点B ,且2AO OB ==.(Ⅰ)求M 和抛物线C 的方程;(Ⅱ)若P 为抛物线C 上的动点,求PM PF ⋅的最小值;(Ⅲ)过l 上的动点Q 向M 作切线,切点为,S T ,求证:直线ST 恒过一个定点,并求该定点的坐标.6.定义变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩可把平面直角坐标系上的点(,)P x y 变换到这一平面上的点(,)P x y '''.特别地,若曲线M 上一点P 经变换公式T 变换后得到的点P '与点P 重合,则称点P 是曲线M 在变换T 下的不动点.(1)若椭圆C 的中心为坐标原点,焦点在x 轴上,且焦距为22,长轴顶点和短轴顶点间的距离为 2. 求该椭圆C 的标准方程. 并求出当3arctan 4θ=时,其两个焦点1F 、2F 经变换公式T 变换后得到的点1F '和2F '的坐标;(2)当3arctan 4θ=时,求(1)中的椭圆C 在变换T 下的所有不动点的坐标; (3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩(2k πθ≠,k Z ∈)下的不动点的存在情况和个数. O lxyA B F · M第17题7.已知点P (4,4),圆C :22()5(3)x m y m -+=<与椭圆E :22221(0)x y a b a b +=>>有一个公共点A (3,1),F 1、F 2分别是椭圆的左、右焦点,直线PF 1与圆C 相切. (Ⅰ)求m 的值与椭圆E 的方程; (Ⅱ)设Q 为椭圆E 上的一个动点,求AP AQ ⋅的取值范围.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题QPOyxF 1A C F 22. 3.2 评卷人得分三、解答题4.命题立意:本题主要考查直线、圆、椭圆基础知识,考查运算求解、综合应用能力.解:(1)由题意得121124PC PC PC PS C C +=+=>,故P 点的轨迹是以C 1、C 2为焦点,4为长轴长的椭圆,则24 1a c ==,,所以2a =,3b =, 故P 点的轨迹方程是22143y x +=.(5分) (2)法1(几何法) 四边形SMC 2N 的面积=211222SC MN SM MC SM ⋅=⋅⨯=,所以222222212cos 21sin 21SM MN MSC MSC SC SC ==∠=-∠=-,(9分)从而SC 2取得最小值时,MN 取得最小值, 显然当(3 0)S -,时,SC 2取得最大值2,所以m i n 12134MN =-=.(12分)法2(代数法) 设S (x 0,y 0),则以SC 2为直径的圆的标准方程为()()()()22220000112222x y x yx y -+-+-=+,该方程与圆C 2的方程相减得,()00010x x y y x +++=,(8分) 则圆心2C 到直线MN 的距离()220011d x y ==++22000121x y x +++,因为()2200116x y -+=,所以22000152x y x +=+, 从而01164d x =+,[]03 5x ∈-,,故当03x =-时d m a x 12=,因为221MN d =-,所以()2m i n 1212MN =-=3.(12分)(3)设( )Q m n ,,则“切点弦”AB 的方程为()1(1)16m x ny --+=,将点(-1,0)代入上式得7m =-, R n ∈, 故点Q 在定直线7x =-上.(16分) 5.解:(Ⅰ)因为1cos602122p OA =⋅=⨯=,即2p =,所以抛物线C 的方程为24y x =……… 2分设M 的半径为r ,则122cos 60OB r =⋅=,所以M 的方程为22(2)4x y -+=……………… 5分(Ⅱ)设(,)(0)P x y x ≥,则(2,)(1,)PM PF x y x y ⋅=----=222322x x y x x -++=++……8分所以当0x =时, PM PF ⋅有最小值为2 …………………………………10分(Ⅲ)以点Q 这圆心,QS 为半径作Q ,则线段ST 即为Q 与M 的公共弦………… 11分 设点(1,)Q t -,则22245QS QM t =-=+,所以Q 的方程为222(1)()5x y t t ++-=+…13分从而直线QS 的方程为320x ty --=(*)………………………………………………………………14分因为230x y ⎧=⎪⎨⎪=⎩一定是方程(*)的解,所以直线QS 恒过一个定点,且该定点坐标为2(,0)3……………16分6.