2014-2015学年七年级下学期期末数学试卷附答案
- 格式:doc
- 大小:320.50 KB
- 文档页数:16
第九章多边形章末测试(三)总分120分120分钟一.选择题(共8小题,每题3分)1.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A. 50°B. 30°C. 20°D. 15°1题2题2.如图,l1∥l2,∠1=120°,∠2=100°,则∠3=()A. 20°B. 40°C. 50°D. 60°3.在数学课上,同学们在练习画边AC上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是()A B C D4.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为()A. 19cm B. 22cm C. 25cm D. 31cm4题5题5.如图所示,在△ABC中,AB=8,AC=6,AD是△ABC的中线,则△ABD与△ADC的周长之差为()A. 14 B. 1 C. 2 D. 7 6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.一幅美丽的图案,在某个顶点处由三个边长相等的正多边形镶嵌而成,其中两个分别为正十二边形、正方形,则另一个为()A.正三角形B.正四边形C.正五边形D.正六边形8.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A. 5 B. 5或6 C. 5或7 D. 5或6或7二.填空题(共6小题,每题3分)9.如图,∠1,∠2,∠3,∠4是四边形ABCD的外角,若∠1+∠2+∠3=250°,则∠4的度数为_________.9题10题11题10.如图,平面上两个正方形与正五边形都有一条公共边,则∠α等于_________度.11.一副三角板,如图叠放在一起,∠1的度数是_________度.12.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.12题13题14题13.如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=_________度.14.在如图所示的四边形中,若去掉一个50°的角得到一个五边形,则∠1+∠2=________度.三.解答题(共10小题)15.(6分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,BO、CO分别平分∠ABC、∠ACB,EF是经过点O且平行于BC的直线.求∠BOC的度数.16.(6分)将一副三角板的直角顶点重合放置,如图所示:(1)写出图中以O为顶点的相等的角;(2)若∠AOD=125°,求∠BOC的度数;(3)判断∠AOD与∠BOC之间具有何种数量关系当三角板AOB绕O点旋转时,这种关系是否有变化?请说明理由.17.(6分)如图,在△ABC中,∠C>∠B,AD、AE分别是△ABC的高和角平分线.(1)若∠B=30°,∠C=50°,求∠DAE的度数;(2)若∠B=x°,∠C=y°,求∠DAE的度数.18(8分).如图,在△ABC中,已知∠ACB=67°,BE是AC上的高,CD是AB上的高,F是BE和CD的交点,∠DCB=45°,求∠ABE和∠BFC的度数.19.(8分)如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,∠ECD=30°,求∠FDC的度数.20.(8分)(1)若一个凸多边形的内角和是2340°,求这个多边形的边数;(2)一个凸多边形去掉一个内角后,其余所有内角的和为2008°,求这个多边形的边数和去掉的那个内角的度数.21.(8分)如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.22.(8分)如图,∠B=60°,∠BAC=80°,AD⊥BC,AE平分∠BAC,求∠DAE的度数.23.(10分)在小学我们知道“三角形的内角和等于180°”,现在把一块含30°角的直角三角板AOB的直角顶点O放置在水平线l上,如图1所示.(1)填空:∠1+∠2=_________度;(2)若把三角板AOB绕着点O按逆时针方向旋转,①填空:当∠1=_________度时,AB∥l.理由:_________.②在三角板AOB绕着点O按逆时针方向旋转的过程中,作AC⊥l于点C,BD⊥l于点D,图2中是否存在相等的角(图2中所有的直角相等不加以考虑,不能再随意添加字母或作出其它线条)?若有,试找出图中所有相等的角,并说明理由;若无,请举例说明.24.(10分)某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,△ABC两内角∠ABC与∠ACB的平分线交于点E.则∠BEC=90°+∠A.(阅读下面证明过程,并填空.)证明:∵BE、CE分别平分∠ABC和∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB(角平分线的定义)∴∠BEC=180°﹣(∠EBC+∠ECB)(_________)=180°﹣()=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=_________=90°+(2)如图2,△ABC的内角∠ABC的平分线与△ABC的外角∠ACM的平分线交于点E.请你写出∠BEC与∠A的数量关系,并证明.答:∠BEC与∠A的数量关系式:_________.证明:_________.(3)如图3,△ABC的两外角∠CBD与∠BCF的平分线交于点E,请你直接写出∠BEC与∠A 的数量关系,不需证明.参考答案与试题解析一.选择题(共8小题)1.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50°B.30°C.20°D.15°考点:平行线的性质;三角形的外角性质..专题:计算题;压轴题.分析:首先根据平行线的性质得到∠2的同位角∠4的度数,再根据三角形的外角的性质进行求解.解答:解:根据平行线的性质,得∠4=∠2=50°.∴∠3=∠4﹣∠1=50°﹣30°=20°.故选C.点评:本题应用的知识点为:三角形的外角等于与它不相邻的两个内角的和.两直线平行,同位角相等.2.如图,l1∥l2,∠1=120°,∠2=100°,则∠3=()A.20°B.40°C.50°D.60°考点:三角形的外角性质;平行线的性质..专题:计算题;压轴题.分析:先延长∠1和∠2的公共边交l1于一点,利用两直线平行,同旁内角互补求出∠4的度数,再利用外角性质求解.解答:解:如图,延长∠1和∠2的公共边交l1于一点,∵l1∥l2,∠1=120°,∴∠4=180°﹣∠1=180°﹣120°=60°,∴∠3=∠2﹣∠4=100°﹣60°=40°.故选B.点评:本题主要考查作辅助线构造三角形,然后再利用平行线的性质和外角性质求解.3.在数学课上,同学们在练习画边AC上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是()A.B.C.D.考点:三角形的角平分线、中线和高..分析:根据三角形的高的概念直接观察图形进行判断即可得出答案.解答:解:AC边上的高应该是过B作垂线段AC,符合这个条件的是C;A,B,D都不过B点,故错误;故选C.点评:本题主要考查了利用基本作图做三角形高的方法,比较简单.4.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm 考点:三角形的角平分线、中线和高..分析:根据三角形中线的定义可得BD=CD,再表示出△ABD和△ACD的周长的差就是AB、AC的差,然后计算即可.解答:解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+BD+CD)=AB﹣AC,∵△ABD的周长为25cm,AB比AC长6cm,∴△ACD周长为:25﹣6=19cm.故选A.点评:本题主要考查了三角形的中线的定义,把三角形的周长的差转化为已知两边AB、AC 的长度的差是解题的关键.5.如图所示,在△ABC中,AB=8,AC=6,AD是△ABC的中线,则△ABD与△ADC的周长之差为()A.14 B.1C.2D.7考点:三角形的角平分线、中线和高..分析:由三角形中线的定义推知BD=DC;然后根据三角形的周长的定义知△ABD与△ADC 的周长之差为(AB﹣AC).解答:解:∵如图,在△ABC中,AD是△ABC的中线,∴BD=C D.∵△ABD的周长=AB+AD+BD,△ADC的周长=AC+AD+CD=AC+AD+BD,∴△ABD与△ADC的周长之差为:AB﹣AC=8﹣6=2.故选C.点评:本题考查了三角形的中线的定义,三角形周长的计算.解题时,根据三角形的周长的计算方法得到:△ABD的周长和△ADC的周长的差就是AB与AC的差.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形考点:多边形内角与外角..分析:首先求得外角的度数,然后利用360除以外角的度数即可求解.解答:解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.点评:本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理7.一幅美丽的图案,在某个顶点处由三个边长相等的正多边形镶嵌而成,其中两个分别为正十二边形、正方形,则另一个为()A.正三角形B.正四边形C.正五边形D.正六边形考点:平面镶嵌(密铺)..分析:正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.解答:解:∵正十二边形和正方形内角分别为150°,90°,又∵360°﹣150°﹣90°=120°,∴另一个为正六边形.故选D.点评:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.解决此类题,可以记住几个常用正多边形的内角.8.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或7考点:多边形内角与外角..分析:首先求得内角和为720°的多边形的边数,即可确定原多边形的边数.解答:解:设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,解得:n=6.则原多边形的边数为5或6或7.故选D.点评:本题考查了多边形的内角和定理,理解分三种情况是关键.二.填空题(共6小题)9.如图,∠1,∠2,∠3,∠4是四边形ABCD的外角,若∠1+∠2+∠3=250°,则∠4的度数为110°.考点:多边形内角与外角..分析:根据多边形的外角和定理即可求解.解答:解:∵∠1+∠2+∠3+∠4=360°,∴∠4=360°﹣(∠1+∠2+∠3)=360°﹣250°=110°.故答案是:110°点评:本题考查了多边形的外角和定理,理解定理是关键.10.如图,平面上两个正方形与正五边形都有一条公共边,则∠α等于72度.考点:多边形内角与外角..分析:先分别求出正五边形的一个内角为108°,正方形的每个内角是90°,再根据圆周角是360度求解即可.解答:解:正五边形的一个内角为108°,正方形的每个内角是90°,所以∠α=360°﹣108°﹣90°﹣90°=72°.点评:主要考查了多边形的内角和.多边形内角和公式:(n﹣2)•180°.11.一副三角板,如图叠放在一起,∠1的度数是75度.考点:三角形的外角性质..分析:由三角形的一个外角等于与它不相邻的两个内角的和,可得∠1=30°+45°=75°.解答:解:由图示知,∠1=30°+45°=75°.(三角形的一个外角等于与它不相邻的两个内角的和)点评:本题利用三角形外角的性质直接求解即可.12.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=270度.考点:三角形内角和定理;多边形内角与外角..专题:应用题.分析:根据三角形的内角和与平角定义可求解.解答:解:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°﹣(∠3+∠4)=360°﹣90°=270°.点评:本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.13.如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=20度.考点:三角形内角和定理;平行线的性质..专题:计算题;压轴题.分析:根据平行线的性质和三角形的内角和定理求得.解答:解:∵AE∥BD,∠1=130°,∠2=30°,∴∠CBD=∠1=130°.∵∠BDC=∠2,∴∠BDC=30°.在△BCD中,∠CBD=130°,∠BDC=30°,∴∠C=180°﹣130°﹣30°=20°.点评:本题应用的知识点为:三角形的外角与内角的关系及两直线平行,同位角相等.14.在如图所示的四边形中,若去掉一个50°的角得到一个五边形,则∠1+∠2=230度.考点:三角形的外角性质;三角形内角和定理..分析:利用三角形内角和外角的关系计算.解答:解:由于∠1和∠2是三角形的外角,所以∠1=∠4+50°,∠2=∠3+50°,所以∠1+∠2=∠4+50°+∠3+50°=(∠4+50°+∠3)+50°=180°+50°=230°.点评:此题利用了三角形内角和外角的关系,属于基础题,比较简单.三.解答题(共10小题)15.如图,在△ABC中,∠ABC=50°,∠ACB=60°,BO、CO分别平分∠ABC、∠ACB,EF 是经过点O且平行于BC的直线.求∠BOC的度数.考点:平行线的性质;三角形内角和定理..分析:由在△ABC中,∠ABC=50°,∠ACB=60°,BO、CO分别平分∠ABC、∠ACB,根据角平分线的性质,即可求得∠OBC与∠OCB的度数,继而求得答案.解答:解:∵在△ABC中,∠ABC=50°,∠ACB=60°,BO、CO分别平分∠ABC、∠ACB,∴∠OBC=∠OBC=×50°=25°,∠OCB=∠ACB=30°,∴∠BOC=180°﹣∠OBC﹣∠OCB=125°.点评:此题考查了角平分线的定义与三角形内角和定理.此题比较简单,注意掌握数形结合思想的应用.16.将一副三角板的直角顶点重合放置,如图所示:(1)写出图中以O为顶点的相等的角;(2)若∠AOD=125°,求∠BOC的度数;(3)判断∠AOD与∠BOC之间具有何种数量关系当三角板AOB绕O点旋转时,这种关系是否有变化?请说明理由.考点:三角形内角和定理..分析:(1)图中有两个直角,再根据同角的余角相等即可找出;(2)若∠AOD=125°,则∠AOC或∠BOD即可求出,然后根据余角的性质即可求出∠BOC;(3)根据三角形内角和外角的关系解答.解答:解:(1)∵∠AOB与∠COD为直角,∴∠AOB=∠COD∵∠AOB=∠COD,∴∠AOB﹣∠COB=∠COD﹣∠COB,即∠AOC=∠BOD;(2)∵∠AOB+∠BOD=∠AOD,又∵∠AOB=90°,∠AOD=125°,∴∠BOD=35°,∵∠BOD+∠BOC=90°,∴∠BOC=55°;(3)∠BOC与∠AOD互补.当三角板AOB绕O点旋转时,这种互补关系没有变化,理由如下:当∠BOC在∠AOD内部时∠AOD+∠BOC=∠AOB+∠BOD+∠BOC=∠COD+∠AOB=90°+90°=180°当∠BOC在∠AOD外部时,如下图∠AOD+∠BOC=360°﹣∠AOB﹣∠COD=180°∴∠BOC与∠AOD互补.点评:①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“三角形的内角和是180°这一隐含的条件;③三角形的外角通常情况下是转化为内角来解决.17.如图,在△ABC中,∠C>∠B,AD、AE分别是△ABC的高和角平分线.(1)若∠B=30°,∠C=50°,求∠DAE的度数;(2)若∠B=x°,∠C=y°,求∠DAE的度数.考点:三角形内角和定理;三角形的角平分线、中线和高..分析:(1)在直角△ACD中,求得∠CAD,然后利用角平分线的定义求得∠CAE的度数,根据∠DAE=∠CAE﹣∠CAD可以求解;(2)与(1)的解法相同.解答:解:(1)∵AD是高线,∴在直角△ACD中,∠CAD=90°﹣∠C=90°﹣50°=40°;∵在△ABC中,∠CAB=180°﹣∠B﹣∠C=180°﹣30°﹣50°=100°,∵AE是角的平分线,∴∠CAE=∠CAB=50°,∴∠DAE=∠CAE﹣∠CAD=50°﹣40°=10°;(2)根据(1)可以得到:∠CAD=(90﹣y)°,∠CAE=∠CAB=(180﹣x﹣y)°.∴∠DAE=∠CAE﹣∠CAD=(180﹣x﹣y)﹣(90﹣y)°=(y﹣x)°.点评:本题考查了三角形的内角和等于180°,以及角平分线的定义,是基础题.18.如图,在△ABC中,已知∠ACB=67°,BE是AC上的高,CD是AB上的高,F是BE和CD的交点,∠DCB=45°,求∠ABE和∠BFC的度数.考点:三角形内角和定理;三角形的角平分线、中线和高..专题:计算题.分析:根据三角形高的定义得到∠CDB=90°,∠BEC=90°,先利用三角形内角和定理得∠DBC=180°﹣90°﹣45°=45°,∠EBC=180°﹣∠ECB﹣∠BEC=180°﹣67°﹣90°=23°,则∠ABE=∠ABC﹣∠EBC=45°﹣23°=22°,然后利用三角形外角性质可计算∠BFC=22°+90°=112°.解答:解:∵CD是AB上的高,∴∠CDB=90°,∵∠CDB+∠DBC+∠DCB=180°,∴∠DBC=180°﹣90°﹣45°=45°,∵BE是AC上的高,∴∠BEC=90°,∴∠EBC=180°﹣∠ECB﹣∠BEC=180°﹣67°﹣90°=23°,∴∠ABE=∠ABC﹣∠EBC=45°﹣23°=22°;∵∠BFC=∠FDB+∠DBF,∴∠BFC=22°+90°=112°.