高等数学第一章综合测试卷含答案
- 格式:docx
- 大小:274.04 KB
- 文档页数:8
高中数学集合检测题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,1,2,2,|,M N y y x x M =--==∈,则M N ⋂是 A M B {}1,4 C {}1 D Φ2. 设全集U =R ,集合2{|1}A x x =≠,则U C A =A. 1B. -1,1C. {1}D. {1,1}-3. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A = A. {|02}x x x ≤≥或 B. {|02}x x x <>或 C. {|2}x x ≥ D. {|2}x x >4. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--,{}0,3,4N =--,则()I M N =A .{0}B .{}3,4--C .{}1,2--D .∅5.已知集合M={x N|4-x N}∈∈,则集合M 中元素个数是 A .3 B .4 C .5 D .66. 已知集合{}1,0,1-=A ,则如下关系式正确的是 A A A ∈ B 0A C A ∈}0{ D ∅A7.集合}22{<<-=x x A ,}31{<≤-=x x B ,那么=⋃B AA.}32{<<-x xB.}21{<≤x xC.}12{≤<-x xD.}32{<<x x 8.已知集合}01|{2=-=x x A ,则下列式子表示正确的有 ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个9.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=,则a 的值为 A .-3或1 B .2 C .3或1 D .1 10. 若集合}8,7,6{=A ,则满足A B A =⋃的集合B 的个数是A. 1B. 2C. 7D. 811.已知集合M={x|x 1},N={x|x>}a ≤-,若M N ≠∅,则有 A .1a <- B .1a >- C . 1a ≤- D .1a ≥-12、已知全集{}{}{}0,1,2,4,6,8,10,2,4,6,1U A B ===,则()U C A B ⋃= A{}0,1,8,10 B {}1,2,4,6 C {}0,8,10D Φ选择题答案二、填空题:13.设U ={三角形},A ={锐角三角形},则U C A = . 14. 已知A={0,2,4},C U A={-1,1},C U B={-1,0,2},求B= 。
高等数学测试(第一章)一 .选择题(每题2分,共20分) 1.(2分)712arcsin16)(2-+-=x x x f 的定义域为 ( ) A .[]3,2 B .[]4,3- C .[)4,3- D .()4,3-2.(2分) 已知函数)12(-x f 的定义域为[]1,0,则函数)(x f 的定义域为 ( ) A .⎥⎦⎤⎢⎣⎡1,21 B .[]1,1- C .[]1,0 D .[]2,1-3.(2分)已知1)1(2++=+x x x f , 则)(x f = ( ) A .22+-x x B .12--x x C .12++x x D .12+-x x4.(2分)下列函数对为相同函数的是 ( )A .1)(,11)(2-=+-=x x g x x x f B . 3ln )(,ln 3)(x x g x x f == C .2ln )(,ln 2)(x x g x x f == D . 2)(,)(x x g x x f ==5.(2分)若()f x ()x R ∈为奇函数,则下列函数一定为偶函数的是 ( ) A .(2)f x B .(2)f x -+ C .(||)f x D .2()f x6.(2分)函数122+=x xy 的反函数为 ( )A .x x y -=1log 2B .x x y +=1log 2C .x x y +=1log 2D .xx y -=1log 2 7.(2分)已知极限22lim()0x x ax x→∞++=,则常数a 等于 ( ) A .-1 B .0 C .1 D .28.(2分)当0x +→ ( )A.1-.ln(1 C1 D.1-9.(2分)点1x =是函数311()1131x x f x x x x -<⎧⎪==⎨⎪->⎩的 ( )A .连续点B .可去间断点C .跳跃间断点D .第二类间断点10.(2分)下列命题正确的是 ( ) A . 两无穷大之和为无穷大; B . 两无穷小之商为无穷小;C . )(lim 0x f x x →存在当且仅当)(lim 0x f x x -→与)(lim 0x f x x +→均存在;D . )(x f 在点0x 连续当且仅当它在点0x 既左连续又右连续. 二.填空题(每题3分,共15分)11.(3分)函数()f x 在点0x 处有定义是()f x 在0x 处极限存在的________________. 12.(3分)当0x →+时,无穷小ln(1)Ax α=+与无穷小sin 3x β=等价,则常数A=____________. 13.(3分)已知函数()f x 在点0x =处连续,且当0x ≠时,函数21()2x f x -=,则函数值(0)f =_____.14.