(理)解:(1)设椭圆C 的标准方程为22221x y a b+=(0a b >>),由椭圆定义知焦距2222c c =⇒=,即222a b -=…①.又由条件得224a b +=…②,故由①、②可解得23a =,21b =.即椭圆C 的标准方程为2213x y +=. 且椭圆C 两个焦点的坐标分别为()12,0F -和()12,0F .对于变换T :cos sin ,sin cos x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩,当3arctan 4θ=时,可得43,5534,55x y x x y y ⎧'+=⎪⎪⎨⎪'-=⎪⎩设()111,F x y '和()222,F x y '分别是由()12,0F -和()12,0F 的坐标由变换公式T 变换得到.于是,114342(2)0,5553432(2)0555x y ⎧=⋅-+⋅=-⎪⎪⎨⎪=⋅--⋅=-⎪⎩,即1F '的坐标为4232,55⎛⎫-- ⎪ ⎪⎝⎭; 又22434220,555343220555x y ⎧=⋅+⋅=⎪⎪⎨⎪=⋅-⋅=⎪⎩即2F '的坐标为4232,55⎛⎫⎪ ⎪⎝⎭. (2)设(,)P x y 是椭圆C 在变换T 下的不动点,则当3arctan4θ=时, 有43553455x y x x y y ⎧+=⎪⎪⎨⎪-=⎪⎩⇒3x y =,由点(,)P x y C ∈,即(3,)P y y C ∈,得:22(3)13y y += ⇒123y x y ⎧=±⎪⎨⎪=⎩,因而椭圆C 的不动点共有两个,分别为31,22⎛⎫ ⎪⎝⎭和31,22⎛⎫-- ⎪⎝⎭.(3) 设(,)P x y 是双曲线在变换T 下的不动点,则由cos sin ,sin cos ,x y x x y y θθθθ⋅+⋅=⎧⎨⋅-⋅=⎩()()sin 1cos ,sin 1cos ,y x x y θθθθ⋅=-⋅⎧⎪⇒⎨⋅=+⋅⎪⎩ 因为2k πθ≠,k Z ∈,故1cos sin tan sin 1cos 2y x θθθθθ-===+.不妨设双曲线方程为221x y m n +=(0mn <),由tan 2y x θ=代入得 则有2222tan tan 2211x n m x x m n mnθθ⎛⎫⋅+ ⎪⎝⎭+=⇔=, 因为0mn <,故当2tan 02n m θ+=时,方程22tan 21n m x mnθ+=无解;当2tan 02n m θ+≠时,要使不动点存在,则需220tan2mnx n m θ=>+,因为0mn <,故当2tan 02n m θ+<时,双曲线在变换T 下一定有2个不动点,否则不存在不动点. 进一步分类可知:(i )当0n <,0m >时,即双曲线的焦点在x 轴上时,22tan 0tan 22nn m mθθ⇒+<⇒<-; 此时双曲线在变换T 下一定有2个不动点;(ii )当0n >,0m <时,即双曲线的焦点在y 轴上时,22tan 0tan 022nn m mθθ⇒+<⇒>->. 此时双曲线在变换T 下一定有2个不动点. 7.解:(Ⅰ)点A 代入圆C 方程, 得2(3)15m -+=.∵m <3,∴m =1. …… 2分圆C :22(1)5x y -+=.设直线PF 1的斜率为k , 则PF 1:(4)4y k x =-+,即440kx y k --+=. ∵直线PF 1与圆C 相切, ∴2|044|51k k k --+=+.QPO yxF 1A C F 2解得111,22k k==或.……………… 4分当k=112时,直线PF1与x轴的交点横坐标为3611,不合题意,舍去.当k=12时,直线PF1与x轴的交点横坐标为-4,∴c=4.F1(-4,0),F2(4,0). (6)分2a=AF1+AF2=52262+=,32a=,a2=18,b2=2.椭圆E的方程为:221182x y+=.…………………… 8分(Ⅱ)(1,3)AP=,设Q(x,y),(3,1)AQ x y=--,(3)3(1)36AP AQ x y x y⋅=-+-=+-.