点评:本题考查了三角形内角和定理:三角形内角和为180°.也考查了三角形外角性质以及三角形的高.19.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,∠ECD=30°,求∠FDC的度数.考点:三角形的外角性质;角平分线的定义..分析:根据∠ECD=30°,结合已知和角平分线的定义,可求∠DBC,∠F和∠BCD的度数;根据三角形的外角的性质可得∠FDC的度数.解答:解:∵CE平分∠ACB,且∠ECD=30°,∴∠ACB=∠ABC=2∠ECD=60°,∵BD平分∠ABC,∴∠DBF=∠ABC=30°,即∠DBF=∠F=30°,∴∠FDC=∠ACB﹣∠F=60°﹣30°=30°.点评:根据角平分线定义得出所求角与已知角的关系的转化再求解.20.(1)若一个凸多边形的内角和是2340°,求这个多边形的边数;(2)一个凸多边形去掉一个内角后,其余所有内角的和为2008°,求这个多边形的边数和去掉的那个内角的度数.考点:多边形内角与外角..分析:(1)n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.(2)n边形的内角和是(n﹣2)•180°,因而内角和一定是180度的倍数,而多边形的内角一定大于0,并且小于180度.因而内角和去掉一个内角的值,这个值除以180度,所得数值比边数n﹣2要大,大的值小于1.则用内角和于内角的和除以180所得值,加上2,比这个数大的最小的整数就是多边形的边数.解答:解:(1)设这个多边形的边数是n.由题意得:(n﹣2)×180°=2340°,解得n=15.所以这个多边形的边数是15.(2)设这个多边形的边数是m,去掉的那个内角为α.则(m﹣2)×180°=2008°+α,由于0°<α<180°,所以0°<(m﹣2)×180°﹣2008°<180°,整理得2008<(m﹣2)×180<2008+180,即<n﹣2<+1,11<m﹣2<12.因为m是正整数,所以m﹣2=12,m=14,所以这个多边形的边数为14,去掉的那个内角为α=(14﹣2)×180°﹣2008°=152°.点评:本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.21.如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.考点:三角形的外角性质;三角形内角和定理..分析:(1)由AD=BD,根据等边对等角的性质,可得∠B=∠BAD,又由三角形外角的性质,即可求得∠B的度数;(2)由∠BAC=70°,易求得∠C=∠BAC=70°,根据等角对等边的性质,可证得△ABC是等腰三角形.解答:解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.点评:此题考查了等腰三角形的性质与判定以及三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.22.如图,∠B=60°,∠BAC=80°,AD⊥BC,AE平分∠BAC,求∠DAE的度数.考点:三角形的外角性质..分析:根据角平分线的定义可得∠BAE=∠BAC,根据垂直的定义可得∠ADE=90°,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式表示出∠AEC即可得解.解答:解:∵AE平分∠BAC,∴∠BAE=∠BAC=×80°=40°,∵AD⊥BC,∴∠ADE=90°,∴∠AEC=∠ADE+∠DAE=∠B+∠BAE,即90°+∠DAE=60°+40°,解得∠DAE=10°.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,垂直的定义,熟记性质与概念是解题的关键.23.在小学我们知道“三角形的内角和等于180°”,现在把一块含30°角的直角三角板AOB的直角顶点O放置在水平线l上,如图1所示.(1)填空:∠1+∠2=90度;(2)若把三角板AOB绕着点O按逆时针方向旋转,①填空:当∠1=60度时,AB∥l.理由:内错角相等,两直线平行.②在三角板AOB绕着点O按逆时针方向旋转的过程中,作AC⊥l于点C,BD⊥l于点D,图2中是否存在相等的角(图2中所有的直角相等不加以考虑,不能再随意添加字母或作出其它线条)?若有,试找出图中所有相等的角,并说明理由;若无,请举例说明.考点:三角形内角和定理;平行线的性质..分析:(1)根据平角的定义即可求解;(2)①根据平行线的判定即可求解;②根据同角的余角相等即可求解.解答:解:(1)∠1+∠2=180°﹣90°=90°;(2)①当∠1=60°时,AB∥l.理由:内错角相等,两直线平行.②图中所有相等的角分别为:∠1=∠OBD,∠2=∠OA C.理由如下:∵AC⊥l,BD⊥l∴∠ACO=90°,∠BDO=90°,在三角形ACO中,∠ACO+∠1+∠OAC=180°,在三角形OBD中,∠BDO+∠2+∠OBD=180°∴∠1+∠OAC=90°,∠2+∠OBD=90°,又∵∠1+∠2=90°,∴∠1=∠OBD,∠2=∠OA C.故答案为:90;60,内错角相等,两直线平行.点评:考查了平角的定义,平行线的判定和性质,同角的余角相等,三角形内角和定理,有一定的综合性.24.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,△ABC两内角∠ABC与∠ACB的平分线交于点E.则∠BEC=90°+∠A.(阅读下面证明过程,并填空.)证明:∵BE、CE分别平分∠ABC和∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB(角平分线的定义)∴∠BEC=180°﹣(∠EBC+∠ECB)(三角形内角和定理)=180°﹣()=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣90°+∠A=90°+(2)如图2,△ABC的内角∠ABC的平分线与△ABC的外角∠ACM的平分线交于点E.请你写出∠BEC与∠A的数量关系,并证明.答:∠BEC与∠A的数量关系式:∠BEC=∠A.证明:如下.(3)如图3,△ABC的两外角∠CBD与∠BCF的平分线交于点E,请你直接写出∠BEC与∠A 的数量关系,不需证明.考点:三角形内角和定理;三角形的角平分线、中线和高..分析:(1)根据题目解答过程填写即可;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠E与∠1表示出∠2,然后整理即可得到∠BEC与∠E的关系;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解.解答:(1)证明:∵BE、CE分别平分∠ABC和∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB(角平分线的定义)∴∠BEC=180°﹣(∠EBC+∠ECB)(三角形内角和定理)=180°﹣(),=180°﹣(∠ABC+∠ACB),=180°﹣(180°﹣∠A),=180°﹣90°+∠A,=90°+;(2)探究2结论:∠BEC=∠A,理由如下:∵BE和CE分别是∠ABC和∠ACM的角平分线,∴∠1=∠ABC,∠2=∠ACM,又∵∠ACM是△ABC的一外角,∴∠ACM=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BEC的一外角,∴∠BEC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(3)探究3:∠EBC=(∠A+∠ACB),∠ECB=(∠A+∠ABC),∠BEC=180°﹣∠EBC﹣∠ECB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BEC=90°﹣∠A.点评:本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.。
北师大版数学七年级下册期末考试试卷本试卷满分120分,考试时间90分钟,试题共25题,选择12道、填空6道、解答7道.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,则事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是()A.随机事件B.不可能事件C.必然事件D.无法确定2.下列计算正确的是()A.a2•a3=a6B.(a+b)2=a2+b2C.(2b2)3=6b6D.(﹣a+b)(﹣b﹣a)=a2﹣b23.下列微信表情图标属于轴对称图形的是()A.B.C.D.4.如图,点C,F,B,E在同一直线上,∠C=∠DFE=90°,添加下列条件,仍不能判定∠ACB与∠DFE 全等的是()A.∠A=∠D,AB=DE B.AC=DF,CF=BEC.AB=DE,BC=EF D.∠A=∠D,∠ABC=∠E5.如图,在∠ABC中,AB=AC,∠A=30°,直线a∠b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是()A.40° B.45° C.50° D.35°6.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( )A .B .C .D .7.下列计算正确的是( )A .(﹣2y +1)(﹣2y ﹣1)=1﹣4y 2B .(12x +1)2=14x 2+1+xC .(x ﹣2y )2=(x +2y )2﹣6xyD .(x +3)(2x ﹣5)=2x 2﹣x ﹣158.如图,已知AB =AC ,AB =5,BC =3,以A ,B 两点为圆心,大于12AB 的长为半径画圆弧,两弧相交于点M ,N ,连接MN 与AC 相交于点D ,则∠BDC 的周长为( )A .8B .10C .11D .139.如图,在Rt∠ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N .再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =12,则∠ABD 的面积是( )A .12B .24C .36D .4810.如图,AB =AC ,BE ∠AC 于E ,CF ∠AB 于F ,BE ,CF 交于D ,则以下结论:∠∠ABE ∠∠ACF ;∠∠BDF ∠∠CDE ;∠点D 在∠BAC 的平分线上.正确的是( )A .∠B .∠C .∠∠D .∠∠∠11.小虎和小丽一起玩一种转盘游戏.转盘分成面积相等的三个区域,分别用“1”,“2”,“3”表示,固定指针转动转盘,任其自由停止.若指针所指的数字为奇数,小虎获胜;否则小丽获胜.则在该游戏中小虎获胜的概率是( )A .12B .49C .59D .2312.如图,有A ,B ,C 三个地点,且AB ∠BC ,从A 地测得B 地的方位角是北偏东43°,那么从C 地测B 地的方位角是( )A .南偏东47°B .南偏西43°C .北偏东43°D .北偏西47° 二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上 13.计算:﹣12016﹣(−13)﹣2+(π+1)0= ;(34)2007×(﹣113)2008= .14.等腰三角形的一个角为40°,则它的顶角为 . 15.计算:2019×2021﹣20202= .16.如图,在∠ABC 中,AC =BC ,点D 和E 分别在AB 和AC 上,且AD =AE .连接DE ,过点A 的直线GH 与DE 平行,若∠C =40°,则∠GAD 的度数为 .17.如图,从以下给出的四个条件中选取一个: (1)∠1=∠2;(2)∠3=∠4;(3)∠A=∠DCE;(4)∠A+∠ABD=180°.恰能判断AB∠CD的概率是.18.如图,这是用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成…按照这样的规律排列下去,则第6个图案中共有个白子.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤),只有一项是符合题目要求的.19.(1)(2x2y﹣3xy2)﹣(6x2y﹣3xy2)(2)(−32ax4y3)÷(−65ax2y2)⋅8a2y(3)(ab+1)2﹣(ab﹣1)2(4)20153﹣2014×2015×2016(5)(4y+3x﹣5z)(3x+5z﹣4y)(6)(34a4b7−12a3b8+19a2b6)÷(13ab3)2,其中a=12,b=﹣4.20.如图,在6×6的网格中已经涂黑了三个小正方形,请按下列要求画图.(1)在图1中涂黑一块小正方形,使涂黑的四个小正方形组成一个轴对称图形.(2)在图2中涂黑一块小正方形,使涂黑的四个小正方形组成一个中心对称图形.21.如图,是一个材质均匀的转盘,转盘分成8个全等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,(若指针指向两个扇形的交线时,当作指向右边的扇形),转动一次转盘:(1)求指针指向绿色扇形的概率;(2)指针指向红色扇形的概率大,还是绿色扇形概率大?为什么?22.如图,在∠ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∠BC交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.23.如图,已知AB=DC,AB∠CD,E、F是AC上两点,且AF=CE.(1)求证:∠ABE∠∠CDF;(2)连接BC,若∠CFD=100°,∠BCE=30°,求∠CBE的度数.24.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.25.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式;(2)请用这3种卡片拼出一个面积为a2+5ab+6b2的长方形(数量不限),在图3的虚线框中画出示意图,并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A型卡片,4张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,图中两阴影部分(长方形)为没有放置卡片的部分.已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2.若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.(用含a或b的代数式表示)答案一、选择题1.C .2.D .3.C .4.D .5.A .6.C .7.B .8.A .9.B .10.D .11.D .12.A . 二、填空题 13.:﹣9,43.14.:40°或100°. 15.:﹣1. 16.:55°. 17.:12.18.54. 三、解答题19.【解析】(1)原式=2x 2y ﹣3xy 2﹣6x 2y +3xy 2=﹣4x 2y ; (2)原式=10x 2y 2;(3)原式=(ab +1+ab ﹣1)(ab +1﹣ab +1)=4ab ;(4)原式=20153﹣(2015﹣1)×2015×(2015+1)=20153﹣(20152﹣1)×2015=20153﹣(20153﹣2015)=20153﹣20153+2015=2015;(5)原式=9x 2﹣(4y ﹣5z )2=9x 2﹣16y 2+40yz ﹣25z 2; (6)原式=(34a 4b 7−12a 3b 8+19a 2b 6)÷19a 2b 6=274a 2b −92ab 2+1,当a =12,b =﹣4时,原式=−274−36+1=﹣4134. 20.【解析】(1)如图1所示:∠、∠、∠、∠处涂黑都可以使涂黑的四个小正方形组成一个轴对称图形;(2)如图2所示:∠、∠使涂黑的四个小正方形组成一个中心对称图形..21.【解析】按颜色把8个扇形分为2红、3绿、3黄,所有可能结果的总数为8,(1)指针指向绿色的结果有3个, ∠P (指针指向绿色)=38; (2)指针指向红色的结果有2个, 则P (指针指向红色)=28=14, 由(1)得:指针指向绿色扇形的概率大. 22.【解析】(1)∠AB =AC , ∠∠C =∠ABC , ∠∠C =36°, ∠∠ABC =36°, ∠D 为BC 的中点, ∠AD ∠BC ,∠∠BAD =90°﹣∠ABC =90°﹣36°=54°. (2)∠BE 平分∠ABC , ∠∠ABE =∠EBC , 又∠EF ∠BC , ∠∠EBC =∠BEF , ∠∠EBF =∠FEB , ∠BF =EF .23.【解答】(1)证明:∠AB ∠CD , ∠∠A =∠DCF , ∠AF =CE , ∠AE =CF ,在∠ABE 和∠CDF 中, {AB =CD∠A =∠DCF AE =CF, ∠∠ABE ∠∠CDF (SAS ).(2)∠∠ABE ∠∠CDF , ∠∠AEB =∠CFD =100°, ∠∠BEC =180°﹣100°=80°, ∠∠CBE =180°﹣80°﹣30°=70°.24.【解析】(1)∠乌龟是一直跑的而兔子中间有休息的时刻, ∠折线OABC 表示赛跑过程中兔子的路程与时间的关系; 由图象可知:赛跑的全过程为1500米; 故答案为:兔子,1500; (2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米). (3)700÷30=703(分钟), 所以乌龟用了703分钟追上了正在睡觉的兔子.(4)∠兔子跑了700米停下睡觉,用了2分钟, ∠剩余800米,所用的时间为:800÷400=2(分钟), ∠兔子睡觉用了:50.5﹣2﹣2=46.5(分钟). 所以兔子中间停下睡觉用了46.5分钟.25.【解析】(1)方法1:大正方形的面积为(a +b )2, 方法2:图2中四部分的面积和为:a 2+2ab +b 2, 因此有(a +b )2=a 2+2ab +b 2, 故答案为:(a +b )2=a 2+2ab +b 2. (2)如图,(3)设DG 长为x .∠S 1=a [x ﹣(a +2b )]=ax ﹣a 2﹣2ab ,S 2=2b (x ﹣a )=2bx ﹣2ab , ∠S =S 2﹣S 1=(2bx ﹣2ab )﹣(ax ﹣a 2﹣2ab )=(2b ﹣a )x +a 2, 由题意得,若S 为定值,则S 将不随x 的变化而变化, 可知当2b ﹣a =0时,即a =2b 时,S =a 2为定值, 故答案为:a =2b ,a 2.。