(3分)若lim ()x f x π→存在,且sin ()2lim ()x xf x f x x ππ→=+-,则lim ()x f x π→=________________.15.(3分)设函数()()[]x x x f g x x f -=-=1,21,则⎪⎭⎫⎝⎛21g =________________. 三. 计算题(共55分)16.(5分)⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 2221...2111lim . 17.(5分))1(lim 2x x x x -++∞→.18.(5分)xx e x x x 2sin 1lim 3202-→--. 19.(5分)xx x x cot 20)32sin 1(lim +-→.20.(5分)()⎥⎦⎤⎢⎣⎡+-→x x x 1ln 11lim 0. 21.(5分)30tan sin lim x x x x →-.22.(5分)01x x e →-. 23.(5分) xx x +→0lim .24.(7分)设3214lim 1x x ax x x →---++ 具有极限l ,求,a l 的值.25.(8分)若)(lim 1x f x →存在,且23)(2++=x x x f )(lim 1x f x →,求)(x f 和)(lim 1x f x →.四.证明题(共10分)26.(10分)设函数()f x ,()g x 均在闭区间[],a b 上连续,且有()()f a g a a >+,()()f b g b b <+,证明:存在,a b ξ∈(),使()()fg ξξξ=+成立.答案: 一. 选择题1—5 BBDBC ;6—10 AABBD .二.填空题11、无关条件; 12、3; 13、 0; 14、 1;15、3. 三.计算题16. ⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n 2221 (211)1lim . 【解析】因为),...,2,1(1111222n i n i n nn =+≤+≤+, 所以11 (21)1122222+≤++++++≤+n n nn n n nn n ,而11limlim22=+=+∞→∞→n nnn n n n .由两边夹逼准则可知,11 (211)1lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n . 17.)1(lim 2x x x x -++∞→.【解析】原式211111lim1lim22=++=++=+∞→+∞→x xx x x x . 18. xx ex x x 2sin 1lim3202-→--. 【解析】原式16116lim 161lim 3222lim 81lim 2202030320222-=-=+-=+-=--=→-→-→-→xx x e x xe x x x e x x x x x x x x . 19. xx x x cot 20)32sin 1(lim +-→.【解析】原式x x x xx x x xx x xx x x eex x tan 32sin limtan 32sin 0tan 32sin 32sin 122022lim )32sin 1(lim +-+-→+-∙+-→→==+-=23lim2sin lim32sin lim20020-+-+-===→→→e eex x x x x x x x x x .20. ()⎥⎦⎤⎢⎣⎡+-→x x x 1ln 11lim 0. 【解析】原式()()()212111lim 1ln lim 1ln 1ln lim 0200-=-+=-+=+-+=→→→x x x x x x x x x x x x . 21. 30tan sin lim x x x x→-. 【解析】原式=2322000sin 1sin 1cos 1cos 2lim lim lim cos cos 2x x x x x xx x x x x x x →→→--===.22.21lim1x x e →-.【解析】原式=2121lim sin 21lim 22020==→→x xxx x x x .23.(5分) xx x +→0lim . 【解析】原式1lim 011lim1ln limln lim ln 02000======-→+→+→+→+e eeee x x xxxx xx x x x x .24.设3214lim 1x x ax x x →---++ 具有极限l ,求,a l 的值.【解析】因为1lim(1)0x x →-+=,所以 321lim(4)0x x ax x →---+=,因此 4a = 并将其代入原式321144(1)(1)(4)lim lim 1011x x x x x x x x l x x →-→---++--===++25.若)(lim 1x f x →存在,且23)(2++=x x x f )(lim 1x f x →,求)(x f 和)(lim 1x f x →.【解析】设A x f x =→)(lim 1,对等式23)(2++=x x x f )(lim 1x f x →两边同时取极限()1→x 可得,())(lim 23lim )(lim 1211x f x x x f x x x →→→++=,即()A x x A x 23lim 21++=→,故4)(lim 1-==→A x f x .所以83)(2-+=x x x f . 四.证明题26.设函数()f x ,()g x 均在闭区间[],a b 上连续,且有()()f a g a a >+,()()f b g b b <+,证明:存在,a b ξ∈(),使()()fg ξξξ=+成立.【证明】 构造函数()()()F x f x g x x =--,则函数()F x 在闭区间[],a b 上连续, 而()()()0F a f a g a a =-->,()()()0F b f b g b b =--<, 显然()()0F a F b ⋅<于是由连续函数的零点定理知,(,),a b ξ∈使得()0F ξ=,即 存在,a b ξ∈(),使()()fg ξξξ=+.。