…………………… 10分∵221182x y+=,即22(3)18x y+=,而22(3)2|||3|x y x y+⋅≥,∴-18≤6xy≤18. (12)分则222(3)(3)6186x y x y xy xy+=++=+的取值范围是[0,36].3x y+的取值范围是[-6,6].∴36AP AQ x y⋅=+-的取值范围是[-12,0].……………………15分。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.若直线mx +ny =4和圆O :x 2+y 2=4没有公共点,则过点(m ,n )的直线与椭圆x 25+y 24=1的交点个数为________. 解析:由题意可知,圆心O 到直线mx +ny =4的距离大于半径,即得m 2+n 2<4,所以点(m ,n )在圆O 内,而圆O 是以原点为圆心,椭圆的短半轴长为半径的圆,故点(m ,n )在椭圆内,因此过点(m ,n )的直线与椭圆必有2个交点.3. 已知直线l 的方程为2x =-,圆22:1O x y +=,则以l 为准线,中心在原点,且与圆O 恰好有两个公共点的椭圆方程为 . 评卷人得分三、解答题4.若椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F ,椭圆上的点到焦点的最短距离为1,椭圆的离心率为45,以原点为圆心、短轴长为直径作圆O ,过圆O 外一点P 作圆O 的两条切线,PA PB 。
(1)求椭圆的方程;(2)若2PA PF =,求PO 的最小值;(3)在(2)的条件下,若点P 在椭圆内,求12PF PF 的范围。
5.已知双曲线()222210,0x y a b a b -=>>左右两焦点为12,F F ,P 是右支上一点,2121,PF F F OH PF ⊥⊥于H , 111,,92OH OF λλ⎡⎤=∈⎢⎥⎣⎦.(1)当13λ=时,求双曲线的渐近线方程; (2)求双曲线的离心率e 的取值范围;(3)当e 取最大值时,过12,,F F P 的圆的截y 轴的线段长为8,求该圆的方程. 17-16.已知椭圆1:C 22221(0)x y a b a b+=>>的右焦点为F ,上顶点为A ,P 为1C 上任一点,MN 是圆2:C 22(3)1x y +-=的一条直径.若与AF 平行且在y 轴上的截距为32-的直线l 恰好与圆2C 相切.(Ⅰ)求椭圆1C 的离心率;(7分)(Ⅱ)若PM PN ⋅的最大值为49,求椭圆1C 的方程.(8分)7.设椭圆的方程为2222ny m x +=1(m ,n >0),过原点且倾角为θ和π-θ(0<θ<2π=的两条直线分别交椭圆于A 、C 和B 、D 两点,(Ⅰ)用θ、m 、n 表示四边形ABCD 的面积S ; (Ⅱ)若m 、n 为定值,当θ在(0,4π]上变化时,求S 的最小值u ;(Ⅲ)如果μ>mn ,求nm的取值范围. (汇编上海,24) 93.(Ⅰ)设经过原点且倾角为θ的直线方程为y =x tan θ,可得方程组⎪⎩⎪⎨⎧=+=1t a n2222n ym x x y θ又由对称性,得四边形ABCD 为矩形,同时0<θ<2π,所以四边形ABCD 的面积S =4|xy |=θθ22222tan tan 4m n n m +. (Ⅱ)S =θθtan tan 42222m nn m +.(1)当m >n ,即m n<1时,因为θtan 2n +m 2tan θ≥2nm ,当且仅当tan 2θ=22m n 时等号成立,所以mn mnn m m n n m S 224tan tan 4222222=≤+=θθ. 由于0<θ≤4π,0<tan θ≤1,故tan θ=mn得u =2mn . (2)当m <n ,即m n>1时,对于任意0<θ1<θ2≤4π, 由于)tan tan ()tan tan (12122222θθθθn m n m +-+21221212tan tan tan tan )tan (tan θθθθθθn m --=.因为0<tan θ1<tan θ2≤1,m 2tan θ1tan θ2-n 2<m 2-n 2<0,所以(m 2tan θ2+22tan θn )-(m 2tan θ1+12tan θn )<0,于是在(0,4π]上,S =θθtan tan 42222m nn m +是θ的增函数,故取θ=4π,即tan θ=1得u =22224nm n m +. 