冀教版七年级(下)期末数学常考试题100题参考答案与试题解析一、选择题(共30小题)1.(2015春•新泰市期中)已知a m=2,a n=3,则a2m+3n等于()A.108 B.54 C.36 D.18考点:幂的乘方与积的乘方;同底数幂的乘法.分析:利用同底数幂的运算法则计算即可.解答:解:a2m+3n=a2m•a3n=(a m)2•(a n)3=4×27=108.故选:A.点评:本题考查同底数幂的乘法,底数不变,指数相加;幂的乘方,底数不变,指数相乘,熟练掌握运算法则是解题的关键.2.(2015春•宁波期中)下列从左到右边的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.(y+1)(y﹣3)=﹣(3﹣y)(y+1)C.4yz﹣2y2z+z=2y(2z﹣yz)+z D.﹣8x2+8x﹣2=﹣4(2x﹣1)2考点:因式分解的意义.分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.解答:解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、合因式分解的定义,故本选项正确;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、左边≠右边,不是因式分解,故本选项错误.故选:B.点评:本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.3.(2015春•南长区期中)画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解答:解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选:D.点考查了三角形的高的概念,能够正确作三角形一边上的高.4.(2015春•莒县期中)二元一次方程x+3y=10的非负整数解共有()对.A.1B.2C.3D.4考点:解二元一次方程.分析:由于二元一次方程x+3y=10中x的系数是1,可先用含y的代数式表示x,然后根据此方程的解是非负整数,那么把最小的非负整数y=0代入,算出对应的x的值,再把y=1代入,再算出对应的x的值,依此可以求出结果.解答:解:∵x+3y=10,∴x=10﹣3y,∵x、y都是非负整数,∴y=0时,x=10;y=1时,x=7;y=2时,x=4;y=3时,x=1.∴二元一次方程x+3y=10的非负整数解共有4对.故选:D.点评:由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的非负整数解,即此方程中两个未知数的值都是非负整数,这是解答本题的关键.注意:最小的非负整数是0.5.(2015春•江夏区期中)线段MN 是由线段EF 经过平移得到的,若点E (﹣1,3)的对应点M (2,5),则点F (﹣3,﹣2)的对应点N 的坐标是( ) A . (﹣1,0) B . (﹣6,0)C . (0,﹣4)D . (0,0)考点: 坐标与图形变化-平移.分析: 各对应点之间的关系是横坐标加3,纵坐标加2,那么让点F 的横坐标加3,纵坐标加2即为点N 的坐标. 解答: 解:线段MN 是由线段EF 经过平移得到的,点E (﹣1,3)的对应点M (2,5),故各对应点之间的关系是横坐标加3,纵坐标加2,∴点N 的横坐标为:﹣3+3=0;点N 的纵坐标为﹣2+2=0; 即点N 的坐标是(0,0). 故选:D . 点评: 本题考查图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移相同,解决本题的关键是找到各对应点之间的变化规律.6.(2015春•港南区期中)如图,∠1和∠2是对顶角的图形个数有( )A . 1个B . 2个C . 3个D . 4个考点:对顶角、邻补角.专题:应用题.分析:一个角的两边分别是另一个角两边的反向延长线,那么这两个角是对顶角.据此作答即可.解答:解:只有丙图中的两个角是对顶角,故选:A.点评:本题考查了对顶角的概念,解题的关键是掌握对顶角的概念.7.(2015春•扶沟县期中)若∠A与∠B是对顶角且互补,则它们两边所在的直线()A.互相垂直B.互相平行C.既不垂直也不平行D.不能确定考点:垂线.分析:∠A与∠B是对顶角且互补,根据对顶角的性质,判断这两个对顶角相等,且都为90°,因此它们两边所在的直线互相垂直.解答:解:∵∠A与∠B是对顶角,∴∠A=∠B,又∵∠A 与∠B 互补, ∴∠A+∠B=180°, 可求∠A=90°. 故选:A .点评: 本题考查垂线的定义和对顶角的性质,是简单的基础题.8.(2015春•安陆市期中)如图,小方格都是边长为1的正方形,则四边形ABCD 的面积是( )A . 25B . 12.5C . 9D . 8.5考点: 三角形的面积.专题: 网格型.分析: 根据求差法,让大正方形面积减去周围四个直角三角形的面积即可解答.解解:如图:小方格都是边长为1的正方形,答:∴四边形EFGH是正方形,S□EFGH=EF•FG=5×5=25S△AED=DE•AE=×1×2=1,S△DCH=•CH•DH=×2×4=4,S△BCG=BG•GC=×2×3=3,S△AFB=FB•AF=×3×3=4.5.S四边形ABCD =S□EFGH﹣S△AED﹣S△DCH﹣S△BCG﹣S△AFB=25﹣1﹣4﹣3﹣4.5=12.5.故选:B.点评:本题考查的是勾股定理的运用,根据图形可以求出此大正方形的面积和三角形的面积,再用大正方形的面积减去小正方形的面积即可,此题的解法很多,需同学们仔细解答.9.(2015•英德市一模)股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95 000 000,正向1亿挺进,95 000 000用科学记数法表示为()户.A.9.5×106B.9.5×107C.9.5×108D.9.5×109考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法就是将一个数字表示成a×10n形式,其中1≤|a|<10,n表示整数,n为整数位数减1.解答:解:95 000 000=9.5×107.故选:B.点评:本题考查学生对科学记数法的掌握.10.(2015•薛城区校级三模)下列运算正确的是()A.a2+a=a3B.a2•a=a3C.a2÷a=2 D.(2a)2=4a考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项、同底数幂的除法、同底数幂的乘法等运算法则求解,然后选择正确答案.解答:解:A、a2和a不是同类项,不能合并,故本选项错误;B、a2•a=a3,计算正确,故本选项正确;C、a2÷a=a,原式计算错误,故本选项错误;D、(2a)2=4a2,原式计算错误,故本选项错误.故选B.点本题考查了合并同类项、同底数幂的除法、同底数幂的乘法等知识,掌握评:运算法则是解答本题的关键.11.(2015•青岛模拟)从下列不等式中选择一个与x+1≥2组成不等式组,若要使该不等式组的解集为x≥1,则可以选择的不等式是()A.x>0 B.x>2 C.x<0 D.x<2考点:不等式的解集.分析:首先计算出不等式x+1≥2的解集,再根据不等式的解集确定方法;大大取大可确定另一个不等式的解集,进而选出答案.解答:解:x+1≥2,解得:x≥1,根据大大取大可得另一个不等式的解集一定是x不大于1,故选:A.点评:此题主要考查了不等式的解集,关键是正确理解不等式组解集的确定方法:大大取大,小小取小,大小小大中间找,大大小小找不着.12.(2015•荆门模拟)下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)6考点:同底数幂的乘法;合并同类项;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;有理数的乘方的意义,对各选项计算后利用排除法求解.解答:解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.点评:本题考查同底数幂的乘法、幂的乘方和有理数乘方的定义,熟练掌握运算性质是解题的关键.13.(2015•甘谷县二模)若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定考点:二元一次方程组的解;二元一次方程的解.专题:计算题.分析:方程组中两方程相加表示出x+y,根据x+y=0求出a的值即可.解解:方程组两方程相加得:4(x+y)=2+2a,答: 将x+y=0代入得:2+2a=0,解得:a=﹣1.故选A点评: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.14.(2015•阜宁县一模)如图,把线段AB 平移,使得点A 到达点C (4,2),点B 到达点D ,那么点D 的坐标是( )A . (7,3)B . (6,4)C . (7,4)D . (8,4)考点:坐标与图形变化-平移. 专题:数形结合.分析:得到点A 的平移规律,根据点A 的平移情况得到点D 的坐标即可. 解解:∵点A 的坐标为(0,1),平移后为(4,2),答: ∴平移的规律为横坐标加4,纵坐标加1,∵点B 的坐标为(3,3),∴点D 的坐标是(7,4), 故选:C .点评: 考查坐标的平移规律;图形的平移,看关键点的平移即可;左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减.15.(2015•鞍山一模)如图,将某不等式组中的两个不等式的解集在数轴上表示,则该不等式组可能是( )A .B .C .D .考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:探究型.分析: 先根据数轴上不等式解集的表示方法得出该不等式组的解集,再对四个选项进行逐一分析即可.解答: 解:由数轴上不等式解集的表示方法可知其解集为:﹣1≤x <2. A 、此不等式组的解集为:﹣1≤x <2,故A 正确;B、此不等式组的解集为空集,故B错误;C、此不等式组的解集为:1≤x<2,故C错误;D、此不等式组的解集为空集,故D错误.故选:A.点评:本题考查的是解一元一次不等式组及在数轴上表示不等式的解集,熟知空心圆点与实心圆点的区别是解答此题的关键.16.(2014春•泗县校级期中)图中三角形的个数是()A.8个B.9个C.10个D.11个考点:三角形.分析:根据三角形的定义,找出图中所有的三角形即可.解答:解:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.故选B.点评:此题考查了三角形,注意要不重不漏地找到所有三角形,一般从一边开始,依次进行.17.(2014春•利州区校级月考)高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指()A.每100克内含钙150毫克B.每100克内含钙不低于150毫克C.每100克内含钙高于150毫克D.每100克内含钙不超过150毫克考点:不等式的定义.分析:“≥”就是不小于,在本题中也就是“不低于”的意思.解答:解:根据≥的含义,“每100克内含钙≥150毫克”,就是“每100克内含钙不低于150毫克”,故选:B.点评:本题主要考查不等号的含义,是需要熟练记忆的内容.18.(2014春•怀宁县期末)如图所示的图案分别是三菱、大众、奥迪、奔驰汽车的车标,其中可以看做是由“基本图案”经过平移得到的是()A.B.C.D.考点:利用平移设计图案.分析:根据平移的性质:不改变图形的形状和大小,不可旋转与翻转,将题中所示的图案通过平移后可以得到的图案是C.解答:解:观察图形可知,图案C可以看作由“基本图案”经过平移得到.故选:C.点评:此题主要考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而导致错选.19.(2014春•东海县校级期末)下列方程组中,是二元一次方程组的是()A.B.C.D.考点:二元一次方程组的定义.分析:二元一次方程满足的条件:为整式方程;含有2个未知数;最高次项的次数是1;两个二元一次方程组合成二元一次方程组.解答:解:A、整个方程组里含有3个未知数,不符合二元一次方程组的定义;B、最高次项的次数为2,不符合二元一次方程组的定义;C、不是整式方程,不符合二元一次方程组的定义;D、符合二元一次方程组的定义.故选:D.点评:主要考查二元一次方程组的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,最高次项的次数是1的整式方程.注意:整个方程组里只能含有2个未知数.20.(2014•威海)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+1考点:因式分解-提公因式法;因式分解-运用公式法.专题:因式分解.分析:分别将各选项利用公式法和提取公因式法分解因式进而得出答案.解答:解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C 、x 2﹣2x+1=(x ﹣1)2,故C 选项不合题意;D 、x 2+2x+1=(x+1)2,故D 选项符合题意.故选:D .点评: 此题主要考查了提取公因式法以及公式法分解因式,熟练掌握公式法分解因式是解题关键.21.(2014•邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )A . 甲种方案所用铁丝最长B . 乙种方案所用铁丝最长C . 丙种方案所用铁丝最长D . 三种方案所用铁丝一样长考点:生活中的平移现象. 专题:操作型.分析:分别利用平移的性质得出各图形中所用铁丝的长度,进而得出答案. 解解:由图形可得出:甲所用铁丝的长度为:2a+2b ,答:乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选:D.点评:此题主要考查了生活中的平移现象,得出各图形中铁丝的长是解题关键.22.(2014•祁阳县校级模拟)已知是方程2mx﹣y=10的解,则m的值为()A.2B.4C.6D.10考点:二元一次方程的解;解一元一次方程.专题:计算题.分析:把x=1,y=2代入方程得到一个关于m的方程,求出方程的解即可解答:解:把x=1,y=2代入方程2mx﹣y=10得:2m﹣2=10,解得:m=6,故选:C.点评:本题主要考查对解一元一次方程,二元一次方程的解等知识点的理解和掌握,能得到方程2m﹣2=10是解此题的关键.23.(2014•梅州)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y考点:不等式的性质.分析:根据不等式的基本性质,进行判断即可.解答:解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.点评:本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.24.(2014•杭州模拟)方程2x﹣=0,3x+y=0,2x+xy=1,3x+y﹣2x=0,x2﹣x+1=0中,二元一次方程的个数是()A.1个B.2个C.3个D.4个考二元一次方程的定义.点:分析:根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.解答:解:2x﹣=0是分式方程,不是二元一次方程;3x+y=0是二元一次方程;2x+xy=1不是二元一次方程,因为其未知数的项的最高次数为2;3x+y﹣2x=0是二元一次方程;x2﹣x+1=0不是二元一次方程,因为其未知数的项的最高次数为2,且只含一个未知数.故选:B.点评:二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.25.(2015•金平区一模)某种禽流感病毒变异后的直径为0.00000012米,将这个数写成科学记数法是()A.1.2×10﹣5B.0.12×10﹣6C.1.2×10﹣7D.12×10﹣8考点:科学记数法—表示较小的数.专应用题.题:分析:用科学记数法表示比较小的数时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.解答:解:0.000 000 12=1.2×10﹣7.故选:C.点评:把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.26.(2013秋•让胡路区校级期末)多项式m2﹣4n2与m2﹣4mn+4n2的公因式是()A.(m+2n)(m﹣2n)B.m+2n C.m﹣2n D.(m+2n)(m﹣2n)2考点:公因式.分析:此题先运用平方差公式将m2﹣4n2因式分解,然后用完全平方公式化简m2﹣4mn+4n2,然后提取公因式即可.解答:解:m2﹣4n2=(m﹣2n)(m+2n),m2﹣4mn+4n2=(m﹣2n)2,∴m2﹣4n2与m2﹣4mn+4n2的公因式是m﹣2n.故选:C.点评:此题考查的是对公因式的提取,运用平方差公式将原式因式分解或运用完全平方公式进行计算.27.