所以u =⎪⎩⎪⎨⎧<<+<<)0(4)0( 22222n m n m n m m n mn(Ⅲ)(1)当nm>1时,u =2mn >mn 恒成立. (2)当n m <1时,224n m mn mn u += >1,即有(n m )2-4(n m)+1<0, 所以3232+<<-n m ,又由nm<1, 得132<<-nm. 综上,当u >mn 时,nm的取值范围为(2-3,1)∪(1,+∞). 评述:本题主要考查椭圆的对称性及不等式的应用,通过求最小值来考查逻辑思维能力和应用能力,同时体现分类讨论思想.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.2 3.或 评卷人得分三、解答题4.5.由相似三角形知,121OF OH PF PF =,222b ab a aλ=+,∴()222222,21a b b a b λλλλ+==- ,2221b a λλ=-.(1)当13λ=时,221b a =,∴,a b y x ==±.(2)()22222211211111c b e a a λλλλ--⎡⎤⎣⎦==+=+=+--=221111λλ-=----,在11,92⎡⎤⎢⎥⎣⎦上单调递增函数. ∴12λ=时,2e 最大3,19λ=时,2e 最小54, ∴2534e ≤≤,∴532e ≤≤. (3)当3e =时,3ca=,∴3c =,∴222b a =. ∵212PF F F ⊥,∴1PF 是圆的直径,圆心是1PF 的中点,∴在y 轴上截得的弦长就是直径,∴1PF =8.又2212224b a PF a a a a a =+=+=,∴48,2,23,22a a c b ====. ∴2224b PF a a===,圆心()0,2C ,半径为4,()22216x y +-=. 6.解:(1)直线l 的方程为b x + c y – (3–2)c =0 …………2分因为直线l 与圆C 2: x 2 + (y – 3) 2 = 1相切,所以d =22|332|c c c b c-++=1…………4分可得2 c 2 = a 2,从而e =22…………7分 (2)设P(x , y ),则22222222()()()()PM PN PC C M PC C N PC C N PC C N⋅=++=-+2222PC C N =-= x 2 + (y – 3) 2 – 1 = – (y + 3) 2 + 2 c 2 + 17, ( – c ≤y ≤c ) ………10分(或者设M(x 1, y 1), N(x 2, y 2), P(x , y ),因为x 1 + x 2=0, y 1 + y 2=6, x 1 2+ y 12 – 6 y 1 + 8=0,所以PM PN ⋅=( x 1 – x 2)( x 2 –x 1)+( y 1 – y 2)( y 2 –y 1) =x 2 + y 2 – (x 1 + x 2)x +( x 1 + x 2)y + x 1 x 2+ y 1 y 2= x 2 + y 2 +6y – x 1 2+ y 1(6 – y 1)= x 2 + y 2 +6y +8= – (y + 3)2 + 2c 2+17…………10分)当c ≥3时,(PM PN ⋅)m a x = 2c 2+17=49, 解得c =4,此时椭圆的方程为2213216x y +=…12分 当0<c <3时,(PM PN ⋅)m a x = – (c + 3)2 + 2c 2+17=49, 解得c =523-, 但(523-) – 3=50– 6>0,所以523->3,故c =523-舍去…………14分综上所述,椭圆的方程为2213216x y +=…………15分 7.。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称.直线4x -3y -2=0与圆C相交于A 、B 两点,且|AB |=6,则圆C 的方程为________.OyxMF1F2解析:抛物线y 2=4x ,焦点为F (1,0).∴圆心C (0,1),C 到直线4x -3y -2=0的距离d=55=1,且圆的半径r 满足r 2=12+32=10.∴圆的方程为x 2+(y -1)2=10.3.以抛物线y 2=4x 的焦点为圆心、2为半径的圆,与过点A (-1,3)的直线l 相切,则直线l 的方程是______________________.评卷人得分三、解答题4.已知,A B 分别是直线33y x =和33y x =-上的两个动点,线段AB 的长为23是AB 的中点,点P 的轨迹为.C(1)求轨迹C 的方程;(2)过点(1,0)Q 任意作直线l (与x 轴不垂直),设l 与轨迹C 交于,M N 两点,与y 轴交于R 点。
若,,RM MQ RN NQ λμ==证明:λμ+为定值。
5.已知圆1F :16)1(22=++y x ,定点,动圆过点2F ,且与圆1F 相内切。
(1)求点M 的轨迹C 的方程;(2)若过原点的直线l 与(1)中的曲线C 交于B A ,两点,且1ABF ∆的面积为23,求直线l 的方程。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) (A )12(B )1(C )2(D )4第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 的值为 .3.已知椭圆221:12x C y +=和圆222:1C x y +=,椭圆1C 的左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为12,24+求证:;AP OP ⊥(2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.评卷人得分三、解答题4..已知双曲线22221(0,0)x y a b a b-=>>的左右焦点为1F 、2F ,P 是右支上一点,212PF F F ⊥,1OH PF ⊥于H ,111,[,]92OH OF λλ=∈(1)当13λ=时,求双曲线的渐近线方程; (2)求双曲线的离心率的取值范围;(3)当离心率最大时,过1F 、2F ,P 的圆截y 轴线段长为8,求该圆的方程.5.如图,椭圆22143x y +=的左焦点为F ,上顶点为A , 过点A 作直线AF 的垂线分别交椭圆、x 轴于,B C 两点. ⑴若AB BC λ=,求实数λ的值;[来源:Z|xx|] ⑵设点P 为ACF △的外接圆上的任意一点,当PAB △的面积最大时,求点P 的坐标. (江苏省苏州市汇编年1月高三调研) (本小题满分16分)xNMOyA B l :x =t6.已知椭圆)0(12222>>=+b a by a x 的离心率为23,椭圆的左、右两个顶点分别为A ,B ,AB=4,直线(22)x t t =-<<与椭圆相交于M ,N 两点,经过三点A ,M ,N 的圆与经过三点B ,M ,N 的圆分别记为圆C1与圆C2. (1)求椭圆的方程;(2)求证:无论t 如何变化,圆C1与圆C2的圆心距是定值; (3)当t 变化时,求圆C1与圆C2的面积的和S 的最小值.7.已知双曲线()222210,0x y a b a b -=>>左右两焦点为12,F F ,P 是右支上一点,2121,PF F F OH PF ⊥⊥于H , 111,,92OH OF λλ⎡⎤=∈⎢⎥⎣⎦.(1)当13λ=时,求双曲线的渐近线方程; (2)求双曲线的离心率e 的取值范围;(3)当e 取最大值时,过12,,F F P 的圆的截y 轴的线段长为8,求该圆的方程. 17-1【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C 本题考查抛物线的相关几何性质及直线与圆的位置关系 法一:抛物线y 2=2px (p >0)的准线方程为2p x -=,因为抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,所以2,423==+p p法二:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切与点(-1,0) 所以2,12=-=-p p第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. 3. 评卷人得分三、解答题4.5.(1)由条件得()()1,0,0,3,F A - 3.AF k =因为,AB AF⊥所以3,3AB k =-3: 3.3AB y x =-+令0,y =得3,x =所以点C 的坐标为()3,0.由22333143y x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得213240,x x -=解得10x =(舍)224.13x =所以点B 的坐标为2453,1313⎛⎫ ⎪ ⎪⎝⎭.