(2015春•宝安区期中)已知a2+b2=2,a+b=1,则ab的值为()A.﹣1 B.﹣C.﹣D.3考点:完全平方公式.分析:由已知条件,根据(a+b)2的展开式知a2+b2+2ab,把a2+b2=2,a+b=1代入整体求出ab的值.解答:解:(a+b)2=a2+b2+2ab,∵a2+b2=2,a+b=1,∴12=2+2ab,∴ab=﹣.故选:B.点评:此题主要考查完全平方式的展开式,同时也考查了整体代入的思想,比较新颖.28.(2015春•滕州市期中)下列各式中不能用平方差公式计算的是()A.(x﹣y)(﹣x+y)B.(﹣x+y)(﹣x﹣y)C.(﹣x﹣y)(x﹣y)D.(x+y)(﹣x+y)考点:平方差公式.专题:计算题.分析:根据公式(a+b)(a﹣b)=a2﹣b2的左边的形式,判断能否使用.解答:解:A、由于两个括号中含x、y项的符号都相反,故不能使用平方差公式,A正确;B、两个括号中,﹣x相同,含y的项的符号相反,故能使用平方差公式,B错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C错误;D、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,D 错误;故选:A.点评:本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.29.(2014秋•威海期中)下列多项式中,不能用完全平方公式分解因式的是()A.B.﹣x2+2xy﹣y2C.﹣a2+14ab+49b2D.考点:因式分解-运用公式法.专题:计算题.分析:根据完全平方公式有:m+1+=(m2+4m+4)=(m+2)2;﹣x2+2xy﹣y2=﹣(x2﹣2xy+y2)=﹣(x﹣y)2;﹣n+1=(n2﹣6n+9)=(n﹣3)2;而﹣a 2+14ab+49b2=﹣(a2﹣14ab﹣49b2),则它不能用完全平方公式分解因式.解答:解:m+1+=(m2+4m+4)=(m+2)2;﹣x2+2xy﹣y2=﹣(x2﹣2xy+y2)=﹣(x﹣y)2;﹣a2+14ab+49b2=﹣(a2﹣14ab﹣49b2),它不能用完全平方公式分解因式;﹣n+1=(n2﹣6n+9)=(n﹣3)2.故选:C.点评:本题考查了完全平方公式:a2±2ab+b2=(a±b)2.30.(2015春•港南区期中)下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直考命题与定理.点:分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、两直线平行,同位角相等,故此选项错误;B、根据邻补角的定义,故此选项正确;C、相等的角不一定是对顶角,故此选项错误;D、过直线外一点,有且只有一条直线与已知直线垂直,故此选项错误.故选:B.点评:此题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题(共29小题)31.(2015春•长汀县期中)在平面直角坐标系内,把点P(﹣5,﹣2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是(﹣7,2).考点:坐标与图形变化-平移.分析:直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.解答:解:原来点的横坐标是﹣5,纵坐标是﹣2,向左平移2个单位长度,再向上平移4个单位得到新点的横坐标是﹣5﹣2=﹣7,纵坐标为﹣2+4=2.得到的点的坐标是(﹣7,2).故答案为:(﹣7,2).点评:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.32.(2015春•新沂市期中)若3x=12,3y=4,则3x﹣y= 3 .考点:同底数幂的除法.分析:首先应用含3x,3y的代数式表示3x﹣y,然后将3x,3y的值代入即可求解.解答:解:∵3x=12,3y=4,∴3x﹣y=3x÷3y,=12÷4,=3.故答案为:3.点评:本题主要考查同底数幂的除法性质的逆用,熟练掌握运算性质并灵活运用是解题的关键.33.(2015春•龙口市期中)若方程4x m﹣n﹣5y m+n﹦6是二元一次方程,则m﹦ 1 ,n﹦0 .考二元一次方程的定义.点:分析:根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求常数m、n的值.解答:解:根据题意,得解,得m=1,n=0.故答案为:1,0.点评:二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.34.(2015春•莒县期中)将方程5x﹣2y=7变形成用y的代数式表示x,则x= .考点:解二元一次方程.分析:本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1即可.解答:解;把方程5x﹣2y=7移项得,5x=2y+7,方程左右两边同时除以5,得到x=.故答案为:.点评:本题考查的是方程的基本运算技能,移项,合并同类项,系数化为1等,然后合并同类项,系数化1就可用yx的式子表示x的形式.35.(2015春•邗江区期中)(﹣0.25)11×(﹣4)12= ﹣4 .考点:幂的乘方与积的乘方;同底数幂的乘法.分析:利用a x×b x=(ab)x进行计算即可.解答:解:原式=[(﹣)×(﹣4)]11×(﹣4)=1×(﹣4)=﹣4.故答案为:﹣4.点评:本题考查了幂的乘方及积的乘方的知识,属于基础题,关键是掌握运算法则.36.(2015春•无棣县期中)如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOD﹣∠DOB=40°,则∠EOB= 35°.考点:对顶角、邻补角;角平分线的定义.分析: 根据∠AOD+∠BOD=180°和已知求出∠DOB=70°,根据角平分线定义得出∠EOB=∠DOB ,代入求出即可.解答: 解:∵∠AOD ﹣∠DOB=40°,∠AOD+∠BOD=180°,∴∠AOD=110°,∠DOB=70°,∵OE 平分∠BOD ,∴∠EOB=∠DOB=70°=35°, 故答案为:35°.点评: 本题考查了邻补角、角平分线定义的应用,关键是求出∠DOB 度数和得出∠EOB=∠DOB .37.(2015春•定州市期中)如图,已知△ABC 的周长为20cm ,现将△ABC 沿AB 方向平移2cm 至△A ′B ′C ′的位置,连接CC ′,则四边形AB ′C ′C 的周长是 24 cm .考点:平移的性质.分析: 根据平移的性质,经过平移,对应点所连的线段相等,对应线段相等,找出对应线段和对应点所连的线段,结合四边形的周长公式求解即可.解答: 解:根据题意,得A 的对应点为A ′,B 的对应点为B ′,C 的对应点为C ′, 所以BC=B ′C ′,BB ′=CC ′,∴四边形AB ′C ′C 的周长=CA+AB+BB ′+B ′C ′+C ′C=△ABC 的周长+2BB ′=20+4=24cm .故答案为:24.点评: 本题主要运用的知识点是:经过平移,对应点所连的线段平行且相等,对应线段平行且相等.38.(2015春•北流市期中)如图,∠AOB=90°,∠MON=60°,OM 平分∠AOB ,ON 平分∠BOC ,则∠AOC= 120° .考点:垂线;角平分线的定义.分根据角平分线的性质,OM 平分∠AOB ,得出∠MOB=45°,再根据∠MON=60°,析: ON平分∠BOC,得出∠BON=15°,进而求出∠AOC=∠AOB+∠BOC的度数.解答:解:∵∠AOB=90°,OM平分∠AOB,∴∠MOB=45°,∵∠MON=60°,∴∠BON=15°,∵ON平分∠BOC,∴∠NOC=15°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°.故答案为:120°.点评:此题主要考查了垂线的性质以及角平分线的定义,得出∠BON=15°是解决问题的关键.39.(2015•石河子校级模拟)命题“角平分线上的点到角的两边的距离相等”的逆命题是到角的两边的距离相等的是角平分线上的点.考点:命题与定理.分析:把一个命题的题设和结论互换即可得到其逆命题,“角平分线上的点到角的两边的距离相等”的条件是“到角两边距离相等的点”,结论是“角平分线上的点”.解答:解:“角平分线上的点到角的两边的距离相等”的逆命题是“到角的两边的距离相等的是角平分线上的点”.故答案为:到角的两边的距离相等的是角平分线上的点.点评:根据逆命题的定义来回答,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.40.(2015•黄石模拟)因式分解:ab﹣a= a(b﹣1).考点:因式分解-提公因式法.分析:提公因式a即可.解答:解:ab﹣a=a(b﹣1).故答案为:a(b﹣1).点评:本题考查了提取公因式法因式分解.关键是求出多项式里各项的公因式,提公因式.41.(2015•滨州模拟)若是方程2x+y=0的解,则6a+3b+2= 2 .考点:二元一次方程的解.专题:整体思想.分析:知道了方程的解,可以把这对数值代入方程中,那么可以得到一个含有未知数a,b的二元一次方程2a+b=0,然后把6a+3b+2适当变形,可以求出6a+3b+2的值.解答:解:把代入方程2x+y=0,得2a+b=0,∴6a+3b+2=3(2a+b)+2=2.故答案为:2.点评:解题关键是把方程的解代入原方程,使原方程转化为以系数a,b为未知数的方程.注意:运用整体代入的方法进行求解.42.(2015•宝应县校级模拟)命题“同位角相等,两直线平行”中,条件是同位角相等,结论是两直线平行考点:命题与定理.分析:由命题的题设和结论的定义进行解答.解答:解:命题中,已知的事项是“同位角相等”,由已知事项推出的事项是“两直线平行”,所以“同位角相等”是命题的题设部分,“两直线平行”是命题的结论部分.故空中填:同位角相等;两直线平行.点命题由题设和结论两部分组成,命题的题设是已知事项,结论是由已知事评:项推出的事项.43.(2014秋•威海期末)如图,P是四边形ABCD的DC边上的一个动点,当四边形ABCD满足条件如DC∥AB(答案不唯一)时,△PBA的面积始终保持不变(注:只需填上你认为正确的一种条件即可,不必考虑所有可能的情形).考点:三角形的面积.专题:动点型;开放型.分析:要使△PBA的面积始终保持不变,根据三角形面积公式由于AB的长一定,需满足AB边上的高需不变,故四边形ABCD需满足条件DC∥AB.解答:解:当四边形ABCD满足条件DC∥AB时,△PBA的面积始终保持不变.点评:考查了三角形同底等高面积相等的情况,须根据三角形面积公式进行判断.44.(2014春•平塘县校级期末)如图,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草.则种植花草的面积是1421 米2.考点:生活中的平移现象.分析:可以根据平移的性质,此小路相当于一条横向长为50米与一条纵向长为30米的小路,种植花草的面积=总面积﹣小路的面积+小路交叉处的面积,计算即可.解答:解:根据题意,小路的面积相当于横向与纵向的两条小路,种植花草的面积=(50﹣1)(30﹣1)=1421m2.故答案为:1421.点评:本题考查了图形的平移的性质,把小路进行平移,求出相当面积的小路的面积是解题的关键,要注意小路的交叉处算了两次,这是容易出错的地方.45.(2014春•麦积区校级期末)关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的值是﹣1 .考点:在数轴上表示不等式的解集.专计算题.。
D BECA2014-2015学年第二学期期中考试初一数学试卷(考试时间:100分钟 满分:100分)一、选择题:(请把每题的答案填在答题卷...相应的表格中,每题2分,共20分) 1.以下列各组线段为边,能组成三角形的是( ▲ ) A .2cm 、2cm 、4cm B .8cm 、6cm 、3cm C .2cm 、6cm 、3cmD .11cm 、4cm 、6cm2.下列计算正确的是( ▲ )A .a 2²a 3=a 6B .y 3÷y 3=yC .3m+3n=6mnD .(x 3) 2=x 6 3.下列各多项式中,能用公式法分解因式的是 ( ▲ )A .a 2-b 2 +2abB .a 2+b 2 +abC .4a 2+12a +9D .25n 2+15n+9 4.如图,下列条件中:不能..判定AB//CD 的条件是( ▲ ) A .∠B +∠BCD =180° B .∠1=∠2 C .∠3=∠4 D .∠B =∠55.下列各式中能用平方差公式计算的是( ▲ ) A .)3)(3(b a b a +--- B .))(3(b a b a -+ C .)3)(3(b a b a --+ D .)3)(3(b a b a -+-6.一个多边形的每个内角都是144°,这个多边形是( ▲ )A .八边形B .十四边形C .十边形D .十二边形7.从边长为a 的正方形中去掉一个边长为b 的小正方形,如图,然后将剩余部分剪开拼成一个矩形,上述操作所能验证的等式是 ( ▲ ) A .a 2-b 2=(a+b)(a -b) B .(a -b) 2=a 2-2ab+b 2 C .(a+b) 2=a 2+2ab+b 2 D . a 2+ab=a(a+b) 8.下列说法中错误..的是 ( ▲ ) A .三角形的中线、角平分线、高都是线段 B .任意凸多边的外角和都是360°C .有一个内角是直角的三角形是直角三角形D .三角形的一个外角大于任何一个内角9.如图,若∠DBC =∠D ,BD 平分∠ABC ,∠ABC =50°,则∠BCD 的大小为( ▲ )A .100°B .130°C .50°D .150°10.在下列条件中①∠A +∠B =∠C ②∠A :∠B :∠C =1:2:3③∠A =21∠B =13∠C ④∠A =∠B =2∠C ⑤∠A =∠B =12∠C中能确定△ABC 为直角三角形的条件有 ( ▲ ) A 、2个 B 、3个 C 、4个 D 、5个第4题图第9题图第7题图二、填空(请把每题的答案填在答题卷...相应的横线上每小题2分,共20分) 11.若0.0000502=5.02³10n ,则n =___▲__. 12.等腰三角形两边长分别为3、6,则其周长为__▲__. 13.如果x 2+mx -n =(x+3)(x -2),则m +n 的值为__▲____. 14.若a +b =5,ab =6,则a 2+b 2=____▲___.15.一个多边形的内角和与外角和的和是1260°,那么这个 多边形的边数n =___▲___.16.若4x 2+mx +9是一个完全平方式,则数m 的值是___▲___. 17.如图,则∠A+∠B+∠C+∠D+∠E=___▲_____°.18.计算:1011004)25.0(⨯-=____▲_____.比较大小:333__▲___224. 19.分解因式:=--62x x ▲ .已知a m =2,a n =3,则a m +2n =__▲___. 20.已知13)(2=+b a ,1=ab ,则=-33b a _____▲_____.三、解答题(请写出必要的演算或推理过程, 请把每题的答案填在答题卷...相应 的位置上,8题共60分.) 21.计算:(共15分)(1) 0131(2009)()(2)2--++-; (2) a 3²a 3+(-3a 3)2+a 7÷a(3)⎪⎭⎫⎝⎛+-⋅22212b a b a ; (4) 2)1()1)(1(---+a a a ;(5)()()3232a b a b +--+ ;22.因式分解:(共12分)(1)x xy x 2422+-; (2)3244y y y -+-; (3)1822-x ; (4)(x +3y)2-9(x -y)2;23.(4分)如图,已知△ABC(1)画出△ABC 的中线AD ;(2)在图中分别画出△ABD 的高BE ,△ACD 的高CF ; (3)图中BE ,CF 的位置关系是______________.24.(4分)先化简,再求值:))(3(2))(()2(2b a b a b a b a b a ----++-,其中21=a ,b =-3. 25、(8分)(1)如图,∠1=∠B,∠A=35°,求∠2的度数.第17题图E F21DC B AED CBAC图1A OD B321EC图2A GOD B(2)如图,BD 是△ABC 的角平分线,DE∥BC,交AB 于点E ,∠A=45°,∠BDC=60°. 求∠ABD 、∠C 、∠BED 的度数.26.(本题5分)如图,已知∠1=∠2,∠B =∠D .AD 与BC 平行吗?为什么?27.(本题6分)阅读下列材料:“a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∴(x +2)2+1≥1,∴x 2+4x +5≥1.试利用“配方法”解决下列问题: (1)填空:x 2-4x +5=(x )2+ ;(2)已知x 2-4x +y 2+2y +5=0,求x +y 的值; (3)比较代数式:x 2-1与2x -3的大小. 28.(本题6分)(1)如图1,试证明∠A+∠D=∠C+∠B ; 用第一题的结论解决直接下列问题:(2)如图2,CG 为∠ACB 的平分线,GD 为∠ADB 的平分线,AC 、BD 交于点O . ①若∠1=20°,∠2=26°,∠COD=100°则3∠= ,∠G= ; ②试说明∠A+∠B=2∠G .初一数学参考答案及评分标准一、选择题:(把每题的答案填在下表中,每题2分,共20分)题号12 3 4 5 6 7 8 9 10 答案 BDCBACADBC二、填空题:(每题2分,共20分)11. -5 12. 15 13. 7 14. 1315. 7 16. ±12 17. 180° 18. 4﹥ 19.(x -3)(x+2) 18 20. ±36 三、解答题:(共06分)21.(每小题3分,共15分)计算:(分步给分)(1) -5 (2)611a (3)3232b a b a +- (4)2a -2 (5)44922-+-b b a 22.把下列各式分解因式(每题3分,共12分)(分步给分)(1))12(2+-y x x (2)2)2(--y y (3)2(x +3)(x -3) (4))3(8x y x - 23.(4分)(1)画图 1分 (2)画图 2分 (3)平行 1分 24.(4分)原式=234b ab -……3分(分步给分) =-33 … 1分25.(4分) ∵∠1=∠B ∴DC ∥BA 2分 ∠2=145° 2分(4分) ∠ABD=15°1分、∠C=105°2分、∠BED =150° 1分 26.(5分) DC ∥B A 1分 证明略 4分(分步给分)27.(6分)(1)-2 1分 1 1分 (2)1 2分 (分步给分)(3)12-x ﹥2x-3 2分(分步给分)28.(6分)⑴证明略 2分 ⑵∠3=74°1分 ∠G=86°⑶证明略 2分。