因为AB BC λ=,所以0,λ>且24813.245313AB BC λ===-(2)因为ACF △是直角三角形,所以ACF △的外接圆的圆心为()1,0D ,半径为2. 所以圆D 的方程为()2214x y -+=.因为AB 为定值,所以当PAB △的面积最大时点P 到直线AC 的距离最大. 过D 作直线AC 的垂线m ,则点P 为直线m 与圆D 的交点 . 直线():31m y x =-与()2214x y -+=联立得2x =(舍)或0,x =所以点P 的坐标为()0,3.6.解:(1)由题意:42,23==a a c 可得:1,3,2222=-===c a b c a , 故所求椭圆方程为:=+224y x 1 ………………………3分 (2)易得A 的坐标(-2,0),B 的坐标(2,0),M 的坐标)24,(2t t -,N 的坐标)24,(2t t --,线段AM 的中点P )44,22(2t t --, 直线AM 的斜率t t t t k +-=+-=222122421 ………………………………………5分又AM PC ⊥1, ∴直线1PC 的斜率t t k -+-=2222∴直线1PC 的方程44)22(2222t t x t t y -+---+-=,∴1C 的坐标为)0,863(-t 同理2C 的坐标为)0,863(+t (8)分∴2321=C C ,即无论t 如何变化,为圆C1与圆C2的圆心距是定值.……………11分(2)圆1C 的半径为1AC 8103+=t ,圆2C 的半径为83102tBC -=, 则)1009(3222221+=+=t BC AC S πππ (2-<t <2)显然t 0=时,S 最小,825min π=S . ……………15分7.由相似三角形知,121OF OH PF PF =,222b ab a aλ=+,∴()222222,21a b b a b λλλλ+==- ,2221b a λλ=-.(1)当13λ=时,221b a =,∴,a b y x ==±.(2)()22222211211111c b e a a λλλλ--⎡⎤⎣⎦==+=+=+--=221111λλ-=----,在11,92⎡⎤⎢⎥⎣⎦上单调递增函数. ∴12λ=时,2e 最大3,19λ=时,2e 最小54,∴2534e ≤≤,∴532e ≤≤. (3)当3e =时,3ca=,∴3c =,∴222b a =. ∵212PF F F ⊥,∴1PF 是圆的直径,圆心是1PF 的中点, ∴在y 轴上截得的弦长就是直径,∴1PF =8.又2212224b a PF a a a a a =+=+=,∴48,2,23,22a a c b ====. ∴2224b PF a a===,圆心()0,2C ,半径为4,()22216x y +-=.。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.以抛物线24y x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0 C .22x +y -x=0D .22x +y -2x=0(汇编福建理)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称.直线4x -3y -2=0与圆C相交于A 、B 两点,且|AB |=6,则圆C 的方程为________.F(-c,0)A(-1,0)C(1,0)B(0,b)y xo解析:抛物线y 2=4x ,焦点为F (1,0).∴圆心C (0,1),C 到直线4x -3y -2=0的距离d=55=1,且圆的半径r 满足r 2=12+32=10.∴圆的方程为x 2+(y -1)2=10.3.若抛物线212y x =与圆222210x y ax a +-+-=有且只有两个不同的公共点,则实数a 的取值范围为___错 评卷人得分三、解答题4.. 已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为23,两个焦点分别为1F 和2F ,椭圆G上一点到1F 和2F 的距离之和为12.圆k C :0214222=--++y kx y x )(R k ∈的圆心为点k A .(1)求椭圆G 的方程 ; (2)求21F F A k ∆的面积 (3)问是否存在圆k C 包围椭圆G? 