2014——2015学年第二学期期末考试参考答案七年级数学一、(每小题3分,共24分)1-----5 DABDD 6-----8 DBA二、(每小题3分,共21分)9.、2、3 12. 113. 89° 14. -5,-5 15. 26三、(本大题共8个小题,满分75分)16.(8分)(1)-122(2)-6-17.(7分) a=-3, b=-218. (8分) -1<x ≤314,画图略. 19. (10分)(1)S △ABC =12×≈6-1.5×1.414≈3.9(2)画图略.A’ (-5,2)、B’(2)、C’(0,5).20. (10分)解:设甲每天完成的零件数为x 个,乙每天完成的零件数为y 个,列方程组为:⎩⎨⎧=++-=++43032362430222y y x y x x 解得:⎩⎨⎧==4470y x 答:甲每天完成的零件数为70个,乙每天完成的零件数为44个.21. (10分)(1)∵∠1=∠4=1:2 ∠1=36° ∴∠4=72°又∵A B ∥CD ∴∠1+∠2+∠4=180°∴∠2=180°-36°-72°=72°又∵∠2+∠3=180° ∴∠3=180°-72°=108°(2) ∵AB ∥CD ∴∠ABE=∠4=72°∵∠2=72° ∴AB 平分∠EBG22. (10分)(1)500 (2)按先后顺序依次为A 80 C 160 D60 (3)4400023. (12分)(1)设购进A 型号的电脑x 台,那么购进B 型号的电脑(25-x )台,根据题意得:4000x+2500(25-x)≤80000 解得:x≤1123∵A型号的电脑购进不能低于8台,∴8≤x≤112 3∴电脑城有4种购进电脑的方案:①A型号购进8台时B型号购进17台②A型号购进9台时B型号购进16台③A型号购进10台时B型号购进15台④A型号购进11台时B型号购进14台.(2)∵A型号电脑的利润低,∴A型号电脑进的越少,B型号电脑进的越多时利润就越大,∴按方案①进货利润最大.最大利润为:8×800+17×1000=23400(元)。
七年级下册数学期末考试提⾼题难题奥数题有答案绝密★启⽤前令狐采学2014-2015学年度期末模拟考卷试卷副标题考试范围:xxx;考试时间:100分钟;命题⼈:xxx注意事项:1.答题前填写好⾃⼰的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的⽂字说明⼀、选择题(题型注释)1.如图,将矩形直尺与三⾓尺叠放在⼀起,在图中标记的所有⾓中,与∠1互余的⾓有()A.2个 B.4个 C.5个 D.6个2.如图,动点P从(0,3)出发,沿所⽰的⽅向运动,每当碰到矩形的边时反弹,反弹时反射⾓等于⼊射⾓,当点P第2015次碰到矩形的边时,点P 的坐标为(A)(1,4)(B)(5,0)(C)(6,4)(D)(8,3)3.如图,∠A0B的两边0A,0B均为平⾯反光镜,∠A0B=40°.在射线0B上有⼀点P,从P点射出⼀束光线经0A上的Q点反射后,反射光线QR恰好与0B平⾏,则∠QPB 的度数是()A.60° B.80° C.100° D.120°4.如图,将⼀块含有30°⾓的直⾓三⾓板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为A.53°B.55° C.57° D.60°5.如图,矩形BCDE的各边分别平⾏于x轴或y轴,物体甲和物体⼄由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针⽅向以l个单位,秒匀速运动,物体⼄按顺时针⽅向以2个单位,秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是A.(2,0) B.(-1,1) C.(-2,1) D.(-1,-l)6.若x,y满⾜⽅程组.则x-y的值等于A.-l B.1 C.2 D.37.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1)…根据这个规律探索可得,第100个点的坐标为().A.(14,0)B.(14,-1)C.(14,1)D.(14,2)8.某校初⼆(2)班40名同学为“希望⼯程”捐款,共捐款100元.捐款情况如下表:表格中捐款2元和3元的⼈数不⼩⼼被墨⽔污染已看不清楚.若设捐款2元的有名同学,捐款3元的有名同学,根据题意,可得⽅程组()A.B.C. D.9.若点P是第⼆象限内的点,且点P到x轴的距离是4,到y 轴的距离是3,则点P的坐标是()A.(-4,3)B.(4,-3)C.(-3,4)D.(3,-4)10.⼀学员练习驾驶汽车,两次拐弯后⾏驶的路线与原来的路线平⾏,这两次拐弯⾓度不可能是()A.第⼀次向左拐40°,第⼆次向右拐40°B.第⼀次向右拐40°,第⼆次向左拐140°C.第⼀次向右拐40°,第⼆次向右拐140°D.第⼀次向左拐40°,第⼆次向左拐140°11.如图1,⽊⼯师傅在⼀块⽊板上画两条平⾏线,⽅法是:⽤⾓尺画⽊板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位⾓相等,两直线平⾏;②内错⾓相等,两直线平⾏;③同旁内⾓互补,两直线平⾏;④平⾯内垂直于同⼀直线的两条直线平⾏.A.①②③ B.①②④ C.①③④ D.①③12.如图,以数轴的单位长度线段为边作⼀个正⽅形,以表⽰数l的点为圆⼼,正⽅形对⾓线长为半径画弧,交数轴于点A,则点A表⽰的数是()A.B.C.D.第II卷(⾮选择题)请点击修改第II卷的⽂字说明评卷⼈得分⼆、填空题(题型注释)13.如图,把长⽅形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于。
人教版七年级下学期期末测试数学试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)3.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A. (-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是505. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,47.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B.1.10.9 {24x y x y=-=C.0.9 1.1{24x yx y=-=D.1.10.9{24x yy x=-=8.小明的作业本上有以下四题①42164a a=;②51052a a a⋅=;③211a a aa a=⋅=;④32a a a-=.其中做错误的是()A. ①B. ②C. ③D. ④9. 如图,在△ABC中,三边a、b、c的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c10.如图,天平右盘中每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B. C. D. 二、填空题(每题4分,共40分) 11.如图,a∥b,则∠A=______.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O点,则∠AOB+∠DOC=_____16.若一个二元一次方程的解为2{1xy==-,则这个方程可以是______(只要求写出一个).17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足:23410250a b c c -+-+-+=请你判断△ABC 的形状是_______________19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.20.若关于x 的不等式组0321xa x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法);(3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形边长为单位长度建立直角坐标系,可得点A 的坐标是(_______,_______).23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元. (1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?25. 情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?答案与解析一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍【答案】B【解析】分析:两角互余和为90°,互补和为180°,根据一个角等于它余角的2倍,建立方程,即可求出这个角,进而求出它的补角即可.详解:设这个角为α,则它的余角为90°-α,∵这个角等于它余角的2倍,∴α=2(90°-α),解得,α=60°,∴这个角的补角为180°-60°=120°,∴这个角是它的补角的60120︒︒=12.故选B.点睛:本题考查了余角和补角的概念.利用题中的数量关系:一个角等于它余角的2倍,建立方程是解题的关键.2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)【答案】D【解析】【分析】根据题意,在给出的图形中画一下四个选项的行走路线即可得出小明不能到达学校的路线.【详解】A. (0,4)→(0,0)→(4,0),能到达学校,故不符合题意;B. (0,4)→(4,4)→(4,0),能到达学校,故不符合题意;C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0),能到达学校,故不符合题意;D. (0,4)→(3,4)→(4,2)→(4,0),不能到达学校,故符合题意,故选D.【点睛】本题考查了利用坐标确定位置,也考查了数学在生活中的应用,结合题意,自己动手操作一下即可更准确地得到结论.3. 某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)【答案】B【解析】根据图形易得,小鱼与大鱼的位似比是1︰2,所以点(a,b)的对应点是(-2a,-2b).故选B.4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是50【答案】D【解析】【详解】A、300名学生的视力情况是总体,故此选项错误;B、每个学生的视力情况是个体,故此选项错误;C、50名学生的视力情况是抽取的一个样本,故此选项错误;D、这组数据的样本容量是50,故此选项正确.故选D.5. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°【答案】C【解析】本题主要考查了三角形的外角性质和平行线的性质∵AB∥CD,∴∠D=∠A=35°. ∠DOC=180°-∠BOD=180°-76°=104°,在△COD中,∠C=180°-∠D-∠DOC=180°-35°-104°=41°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,4【答案】A【解析】分析:把x代入方程组中的第2个方程即可求出y,把x、y同时代入第一个方程即可求出被遮盖的数.详解:23x yx y+=⎧⎨+=⎩口①②,把x=2代入②,得2+y=3,∴y=1.把x=2,y=1代入①,得方程2x+y=5.故选A.点睛:本题考查了二元一次方程组的解.先把x的值代入方程组中的第二个方程是解题的关键.7.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B. 1.10.9{24x y x y =-= C. 0.9 1.1{24x y x y =-= D. 1.10.9{24x y y x =-= 【答案】D【解析】【分析】可设平均价为1.关键描述语是:B 套楼房的面积比A 套楼房的面积大24平方米;两套楼房的房价相同,即为平均价1.等量关系为:B 套楼房的面积-A 套楼房的面积=24;0.9×1×B 套楼房的面积=1.1×1×A 套楼房的面积,设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=.故选D . 【详解】解:设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=. 故选D .8.小明的作业本上有以下四题42164a a =;51052a a a =③211a a a a =⋅=32a a a =) A. ①B. ②C. ③D. ④【答案】D【解析】【分析】分别利用二次根式的性质及其运算法则计算即可判定.【详解】①和②是正确;在③中,由式子可判断a >0,从而③正确;在④中,左边两个不是同类二次根式,不能合并,故错误.故选D . 2a =|a |.同时二次根式的加减运算实质上是合并同类二次根式.9. 如图,在△ABC 中,三边a 、b 、c 的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c【答案】D【解析】试题分析:先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.根据勾股定理,得,,,,,故选D.考点:本题考查的是勾股定理点评:解答本题的关键是认真分析格点的特征,熟练运用勾股定理进行计算.10.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B.C. D.【答案】A【解析】∵由图可知,1g<m<2g,∴在数轴上表示为:.故选A..二、填空题(每题4分,共40分)11.如图,a∥b,则∠A=______.【答案】22°【解析】分析:如下图,过点A作AD∥b,则由已知可得AD∥a∥b,由此可得∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,从而由∠BAC=∠DAC-∠DAB即可求得∠BAC的度数.详解:如下图,过点A作AD∥b,∵a//b,∴AD∥a∥b,∴∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,∴∠BAC=∠DAC-∠DAB=50°-28°=22°.故答案为:22°.点睛:作出如图所示的辅助线,熟悉“平行线的性质:两直线平行,内错角相等”是正确解答本题的关键.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.【答案】(4,-4)【解析】分析:根据点在y轴上,则其横坐标是0,可求出a的值,进而即可求出B点坐标.详解:∵点A(a−1,a+1)是y轴上一点,∴a−1=0,解得a=1,∴a+3=1+3=4,a−5=1−5=−4,∴点B的坐标是(4,−4).故答案为(4,−4).点睛:本题考查了平面直角坐标系中点的坐标特征.熟练掌握y轴上的点的横坐标为0是解题的关键.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.【答案】80【解析】从内到外的正方形依次编号为1,2,3,……,n,则有:正方形的序号正方形四边上的整点的个数1 2×4-4=4;2 3×4-4=8;3 4×4-4=12;…………n 4(n+1)-4=4n.由里向外第 20 个正方形(实线)四条边上的整点个数共有4×20=80.故答案为80.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.【答案】2【解析】分析:根据“在三角形中任意两边之和大于第三边,任意两边之差小于第三边”,以及各边都是整数进行一一分析即可.详解:根据周长为7,以及三角形的三边关系,只有两种不同的三角形,边长为2,2,3或3,3,1.其它的组合都不能满足三角形中三边的关系.故答案为2.点睛:本题考查了三角形三边间的关系. 利用三角形三边间的关系来判断组合是否成立是解题的关键. 15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O 点,则∠AOB+∠DOC=_____【答案】180°【解析】∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC ,∠AOD+∠BOD=∠AOB ,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°16.若一个二元一次方程的解为2{1x y ==-,则这个方程可以是______(只要求写出一个). 【答案】1x y +=【解析】分析: 根据二元一次方程的解的定义,比如把x 与y 的值相加得1,即x+y=1是一个符合条件的方程. 详解:一个二元一次方程的解为21x y =⎧⎨=-⎩, 这个方程可以是 1.x y +=故答案 1.x y +=点睛:本题是一道有关二元一次方程的解的题目,关键是掌握二元一次方程的解的定义.17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.【答案】8【解析】分析:通过理解题意及看图可知本题存在等量关系,即矩形长的2倍=矩形宽的2倍+矩形的长,矩形长的2倍=(中间竖的矩形-4)宽的和,根据这两个等量关系,可列出方程组,再求解即可.详解:设矩形的长为x ,矩形的宽为y ,中间竖的矩形为(k −4)个,即(k −4)个矩形的宽正好等于2个矩形的长, ∵由图形可知:x +2y =2x ,2x =(k −4)y ,则可列方程组()2224x y x x k y +=⎧⎨=-⎩, 解得k =8.故答案为8.点睛:本题考查了二元一次方程组的应用.分析图形并得出对应的相等关系是解题的关键.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c2410250b c c -+-+=请你判断△ABC 的形状是_______________【答案】直角三角形【解析】分析:根据非负数的性质解得各边的长,再根据勾股定理的逆定理判定是否直角三角形即可.24(5)0b c -+-=,根据非负数的性质知,a =3,b =4,c =5,∵32+42=52,∴以为a 、b 、c 为三边的△ABC 是直角三角形.故答案为直角三角形.点睛:本题考查了非负数的性质和勾股定理的逆定理.将题中的21025c c -+转化为完全平方式2(5)c -是解题的关键. 19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.【答案】28或29【解析】分析:根据有空客房10间,每个房间住3人时,只有一个房间不空也不满,即:9间客房住满了,而最后一个房间不空也不满即这间客房住了1个人或2个人,分两种情况列出算式即可求出旅客的总人数.详解:由题可知,前9个房间住的人数是9×3=27人; 最后1间客房(不空也不满的房间)的人数有两种情况:(1)当有1个人时:游客总数为:27+1=28人;(2)当有2个人时:游客总数为:27+2=29人,所以旅游团共有28或29人.故答案为28或29.点睛:本题考查了一元一次不等式的应用.根据题中的不等关系确定不空也不满的房间人数是解题的关键.20.若关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 【答案】43a -<≤-【解析】试题分析:先分别解两个不等式得到不等式组的解集为a≤x<2,则可确定不等式组的5个整数解为1,0,-1,-2,-3,于是可得到a 的取值范围.0321x a x -≥⎧⎨->-⎩①②解①得,x a ≥;解②得,2x <;∴不等式组的5个整数解为1,0,-1,-2,-3,∴43a -<≤-.点睛:本题考查了一元一次不等式组的整数解,已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待求出不等式组的解集,然后再根据题目中对结果的限制的条件得到有关字母的值.三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?【答案】(1)只要作出∠5=∠6;(2)CD∥AB;(3)见解析【解析】分析:(1)掌握尺规作图的基本方法,作入射角等于反射角即∠5=∠6即可;(2)AB与CD平行;(3)由平行线的性质和反射的性质可得∠1=∠2=∠3=∠4,利用平角的定义可得∠ABC=∠BCD,由平行线的判定可得AB与CD平行.详解:(1)只要作出的光线BC经镜面EF反射后的反射角等于入射角即∠5=∠6即可.(2)CD∥AB.(3)如图,作图可知∠5=∠6,∠3+∠5=90°,∠4+∠6=90°,∴∠3=∠4;∵EF∥MN,∴∠2=∠3,∵∠1=∠2,∴∠1=∠2=∠3=∠4;∵∠ABC=180°﹣2∠2,∠BCD=180°﹣2∠3,∴∠ABC=∠BCD,∴CD∥AB.点睛:本题考查了平行线的性质和判定. 结合图形并利用平行线的性质和判定进行证明是解题的关键.22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立直角坐标系,可得点A的坐标是(_______,_______).【答案】(1). -4 (2). 1【解析】分析:(1)将“小猪”所占的面积转化为三角形和四边形面积的和来解答;(2)根据直线DE在网格中作出小猪的轴对称图形即可;(3)按要求建立平面直角坐标系即可得出A点坐标.详解:(1)4×4×12+8×3×12+1×1×12=32.5;(2)画图如下,(3)(-4,1).点睛:本题考查了网格中的面积、轴对称、平面直角坐标系等知识.求面积时合理地进行图形的移动和变换是解题的关键.23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?【答案】只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度.【解析】根据题目给出的条件,找出合适的等量关系,列出方程组,再求解24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?【答案】(1)该企业每套至少应奖励2.78元;(2)小张在六月份应至少加工200套.【解析】分析:(1)最低工资应考虑最不熟练地工人的工资.关系式为:基本工资200+150×60%×每件奖励钱≥最低工资标准450元,列不等式,解之即可;(2)根据关系式:基本工资200+5×小张加工童装套数≥1200,列不等式,解之即可.详解:(1)设企业每套奖励x元,由题意得:200+60%·150x≥450 ,解得:x≥2.78 ,因此,该企业每套至少应奖励2.78元.(2)设小张在六月份加工y套,由题意得:200+5y≥1200 ,解得:y≥200.答:小张在六月份应至少加工200套.点睛:本题考查了一元一次不等式的应用.找出题中的不等关系并建立不等式是解题的关键.25.情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?【答案】(1)可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.【解析】试题分析:(1)关系式为:甲种货车可装的床架数+乙种货车可装的床架数≥60;甲种货车可装的课桌凳数+乙种货车可装的课桌凳数≥100,把相关数值代入求得整数解的个数即可;(2)算出每种方案的总运费,比较即可.解:(1)设安排甲种货车x辆,则安排乙种货车(8﹣x)辆.,解得2≤x≤4,∴x可取2,3,4,∴可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费为:2×1200+6×1000=8400元;甲种货车3辆,乙种货车5辆运费为3×1200+5×1000=8600元;甲种货车4辆,乙种货车4辆运费为4×1200+4×1000=8800元;∴甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.。
北京市东城区普通中学2014-2015学年度第二学期七年级数学第八章 二元一次方程组 单元测试一、选择题(每题3分,共15分)1、若x a - b -2y a + b - 2=11是二元一次方程,那么的a 、b 值分别是( ) A 、1,0 B 、0,-1 C 、2,1 D 、2,-32、在二元一次方程x+3y=1的解中,当x=2时,对应的y 的值是( )。
A 、31B 、31- C 、1D 、43、下列二元一次方程组中,以为12x y =⎧⎨=⎩解的是( ) A 、135x y x y -=⎧⎨+=⎩ B 、135x y x y -=-⎧⎨+=-⎩ C 、331x y x y -=⎧⎨-=⎩ D 、2335x y x y -=-⎧⎨+=⎩4、若2(341)3250x y y x +-+--=则x =( ) A 、-1 B 、1 C 、2 D 、-25、我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A 、 ⎩⎨⎧=++=x y x y 5837B 、⎩⎨⎧=-+=x y x y 5837C 、⎩⎨⎧+=-=5837x y x yD 、⎩⎨⎧+=+=5837x y x y二、填空题(每题3分,共21分)6、将方程3x-y=1变形成用y 的代数式表示x ,则x =___________。
7、写出一个以23x y =⎧⎨=⎩为解的二元一次方程组__________________ 。
8、在y kx b =+中,当1x =时,4y =,当2x =时,10y =,则k = ,b = 。
9、已知43x y =⎧⎨=⎩是方程组512ax by bx ay +=⎧⎨+=-⎩的解,则a b += 。
10、关于x 、y 的方程组⎩⎨⎧-=+=-225453by ax y x 与⎩⎨⎧=--=+8432by ax y x 有相同的解,则()b a -= 。
新人教版2014-2015年七年级下学期期中考试数学试题及答案启用前*绝密新人教版2014-2015年七年级下学期期中考试数学试题时间:120分钟满分:120分日期:2015.5.3第Ⅰ卷(选择题,共30分)一、选择题(每题3分,共30分)1.9的算术平方根是A。
±3 B。
±9 C。
3 D。
-32.在平面直角坐标系中,点P(-3,5)所在的象限是A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限3.在同一个平面内,两条直线的位置关系是A。
平行或垂直 B。
相交或垂直 C。
平行或相交 D。
不能确定4.如图所示,四幅汽车标志设计中,能通过平移得到的是奥迪。
本田。
大众。
铃木5.如图,梯子的各条横档互相平行,若∠1=80,则∠2的度数是BD)3A。
80 B。
100 C。
120 D。
1506.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是A。
∠3=∠4 B。
∠1=∠2 C。
∠D=∠DCED D。
∠D+∠ACD=180°7.已知直角坐标系中点P到y轴的距离为5,且点P到x 轴的距离为3,则这样的点P的个数是A。
1 B。
2 C。
3 D。
48.在实数-2,0.7,34,π,16中,无理数的个数是A。
1 B。
2 C。
3 D。
49.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为A。
53° B。
55° C。
57° D。
60°10.如图,直线l1 ∥ l2,∠A=125°,∠B=85°,则∠1+∠2=A。
30° B。
35° C。
36° D。
40°第Ⅱ卷(非选择题共90分)二、填空题:(每题3分,共18分)11.在直角坐标系中,写出一个在纵轴的负半轴上点的坐标。
12.若一个数的平方根等于它本身,则这个数是________。
湖北省黄石市阳新县七年级下学期期末数学试卷一、选择题(共10个题,每题3分,共30分)下面每个题给出的四个选项中,只有一个正确的,请把正确选项对应的字母在答题卷中相应的格子涂黑,注意可用多种不同的方法来选取正确答案.1.(3分)﹣6的相反数是()A.﹣6 B.﹣C.D.62.(3分)如图,直线AB与CD相交于O,E是∠AOD内一点,已知EO⊥AB,垂足为O,且∠BOD=45°,则∠COE的度数是()A.115°B.125°C.135°D.145°3.(3分)估计的值在()A.2到3之间B.4到5之间C.6到7之间D.8到9之间4.(3分)生态园位于县城东北方向5公里处,如图表示准确的是()A.B.C.D.5.(3分)下列方程中,不是二元一次方程组的是()A.B.C.D.6.(3分)已知a,b,c均为有理数,若a>b,且b≠0,则下列结论不一定成立的是()A.a2>ab B.a+c>b+c C.D.c﹣a<c﹣b7.(3分)要调查下列问题:①市场上某种食品的某种添加剂的含量是否符合国家标准;②检测某地区的空气质量;③调查某市中学生一天的学习时间.你认为哪些适合抽样调查()A.①②B.①③C.②③D.①②③8.(3分)如图,已知三角形ABC平移后得到三角形DEF,则下列说法中,不正确的是()A.A C=DE B.BC∥EFC.平移的距离是线段BD的长D.平移的距离是线段AD的长9.(3分)求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如.但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得.请同学们观察下表:n 0.09 9 900 90000 …0.3 3 30 300 …运用你发现的规律解决问题,已知≈1.435,则()A.14.35 B.1.435 C.0.1435 D.143.510.(3分)有一满池水,池底有泉水总能均匀地向外漏流,已知用24部A型抽水机,6天可抽干池水;若用21部A型抽水机8天也可抽干池水.设每部抽水机单位时间的抽水量相同,要使这一池水永远抽不干,则至多只能用()部A型抽水机抽水.A.13 B.12 C.11 D.10二、填空题(每题3分,共18分)11.(3分)8的立方根是.12.(3分)不等式组的最小整数解是.13.(3分)如图,小明把一块含有60°角的直角三角尺的两个顶点放在直尺的对边上,并测得∠1=20°,则∠2的度数是.14.(3分)为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图的频数直方图(每小组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于.15.(3分)已知是二元一次方程组的解,则a﹣b.16.(3分)将一列数按一定的规律排,如右表.按此规律排下去,第200行第100个数为.三、解答题(共10个小题,共72分)17.(7分).18.(7分)解方程组.19.(7分)如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE.(2)过点P画CD的垂线,与AB相交于F点.(3)说明线段PE,PO,FO三者的大小关系,其依据是什么?20.(7分)某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A 级和B级)有多少份?21.(7分)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.22.(7分)如图,将三角形ABC向左平移3个单位长度,再向下平移4个单位长度,得到三角形A′B′C′,且点A,B,C的对应点分别为点A′,B′,C′.(1)画出平移后的图形,并写出平移后三个顶点的坐标;(2)若三角形一边上点P的坐标为(a,b),写出平移后点P的对应点P′的坐标.23.(8分)某城市平均每天产生690吨垃圾,由甲、乙两个垃圾处理厂处理.已知甲厂每小时可处理垃圾55吨,需费用550元;乙厂每小时可处理垃圾45吨,需费用495元.(1)甲、乙两厂同时处理该城市的垃圾,每天需要几小时完成?(2)如果规定该城市每月用于处理垃圾的费用为7260元,那么甲、乙两厂每天处理垃圾各多少小时?24.(8分)小柯同学平时学习善于自己动手操作,以加深对知识的理解和掌握.这不,学习了相交线与平行线的知识后,他又探索起来:如图,按虚线剪去长方形纸片的相邻两角,并使∠1=115°,AB⊥CB于B,那么∠2的度数是多少呢?请你帮他计算出来.25.(8分)为了保护坏境,某企业决定购10台污水处理设备.现在A、B两种型号的设备,其价格分别为12万元/台、10万元/台,处理污水量分别为240吨/月、200吨/月.经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业有几种购买方案?(2)若该企业每月产生的污水量为2040吨,为了节约资金,应选哪种购买方案?26.(6分)某车间全体工人要完成甲、乙两项任务,甲任务的工作量是乙任务的倍.上午做甲任务的人数是做乙任务的人数的4倍,下午甲任务的工人占总人数的.一天下来,甲任务已完成,乙任务还需5名工人再做一天,求该车间工人的总人数.(工人工作效率一样)湖北省黄石市阳新县2014-2015学年七年级下学期期末数学试卷参考答案与试题解析一、选择题(共10个题,每题3分,共30分)下面每个题给出的四个选项中,只有一个正确的,请把正确选项对应的字母在答题卷中相应的格子涂黑,注意可用多种不同的方法来选取正确答案.1.(3分)﹣6的相反数是()A.﹣6 B.﹣C.D.6考点:相反数.分析:相反数就是只有符号不同的两个数.解答:解:根据概念,与﹣6只有符号不同的数是6.即﹣6的相反数是6.故选D.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)如图,直线AB与CD相交于O,E是∠AOD内一点,已知EO⊥AB,垂足为O,且∠BOD=45°,则∠COE的度数是()A.115°B.125°C.135°D.145°考点:垂线;对顶角、邻补角.分析:首先根据EO⊥AB,可得∠AOE=90°;然后根据∠AOC和∠BOD是对顶角,可得∠AOC=∠BOD=45°,据此求出∠COE的度数是多少即可.解答:解:∵EO⊥AB,∴∠AOE=90°,∵∠AOC和∠BOD是对顶角,∴∠AOC=∠BOD=45°,∴∠COE=90°+45°=135°.故选:C.点评:(1)此题主要考查了垂线的性质和应用,要熟练掌握,解答此题的关键是要明确垂线的性质:在平面内,过一点有且只有一条直线与已知直线垂直.(2)此题还考查了对顶角的特征和应用,要熟练掌握,解答此题的关键是要明确:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.3.(3分)估计的值在()A.2到3之间B.4到5之间C.6到7之间D.8到9之间考点:估算无理数的大小.分析:求出的范围,都减去4即可得出答案.解答:解:∵6<<7,∴2﹣4<3,即﹣4在2到之间,故选:A.