请说明理由.5.已知椭圆2221(01)y x b b+=<<的左焦点为F ,左右顶点分别为A,C 上顶点为B ,过F,B,C 三点作⊙P ,其中圆心P 的坐标为(,)m n .(1) 若椭圆的离心率32e =,求⊙P 的方程; (2)若⊙P 的圆心在直线0x y +=上,求椭圆的方程.6.如图,过椭圆的左右焦点12,F F 分别作长轴的垂线12,l l 交椭圆于1122,,,A B A B ,将12,l l 两侧的椭圆弧删除,再分别以12,F F 为圆心,线段1122,F A F A 的长度为半径作半圆,这样得到的图形称为“椭圆帽”,夹在12,l l 之间的部分称为“椭圆帽”的椭圆段,夹在12,l l 两侧的部分称为“椭圆帽”的圆弧段.(Ⅰ)若已知两个圆弧段所在的圆方程分别为22(2)1x y ±+=,求椭圆段的方程;(Ⅱ)在(Ⅰ)的条件下,已知l 为过1F 的一条直线,l 与“椭圆帽”的两个交点为,M N ,若1120FM F N +=,求直线l 的方程; (Ⅲ)在(Ⅰ)的条件下,如图,已知l 为过1F 的一条直线,l 与“椭圆帽”的两个交点为,M N ,P 为“椭圆帽”的左侧圆弧段上半部分的一点,且满足10F P MN =,求PM PN的取值范围.分析:利用椭圆的第一定义不难求出长轴长2a ,从而求出椭圆方程;利用椭圆的第二定义,可求出M 点的坐标,易得直线方程;关注PM PN 的实质,涉及分类讨论. 解答:(Ⅰ)由题意:22222,21(22)14c a ==++=,则2222b a c =-=;则椭圆段的方程:221(22)42x y x +=-≤≤; (Ⅱ)由题意:1||1NF =,则1||2MF =,设00(,)M x y ,则0(22)2e x +=,00x ∴=,P则(0,2)M ±,则直线l 的方程是:(2)y x =±+; (Ⅲ)211111111111()()P M P NP F F M P FF N P F P FF NP FF M=++=+++(1)P 为“椭圆帽”的左侧圆弧段上半部分的一点,且满足10F P MN =,则N 必在“椭圆帽”的左侧圆弧段下半部分,则11||1,||1PF F N ==, 11110PF F N PF FM ==, 所以:11111||PM PN F M F NF M =+=-,设00(,)M x y (1)0[2,2]x ∈-时,M 在“椭圆帽”的椭圆段的上方部分,则102||2[1,3]2F M x =+∈ 则11||[2,0]PM PN FM =-∈-; (2)0[2,21]x ∈+时,M 在“椭圆帽”的右侧圆弧段的上方部分, 则2200(2)1x y -+=,且1||F M =22000(2)142[3,122]x y x ++=+∈+则11||[22,2]PM PN FM =-∈--; 综上可知:PM PN 的取值范围是11||[22,0]PM PN FM =-∈-. 说明:根据08考试说明,利用方程组的方法讨论直线与圆锥曲线的位置关系不再是圆锥曲线的考试重点.那么,将其他的数学知识和数学思想方法与圆锥曲线综合,从一个更新颖的角度来考察圆锥曲线.8.已知:“过圆222:C x y r +=上一点00(,)M x y 的切线方程是200x x y y r +=.”(Ⅰ)类比上述结论,猜想过椭圆2222:1(0)x y C a b a b'+=>>上一点00(,)M x y 的切线方程(不要求证明);(Ⅱ)过椭圆2222:1(0)x y C a b a b'+=>>外一点00(,)M x y 作两直线与椭圆切于,A B两点,求过,A B 两点的直线方程;(Ⅲ)若过椭圆2222:1(0)x y C a b a b'+=>>外一点00(,)M x y 作两直线与椭圆切于,A B 两点,且AB 恰好通过椭圆的左焦点,证明:点M 在一条定直线上.分析:利用圆方程与椭圆方程结构的一致性,不难得出(Ⅰ)的结论,而(Ⅱ)的解决则体现了方法的类比. 解答:(Ⅰ)椭圆2222:1(0)x y C a b a b '+=>>上一点00(,)M x y 的切线方程是00221x x y ya b +=;(Ⅱ)设1122(,),(,)A x y B x y .