点评:本题考查了估算无理数的大小的应用,关键是确定的范围.4.(3分)生态园位于县城东北方向5公里处,如图表示准确的是()A.B.C.D.考点:坐标确定位置.分析:根据方向角的定义,东北方向是指北偏东45°解答即可.解答:解:∵生态园位于县城东北方向5公里处,∴生态园在县城北偏东45°距离县城5公里.故选B.点评:本题考查了坐标确定位置,熟练掌握方向角的定义是解题的关键.5.(3分)下列方程中,不是二元一次方程组的是()A.B.C.D.考点:二元一次方程组的定义.分析:二元一次方程满足的条件:为整式方程;含有2个未知数;最高次项的次数是1;两个二元一次方程组合在一起,就是二元一次方程组.解答:解:经过观察后可发现,只有D选项的第二个方程的未知数有三个,不符合二元一次方程的定义.故选D点评:主要考查二元一次方程组的概念,注意二元一次方程的形式及其特点.6.(3分)已知a,b,c均为有理数,若a>b,且b≠0,则下列结论不一定成立的是()A.a2>ab B.a+c>b+c C.D.c﹣a<c﹣b考点:不等式的性质.分析:根据不等式的性质3,可判断A;根据不等式的性质1,可判断B;根据不等式的性质2,可判断C;根据不等式的性质1,性质3,可判断D.解答:解:A、若a>b,a小于0时,不成立,故A不正确;B、由不等式的性质1,若a>b,a+c<b+c,故B正确;C、由不等式的性质2,若a>b,>故C正确;D、由不等式的性质3,若a>b,﹣a<﹣b,由不等式的性质1,c﹣a>c﹣b故D正确;故选A.点评:本题考查了不等式的性质,注意不等式的两边都成一或除以同一个负数,不等号的方向改变是解答此题的关键.7.(3分)要调查下列问题:①市场上某种食品的某种添加剂的含量是否符合国家标准;②检测某地区的空气质量;③调查某市中学生一天的学习时间.你认为哪些适合抽样调查()A.①②B.①③C.②③D.①②③考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:①市场上某种食品的某种添加剂的含量是否符合国家标准适合抽样调查,②检测某地区的空气质量适合抽样调查,③调查某市中学生一天的学习时间适合抽样调查.故选:D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.(3分)如图,已知三角形ABC平移后得到三角形DEF,则下列说法中,不正确的是()A.A C=DE B.BC∥EFC.平移的距离是线段BD的长D.平移的距离是线段AD的长考点:平移的性质.分析:根据平移的性质得出对应点所连的线段平行且相等,对应角相等,对应线段平行且相等结合图形与所给的选项即可得出答案.解答:解:A.对应线段相等可得AC=DF,正确,故此选项不符合题意;B.对应线段平行可得BC∥EF,正确,故此选项不符合题意;C.平移的距离应为同一点移动的距离,错误,故此选项符合题意;D.平移的距离为AD,正确,故此选项不符合题意.故选C.点评:此题主要考查了平移的性质,属于基础题,难度不大,灵活应用平移性质是解决问题的关键.9.(3分)求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如.但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得.请同学们观察下表:n 0.09 9 900 90000 …0.3 3 30 300 …运用你发现的规律解决问题,已知≈1.435,则()A.14.35 B.1.435 C.0.1435 D.143.5考点:算术平方根;计算器—数的开方.分析:根据被开方数的小数点移动两位,算术平方根的小数点每移动一位求出即可.解答:解:∵≈1.435,∴≈14.35,故选A.点评:本题考查了算术平方根的应用,关键是能根据题意得出规律.10.(3分)有一满池水,池底有泉水总能均匀地向外漏流,已知用24部A型抽水机,6天可抽干池水;若用21部A型抽水机8天也可抽干池水.设每部抽水机单位时间的抽水量相同,要使这一池水永远抽不干,则至多只能用()部A型抽水机抽水.A.13 B.12 C.11 D.10考点:二元一次方程组的应用.分析:可以设水池有水为x升,泉每天流水y升,A型抽水机每台每天抽水z升,根据24部A型抽水机6天可抽干池水,若用21部A型抽水机8天也可抽干池水可列出两个关于未知数的方程,求方程组的解可得到yz之间的关系,即可得解.解答:解:假设水池有水为x升,泉每天流水y升,A型抽水机每台每天抽水z升.则:,解得:y=12z.即泉水每天的流量相当于12台抽水机的流量,用12台抽水机抽水那么池永远抽不干的.故选:B.点评:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.二、填空题(每题3分,共18分)11.(3分)8的立方根是2.考点:立方根.专题:计算题.分析:利用立方根的定义计算即可得到结果.解答:解:8的立方根为2,故答案为:2.点评:此题考查了立方根,熟练掌握立方根的定义是解本题的关键.12.(3分)不等式组的最小整数解是0.考点:一元一次不等式组的整数解.分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其最小整数解即可.解答:解:解x+2>1得x>﹣1;不等式组的解集为﹣1<x≤2;所以其最小整数解为0.故答案为0.点评:本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.(3分)如图,小明把一块含有60°角的直角三角尺的两个顶点放在直尺的对边上,并测得∠1=20°,则∠2的度数是40°.考点:平行线的性质.分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°﹣∠3代入数据进行计算即可得解.解答:解:∵直尺的两边互相平行,∠1=20°,∴∠3=∠1=20°,∴∠2=60°﹣∠3=60°﹣20°=40°.故答案为;40°点评:本题考查了平行线的性质,三角板的知识,比较简单,熟记性质是解题的关键.14.(3分)为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图的频数直方图(每小组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于60%.考点:频数(率)分布直方图.分析:求得后边两组的频数的和是40﹣5﹣11,然后求得后边两组所占的百分比即可.解答:解:课外阅读时间不少于4小时的人数占全校人数的百分数约等于:×100%=60%.故答案是:60%.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15.(3分)已知是二元一次方程组的解,则a﹣b﹣1.考点:二元一次方程组的解.专题:计算题.分析:把代入二元一次方程组,可以得到a,b的值.再求a﹣b的值.解答:解:把代入二元一次方程组得:,解得:,∴a﹣b=2﹣3=﹣1,故答案为:﹣1.点评:此题考查的知识点是二元一次方程组的解,关键是根据题目给出的已知条件,可以得到关于a,b的二元一次方程组,根据方程组来求解.16.(3分)将一列数按一定的规律排,如右表.按此规律排下去,第200行第100个数为.考点:规律型:数字的变化类.分析:由题意可知:第n行有n个数,每n行的第一个数的绝对值的分母为n(n+1)+1;且奇数为正,偶数为负,分子都是1;由此规律代入数值求出答案即可.解答:解:∵第n行的第n个数的绝对值的分母为n(n+1)+n,∴第200行第100个数的分母为×200×+100=20200,又∵奇数为正,偶数为负,分子都是1,∴第200行第100个数为.故答案为:.点评:本题考查数字的排列规律,分析数据,总结、归纳数据发现规律,利用规律解决问题.三、解答题(共10个小题,共72分)17.(7分).考点:实数的运算.专题:计算题.分析:原式利用平方根,立方根,以及二次根式乘法法则计算,即可得到结果.解答:解:原式=﹣+5﹣1=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(7分)解方程组.考点:解二元一次方程组.专题:方程思想.分析:首先对原方程组化简,然后①×2运用加减消元法求解.解答:解:原方程组可化为:,①×2+②得11x=22,∴x=2,把x=2代入①得:y=3,∴方程组的解为.点评:此题考查的是解二元一次方程组,关键是先化简在运用加减消元法解方程组.19.(7分)如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE.(2)过点P画CD的垂线,与AB相交于F点.(3)说明线段PE,PO,FO三者的大小关系,其依据是什么?考点:作图—基本作图.专题:作图题.分析:(1)作PE⊥AB,垂足为E;(2)过点P作∠DPF=90°,其中PF交AB于点F;(3)利用垂线段最短,即可作出判断.解答:解:(1)(2)如图所示.(3)PE<PO<FO,其依据是“垂线段最短”.点评:本题需利用垂线段的性质来解决问题.20.(7分)某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A 级和B级)有多少份?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据A级人数为24人,以及在扇形图中所占比例为20%,24÷20%即可得出抽取的样本的容量;(2)根据C级在扇形图中所占比例为30%,得出C级人数为:120×30%=36人,即可得出D级人数,补全条形图即可;(3)根据A级和B级作品在样本中所占比例为:(24+48)÷120×100%=60%,即可得出该校这次活动共收到参赛作品750份,参赛作品达到B级以上的份数.解答:解:(1)∵A级人数为24人,在扇形图中所占比例为20%,∴这次抽取的样本的容量为:24÷20%=120;(2)根据C级在扇形图中所占比例为30%,得出C级人数为:120×30%=36人,∴D级人数为:120﹣36﹣24﹣48=12人,如图所示:(3)∵A级和B级作品在样本中所占比例为:(24+48)÷120×100%=60%,∴该校这次活动共收到参赛作品750份,参赛作品达到B级以上有750×60%=450份.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(7分)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.考点:解一元一次不等式;有理数的混合运算;在数轴上表示不等式的解集.专题:新定义.分析:(1)按照定义新运算a⊕b=a(a﹣b)+1,求解即可;(2)先按照定义新运算a⊕b=a(a﹣b)+1,得出3⊕x,再令其小于13,得到一元一次不等式,解不等式求出x的取值范围,即可在数轴上表示.解答:解:(1)∵a⊕b=a(a﹣b)+1,∴(﹣2)⊕3=﹣2(﹣2﹣3)+1=10+1=11;(2)∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,﹣3x<3,x>﹣1.在数轴上表示如下:点评:本题考查了有理数的混合运算及一元一次不等式的解法,属于基础题,理解新定义法则是解题的关键.22.(7分)如图,将三角形ABC向左平移3个单位长度,再向下平移4个单位长度,得到三角形A′B′C′,且点A,B,C的对应点分别为点A′,B′,C′.(1)画出平移后的图形,并写出平移后三个顶点的坐标;(2)若三角形一边上点P的坐标为(a,b),写出平移后点P的对应点P′的坐标.考点:作图-平移变换.分析:(1)根据图形平移的性质画出△A′B′C′即可;(2)根据图形平移的特点即可得出结论.解答:解:(1)如图所示;(2)∵三角形ABC向左平移3个单位长度,再向下平移4个单位长度,∴P′(a﹣3,a﹣4).点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.(8分)某城市平均每天产生690吨垃圾,由甲、乙两个垃圾处理厂处理.已知甲厂每小时可处理垃圾55吨,需费用550元;乙厂每小时可处理垃圾45吨,需费用495元.(1)甲、乙两厂同时处理该城市的垃圾,每天需要几小时完成?(2)如果规定该城市每月用于处理垃圾的费用为7260元,那么甲、乙两厂每天处理垃圾各多少小时?考点:二元一次方程组的应用.分析:(1)设甲、乙两厂同时处理,每天需x小时,根据共处理垃圾690吨列方程解答即可;(2)设甲厂每天处理垃圾a小时,乙厂每天处理垃圾b小时,根据“共处理垃圾690吨,处理垃圾的费用为7260元,”列出方程组解答即可.解答:解:(1)设甲、乙两厂同时处理,每天需x小时.得:(55+45)x=690解得:x=6.9,答:甲、乙两厂同时处理,每天需6.9小时.(2)设甲厂每天处理垃圾a小时,乙厂每天处理垃圾b小时,由题意可得,解得:.答:甲厂每天处理垃圾6小时,乙厂每天处理垃圾8小时.点评:此题考查二元一次方程组与一元一次方程的实际运用,解题关键弄清题意,找出合适的等量关系,列出方程组,再求解.注意计算每厂处理每吨垃圾所需要的费用.24.(8分)小柯同学平时学习善于自己动手操作,以加深对知识的理解和掌握.这不,学习了相交线与平行线的知识后,他又探索起来:如图,按虚线剪去长方形纸片的相邻两角,并使∠1=115°,AB⊥CB于B,那么∠2的度数是多少呢?请你帮他计算出来.考点:平行线的性质.分析:过点B作长方形边的平行线,然后根据两直线平行,同旁内角互补得出∠1+∠ABE+∠CBE+∠2=360°,再解答即可.解答:解:过点B作BE∥AD,∵AD∥CF∴AD∥BE∥CF,∴∠1+∠ABE=180°,∠2+∠CBE=180°;∴∠1+∠2+∠ABC=360°,∵∠1=115°,∠ABC=90°,∴∠2的度数为155°.点评:本题主要考查了平行线的性质,此题的关键是加辅助线,然后利用平行线的性质求解即可.25.(8分)为了保护坏境,某企业决定购10台污水处理设备.现在A、B两种型号的设备,其价格分别为12万元/台、10万元/台,处理污水量分别为240吨/月、200吨/月.经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业有几种购买方案?(2)若该企业每月产生的污水量为2040吨,为了节约资金,应选哪种购买方案?考点:一元一次不等式的应用.分析:(1)关键描述语:企业购买设备的资金不高于105万元,列出不等式进行求解.(2)关键描述语:企业每月产生的污水量为2040吨,即每月A和B型两种设备的污水处理量应大于等于2040吨,且为了节约资金,所需的费用应为最少.解答:解:(1)设购买污水处理设备A型x台,则B型(10﹣x)台,根据题意得,解得,即0≤x≤,∵x为整数,∴x可取0,1,2,当x=0时,10﹣x=10,当x=1,时10﹣x=9,当x=2,时10﹣x=8,即有三种购买方案:方案一:不买A型,买B型10台;方案二,买A型1台,B型9台;方案三,买A型2台,B型8台.(2)由240x+200(10﹣x)≥2040解得x≥1,由(1)得1≤x≤2.5故x=1或x=2当x=1时,购买资金12×1+10×9=102(万元)当x=2时,购买资金12×2+10×8=104(万元)∵104>102∴为了节约资金应购买A型1台,B型9台,即方案二.点评:本题主要考查了不等式组在现实生活中的应用,根据已知A,B型号的设备其价格得出正确等量关系是解题关键.26.(6分)某车间全体工人要完成甲、乙两项任务,甲任务的工作量是乙任务的倍.上午做甲任务的人数是做乙任务的人数的4倍,下午甲任务的工人占总人数的.一天下来,甲任务已完成,乙任务还需5名工人再做一天,求该车间工人的总人数.(工人工作效率一样)考点:二元一次方程组的应用.分析:把总人数看成单位1,根据工作效率、工作总量,工作时间之间的关系即可解答.解答:解:把总人数看成单位1,上午甲的人数占总人数的,甲全天占总人数()÷2=()÷2=,乙占:,平均效率=2,乙完成了2x,作乙的人5÷(1﹣)﹣5=10人,车间人数10÷=30(人).点评:本题考查了工程问题的实际应用,解决本题的关键是明确工作效率、工作总量,工作时间之间的关系.初中数学试卷金戈铁制卷。
2014-2015学年七年级下学期期末数学试卷一、选择题(本大题共8题,每题3分,共24分)1.下列计算正确的是( )A.a•a=a2B.a3+a3=a6C.a4•a2=a8D.(a3)2=a92.如图,∠1=50°,如果AB∥DE,那么∠D=( )A.40°B.50°C.130°D.140°3.若a>b,则下列不等式中成立的是( )A.a+2<b+2 B.a﹣2<b﹣2 C.2a<2b D.﹣2a<﹣2b4.把不等式组,的解集表示在数轴上,正确的是( )A.B.C.D.5.附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )A.∠2+∠5>180°B.∠2+∠3<180°C.∠1+∠6>180°D.∠3+∠4<180°6.关于x,y的方程组的解满足x+y=6,则m的值为( )A.1 B.2 C.3 D.47.下列命题中,①一个角的补角大于这个角;②如果|a|=|b|,那么a=b;③对顶角相等;④内错角相等,两直线平行.其中真命题有( )A.1个B.2个C.3个D.4个8.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为( )A.1 B.2 C.3 D.4二、填空(本大题共8题,每题3分,共24分)9.分解因式:3a2b﹣15ab2=__________.10.若一个多边形的内角和等于外角和的3倍,求这个多边形的边数.11.已知某三角形的两边长是6和4,则此三角形的第三边长x的取值范围是__________.12.将2x+3y﹣4=0化成y=kx+b的形式,得y=__________.13.已知a+b=3,ab=2,则a2b+ab2=__________.14.若一个锐角为(5x﹣15),则x的取值范围是__________.15.如图,将一张长方形纸片和一张直角三角形纸片叠放在一起,∠1+∠2的度数是__________.16.如图,△ABC的两条中线AM、BN相交于点O,已知△ABC的面积为12,△BOM的面积为2,则四边形MCNO的面积为__________.三、解答题(本大题共7题,共72分,解答时应写出文字说明过程和步骤)17.解方程组:(1);(2).18.先化简,再求值:(x﹣3y)2+(x+3y)(x﹣3y)﹣2x(x﹣y),其中x=﹣,y=.19.已知:如图,AD是△ABC的外角平分线,且AD∥BC,求证:∠B=∠C.20.解不等式(组)(1)解不等式,并把解集在数轴上表示出来.(2)解不等式组,并写出它的所有整数解.21.为绿化校园,我区某学院计划购进甲、乙两种树苗共36棵,已知甲种树苗每棵50元,已种树苗每棵40元,若购进甲、乙两种树苗刚好用去1640元,问购进甲、乙两种树苗各多少棵?22.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号销售收入第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?四、探究一23.我们知道,三角形的一个外角等于与它不相邻的两个内角的和,那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠DBC、∠BCE为△ABC的两个外角,则∠A与∠DBC+∠BCE的数量关系__________,并证明你的结论.五、探究二24.如图,四边形ABCD中,∠F为四边形ABCD的∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;(1)如图①,α+β>180°,试用α,β表示∠F;(2)如图②,α+β<180°,请在图中画出∠F,并试用α,β表示∠F;(3)一定存在∠F吗?如有,求出∠F的值,如不一定,指出α,β满足什么条件时,不存在∠F.一、选择题(本大题共8题,每题3分,共24分)1.下列计算正确的是( )A.a•a=a2B.a3+a3=a6C.a4•a2=a8D.(a3)2=a9考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据同底数幂的乘法、同类项、幂的乘方计算判断即可.解答:解:A、a•a=a2,正确;B、a3+a3=2a3,错误;C、a4•a2=a6,错误;D、(a3)2=a6,错误;故选A.点评:此题考查同底数幂的乘法、同类项、幂的乘方,关键是根据法则进行计算.2.如图,∠1=50°,如果AB∥DE,那么∠D=( )A.40°B.50°C.130°D.140°考点:平行线的性质.专题:计算题.分析:由对顶角相等求出∠2的度数,再利用两直线平行同旁内角互补求出所求角度数即可.解答:解:∵∠1与∠2为对顶角,∴∠1=∠2=50°,∵AB∥DE,∴∠2+∠D=180°,则∠D=130°,故选C点评:此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.3.若a>b,则下列不等式中成立的是( )A.a+2<b+2 B.a﹣2<b﹣2 C.2a<2b D.﹣2a<﹣2b分析:利用不等式的基本性质即可得出.解答:解:已知a>b,A、a+2>b+2,故A选项错误;B、a﹣2>b﹣2,故B选项错误;C、2a>2b,故C选项错误;D、﹣2a<﹣2b,故D选项正确.故选:D.点评:本题考查了不等式的基本性质,属于基础题.解题时注意不等号是否变方向.4.把不等式组,的解集表示在数轴上,正确的是( )A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:解得,故选:D.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )A.∠2+∠5>180° B.∠2+∠3<180° C.∠1+∠6>180° D.∠3+∠4<180°分析:先根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠3,然后求出∠2+∠3,再根据两直线平行,同位角相等表示出∠2+∠5,根据邻补角的定义用∠5表示出∠6,再代入整理即可得到∠1+∠6,根据两直线平行,同旁内角互补表示出∠3+∠4,从而得解.解答:解:根据三角形的外角性质,∠3=∠1+∠A,∵∠1+∠2=180°,∴∠2+∠3=∠2+∠1+∠A>180°,故B选项错误;∵L∥N,∴∠3=∠5,∴∠2+∠5=∠2+∠1+∠A>180°,故A选项正确;C、∵∠6=180°﹣∠5,∴∠1+∠6=∠3﹣∠A+180°﹣∠5=180°﹣∠A<180°,故本选项错误;D、∵L∥N,∴∠3+∠4=180°,故本选项错误.故选A.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,分别用∠A表示出各选项中的两个角的和是解题的关键.6.关于x,y的方程组的解满足x+y=6,则m的值为( )A.1 B.2 C.3 D.4考点:二元一次方程组的解.分析:把方程组的两个方程相加,得到3x+3y=6m,结合x+y=6,即可求出m的值.解答:解:∵,∴3x+3y=6m,∴x+y=2m,∵x+y=6,∴2m=6,∴m=3,故选C.点评:本题主要考查了二元一次方程组的解得知识点,解答本题的关键是把方程组的两个方程相加得到x,y与m的一个关系式,此题基础题.7.下列命题中,①一个角的补角大于这个角;②如果|a|=|b|,那么a=b;③对顶角相等;④内错角相等,两直线平行.其中真命题有( )A.1个B.2个C.3个D.4个考点:命题与定理.分析:根据补角的定义对①进行判断;根据绝对值的意义对②进行判断;根据对顶角的性质对③进行判断;根据平行线的判定方法对④进行判断.解答:解:一个角的补角不一定大于这个角,若90度的补角为90°,所以①错误;如果|a|=|b|,那么a=b或a=﹣b,所以②错误;对顶角相等,所以③正确;内错角相等,两直线平行,所以④正确.故选B.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为( )A.1 B.2 C.3 D.4考点:多项式乘多项式.分析:拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.解答:解:(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.故选:C.点评:本题考查了多项式乘多项式的运算,需要熟练掌握运算法则并灵活运用,利用各个面积之和等于总的面积也比较关键.二、填空(本大题共8题,每题3分,共24分)9.分解因式:3a2b﹣15ab2=3ab(a﹣5b).考点:因式分解-提公因式法.专题:计算题.分析:原式提取公因式即可得到结果.解答:解:原式=3ab(a﹣5b).故答案为:3ab(a﹣5b)点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.10.若一个多边形的内角和等于外角和的3倍,求这个多边形的边数.考点:多边形内角与外角.分析:根据多边形的外角和为360°,内角和公式为:(n﹣2)•180°,由题意可知:内角和=3×外角和,设出未知数,可得到方程,解方程即可.解答:解:设这个多边形是n边形,由题意得:(n﹣2)×180°=360°×3,解得:n=8.答:这个多边形的边数是8.点评:此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n﹣2)•180°,外角和为360°.11.已知某三角形的两边长是6和4,则此三角形的第三边长x的取值范围是2<x<10.考点:三角形三边关系;解一元一次不等式组.分析:根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围.解答:解:根据三角形的三边关系,得第三边应大于6﹣4=2,而小于6+4=10,∴2<x<10,故答案为:2<x<10.点评:本题主要考查了三角形的三边关系,根据三角形三边关系定理列出不等式,然后解不等式,确定取值范围即可,难度适中.12.将2x+3y﹣4=0化成y=kx+b的形式,得y=﹣x+.考点:解二元一次方程.专题:计算题.分析:把x看做已知数表示出y即可.解答:解:方程2x+3y﹣4=0,解得:y=﹣x+,故答案为:﹣x+点评:此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.13.已知a+b=3,ab=2,则a2b+ab2=6.考点:因式分解-提公因式法.分析:首先将原式提取公因式ab,进而分解因式求出即可.解答:解:∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=6.故答案为:6.点评:此题主要考查了提取公因式法分解因式,正确找出公因式再分解因式是解题关键.14.若一个锐角为(5x﹣15),则x的取值范围是3<x<21.考点:解一元一次不等式组;角的概念.分析:根据锐角三角形的内角的取值列出方程组,然后求解即可.解答:解:∵锐角三角形中一个锐角为(5x﹣15)度,∴,解不等式①得,x>3,解不等式②得,x<21,所以,x的取值范围是3<x<21.故答案为:3<x<21.点评:本题考查了三角形的内角和定理,解一元一次不等式组,理解锐角三角形的内角的范围列出不等式组是解题的关键.15.如图,将一张长方形纸片和一张直角三角形纸片叠放在一起,∠1+∠2的度数是270°.考点:平行线的性质.分析:连接AB,根据平行线的性质求出∠FAB+∠ABN,根据三角形内角和定理求出∠CAB+∠CBA,即可求出答案.解答:解:如图,连接AB,∵EF∥MN,∴∠FAB+∠ABN=180°,∵∠C=90°,∴∠CAB+∠CBA=180°﹣90°=90°,即∠1+∠2=180°+90°=270°,故答案为:270°点评:本题考查了平行线的性质,三角形的内角和定理的应用,解此题的关键是能正确作出辅助线,注意:两直线平行,同旁内角互补.16.如图,△ABC的两条中线AM、BN相交于点O,已知△ABC的面积为12,△BOM的面积为2,则四边形MCNO的面积为4.考点:三角形的面积.分析:根据“三角形的中线将三角形分为面积相等的两个三角形”得到S△ABM=S△ABN=S△ABC=6,然后结合图形来求四边形MCNO的面积.解答:解:如图,∵△ABC的两条中线AM、BN相交于点O,已知△ABC的面积为12,∴S△ABM=S△ABN=S△ABC=6.又∵S△ABM﹣S△BOM=S△AOB,△BOM的面积为2,∴S△AOB=2,∴S四边形MCNO=S△ABC﹣S△ABN﹣S△AOB=12﹣6﹣2=4.故答案是:4.点评:本题考查了三角形的面积.解答该题时,需要利用“数形结合”是数学思想.三、解答题(本大题共7题,共72分,解答时应写出文字说明过程和步骤)17.解方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.解答:解:(1)由①,得x=2y③,把③代入②,得3×2y+y=7,即y=1,把y=1代入③,得x=2,则原方程组的解为;(2)由②×2,得10x+4y=12③,①+③,得13x=13,即x=1,把x=1代入②,得5×1+2y=6,即y=,则原方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.先化简,再求值:(x﹣3y)2+(x+3y)(x﹣3y)﹣2x(x﹣y),其中x=﹣,y=.考点:整式的混合运算—化简求值.分析:利用完全平方公式,平方差公式和整式的乘法计算,再进一步合并,最后代入求得数值即可.解答:解:原式=x2﹣6xy+9y2+x2﹣9y2﹣2x2+2xy=﹣4xy,当x=﹣,y=时,原式=﹣4×(﹣)×=8.点评:此题考查整式的化简求值,先利用整式的乘法计算公式和计算方法计算合并,进一步代入求得答案即可.19.已知:如图,AD是△ABC的外角平分线,且AD∥BC,求证:∠B=∠C.考点:平行线的性质.专题:证明题.分析:由角平分线的定义得出∠EAD=∠DAC,由平行线的性质得出同位角相等、内错角相等,即可得出结论.解答:证明:∵AD平分∠EAC,∴∠EAD=∠DAC,∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C,∴∠B=∠C.点评:本题考查了平行线的性质、角平分线的定义;熟练掌握平行线的性质,并能进行推理论证是解决问题的关键.20.解不等式(组)(1)解不等式,并把解集在数轴上表示出来.(2)解不等式组,并写出它的所有整数解.考点:解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式;一元一次不等式组的整数解.分析:(1)去分母、去括号,然后移项、合并同类项,系数化成1即可求解;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:(1)去分母,得:3(4+3x)≥6(1+2x),去括号,得:12+9x≥6+12x,移项,得:9x﹣12x≥6﹣12,合并同类项,得:﹣3x≥﹣6,系数化成1得:x≤2.解集在数轴上表示出来为:;(2),解①得:x≤2,解②得:x>﹣1.解集在数轴上表示出来为:,则整数解是:0,1,2.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.21.为绿化校园,我区某学院计划购进甲、乙两种树苗共36棵,已知甲种树苗每棵50元,已种树苗每棵40元,若购进甲、乙两种树苗刚好用去1640元,问购进甲、乙两种树苗各多少棵?考点:二元一次方程组的应用.分析:设购进甲种树苗为x棵,乙种树苗为y棵,根据购进甲、乙两种树苗共36棵,刚好用去1640元,据此列方程组求解.解答:解:设购进甲种树苗为x棵,乙种树苗为y棵,依题意得:,解得:.答:购进甲种树苗为20棵,乙种树苗为16棵.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.22.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号销售收入第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B 型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5400元,列不等式求解.解答:解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.四、探究一23.我们知道,三角形的一个外角等于与它不相邻的两个内角的和,那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠DBC、∠BCE为△ABC的两个外角,则∠A与∠DBC+∠BCE的数量关系∠A=∠DBC+∠BCE﹣180°,并证明你的结论.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的外角的性质得到∠DBC=∠A+∠ACB和∠BCE=∠A+∠ABC,根据三角形内角和定理推理得到答案.解答:解:∠A=∠DBC+∠BCE﹣180°,证明:∵∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,∴∠DBC+∠BCE=∠A+∠ACB+∠A+∠ABC,∵∠ACB+∠A+∠ABC=180°,∴∠DBC+∠BCE=∠A+180°,∴∠A=∠DBC+∠BCE﹣180°,故答案为:∠A=∠DBC+∠BCE﹣180°.点评:本题考查三角形外角的性质及三角形的内角和定理,掌握三角形的内角和是180°是解答的关键,注意结论的书写要正确.五、探究二24.如图,四边形ABCD中,∠F为四边形ABCD的∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;(1)如图①,α+β>180°,试用α,β表示∠F;(2)如图②,α+β<180°,请在图中画出∠F,并试用α,β表示∠F;(3)一定存在∠F吗?如有,求出∠F的值,如不一定,指出α,β满足什么条件时,不存在∠F.考点:多边形内角与外角;三角形内角和定理.专题:探究型.分析:(1)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=360°﹣(α+β)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(2)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=360°﹣(α+β)=2∠GBC+(180°﹣2∠HCE)=180°+2(∠GBC﹣∠HCE)=180°+2∠F,从而得出结论;(3)α,β满足α+β=180°时,∠ABC的角平分线及外角∠DCE的平分线平行,可知不存在∠F.解答:解:(1)∵∠ABC+∠DCB=360°﹣(α+β),∴∠ABC+(180°﹣∠DCE)=360°﹣(α+β)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF ﹣∠FBC)=180°﹣2∠F,∴360°﹣(α+β)=180°﹣2∠F,2∠F=α+β﹣180°,∴∠F=(α+β)﹣90°;(2)∵∠ABC+∠DCB=360°﹣(α+β),∴∠ABC+(180°﹣∠DCE)=360°﹣(α+β)=2∠GBC+(180°﹣2∠HCE)=180°+2(∠GBC ﹣∠HCE)=180°+2∠F,∴360°﹣(α+β)=180°+2∠F,∠F=90°﹣(α+β);(3)α+β=180°时,不存在∠F.点评:综合考查了多边形内角与外角和角平分线的定义,(1)中得出360°﹣(α+β)=180°﹣2∠F,(2)中得出360°﹣(α+β)=180°+2∠F是解题的关键.。