由(Ⅰ)可知:过点11(,)A x y 的椭圆的切线1l 的方程是:11221x x y ya b+=; 过点22(,)B x y 的椭圆的切线2l 的方程是:22221x x y ya b+=; 因为12,l l 都过点00(,)M x y ,则10102210102211x x y y a b x x y y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,则过,A B 两点的直线方程是:00221x x y ya b+= (Ⅲ)由(Ⅱ)知过,A B 两点的直线方程是:00221x x y ya b+=, 由题意:(,0)F c -在直线AB 上,则02()1x c a -=,则20a x c =-∴点00(,)M x y 在椭圆的左准线上.说明:根据08考试说明,利用方程组的方法讨论直线与圆锥曲线的位置关系不再是圆锥曲线的考试重点.那么,利用类比或其他的数学思想方法,从一个更新颖的角度来关注圆锥曲线的命题方向.7.设椭圆2222:1(0)x y C a b a b+=>>的上顶点为A ,椭圆C 上两点,P Q 在x 轴上的射影分别为左焦点1F 和右焦点2F ,直线PQ 的斜率为32,过点A 且与1AF 垂直的直线与x 轴交于点B ,1AF B ∆的外接圆为圆M . (1)求椭圆的离心率; (2)直线213404x y a ++=与圆M 相交于,E F 两点,且21 2ME MF a⋅=-,求椭圆方程;(3)设点(0,3)N 在椭圆C 内部,若椭圆C 上的点到点N 的最远距离不大于62,求椭圆C 的短轴长的取值范围.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.D 抛物线的焦点为)0,1(F ,又圆过原点,所以1=R ,方程为021)1(2222=+-⇔=+-y x x y x 。
第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.x2+(y -1)2=103.由消去,得.故当,即当时,两曲线有且只有两个不同的公共点.分析:当时,圆的方程为,它与抛物线的公共点的个数为三个(如图1),而不是两个.,仅是其横坐标有两个不同的解的充要条件,而不是有两个公共点的解析:由222212210y x x y ax a ⎧=⎪⎨⎪+-+-=⎩,消去y ,得2212102x a x a ⎛⎫+-+-= ⎪⎝⎭. 故当22124(1)02a a ⎛⎫∆=---> ⎪⎝⎭,即当178a <时,两曲线有且只有两个不同的公共点.分析:当1a =时,圆的方程为22(1)1x y -+=,它与抛物线的公共点的个数为三个(如图1),而不是两个. 0∆>,仅是其横坐标有两个不同的解的充要条件,而不是有两个公共点的充要条件.正两曲线有且只有两个不同的公共点的充要条件是方程2212102x a x a ⎛⎫+-+-= ⎪⎝⎭有两个相等的正根或者有一个正根,一个负根,即22124(1)021202a a a ⎧⎛⎫∆=---=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪--> ⎪⎪⎝⎭⎩,,或222124(1)0210a a a ⎧⎛⎫∆=--->⎪ ⎪⎨⎝⎭⎪-<⎩,, 解得178a =或11a -<<.综上可知,当178a =或11a -<<时,抛物线与圆有且只有两个不同的公共点.说明:“有且只有”、“当且仅当”等用语,都是指既有充分性,又有必要性. 评卷人得分三、解答题4. 5. 6.7.(1)由条件可知⎪⎪⎭⎫ ⎝⎛--ab c P 2,,⎪⎪⎭⎫⎝⎛a b c Q 2, 因为23=PQ k ,所以得:=e 12………4分 (2)由(1)可知,c b c a 3,2==,所以,()()()0,3,0,,3,01c B c F c A -,从而()0,c M 半径为a ,因为212ME MF a ⋅=-,所以︒=∠120EMF ,可得:M 到直线距离为2a从而,求出2=c ,所以椭圆方程为:2211612x y +=; ………9分 (3)因为点N 在椭圆内部,所以b>3 ………10分 设椭圆上任意一点为()y x K ,,则()()2222263≤-+=y x KN由条件可以整理得:018941822≥+-+b y y 对任意[]()3,>-∈b b b y 恒成立,所以有:()()⎪⎩⎪⎨⎧≥+--+--≤-0189418922b b b b 或者()()⎪⎩⎪⎨⎧≥+--+-->-018949189922b b解之得: 2∈b (6,1226]- ………15分。