高数第一章测试题高等数学作为大学课程中的重要基础学科,对于很多同学来说是一个不小的挑战。
而第一章往往是为后续的学习打下基石的关键部分。
接下来,就让我们一起通过这份测试题来检验一下对第一章知识的掌握程度。
一、选择题(每题 5 分,共 30 分)1、函数\(f(x) =\frac{1}{x 1}\)的定义域为()A \(x \neq 1\)B \(x > 1\)C \(x < 1\)D \(x \neq 0\)2、设\(f(x) =\sqrt{x}\),则\(f(f(4))\)的值为()A 2B \(\sqrt{2}\)C 4D \(\sqrt{4}\)3、当\(x \to 0\)时,下列函数中与\(x\)等价无穷小的是()A \(x^2\)B \(\sin x\)C \(1 \cos x\)D \(e^x 1\)4、函数\(f(x) = x^3 3x + 1\)的单调递增区间是()A \((\infty, -1)\)和\((1, +\infty)\)B \((-1,1)\)C \((\infty, +\infty)\)D 以上都不对5、曲线\(y = x^2 + 1\)在点\((1, 2)\)处的切线方程为()A \(2x y = 0\)B \(x 2y + 3 = 0\)C \(2x + y 4 = 0\)D \(x + 2y 5 = 0\)6、设函数\(f(x)\)在\(x = 0\)处连续,且\(f(0) =2\),则\(\lim_{x \to 0} f(x)\)的值为()A 0B 1C 2D 不存在二、填空题(每题 5 分,共 30 分)1、函数\(f(x) =\ln(x + 1)\)的导数为________。
2、极限\(\lim_{x \to 1} \frac{x^2 1}{x 1}\)的值为________。
3、曲线\(y = e^x\)在点\((0, 1)\)处的切线斜率为________。
考研高数第一章试题及答案# 考研高数第一章试题及答案## 一、选择题(每题4分,共20分)1. 函数\( f(x) = x^2 \)在点x=1处的导数是()A. 1B. 2C. 3D. 42. 若\( \lim_{x \to 0} \frac{\sin x}{x} = L \),则L的值为()A. 0B. 1C. 2D. 33. 曲线\( y = x^3 - 3x^2 + 2 \)在x=2处的切线斜率是()A. -4B. -3C. 0D. 54. 已知\( \int_0^1 x^2 dx = \frac{1}{3} \),则\( \int_0^1 x^3 dx \)的值为()A. \( \frac{1}{4} \)B. \( \frac{1}{3} \)C. \( \frac{1}{2} \)D. \( \frac{3}{4} \)5. 函数\( f(x) = \ln(x) \)的定义域是()A. \( (0, +\infty) \)B. \( (-\infty, 0) \)C. \( (-\infty, +\infty) \)D. \( [0, +\infty) \)## 二、填空题(每题4分,共20分)6. 若\( f(x) = 2x - 3 \),则\( f'(2) = _______ \)。
7. 函数\( g(x) = \sqrt{x} \)的导数是\( g'(x) = _______ \)。
8. 极限\( \lim_{x \to 1} (x^2 - 1) / (x - 1) \)的值是 _______。
9. 函数\( h(x) = e^x \)的原函数是 _______。
10. 定积分\( \int_1^2 2x dx \)的值是 _______。
## 三、解答题(每题30分,共60分)11. 求函数\( f(x) = x^3 - 6x^2 + 11x - 6 \)的导数,并求在x=2时的导数值。
数学必修一第一单元测试及答案一:单项选择题: (共10题,每小题5分,共50分)1. 下列各项中,不可以组成集合的是( )A.所有的正数B. 等于2的数C.接近于0的数D. 不等于0的偶数2. 下列四个集合中,是空集的是( )A.}33|{=+x xB.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x xD.},01|{2R x x x x ∈=+-3. 若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形4. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A 沿x 轴向右平移1个单位B 沿x 轴向右平移12个单位C 沿x 轴向左平移1个单位D 沿x 轴向左平移12个单位5. 下列函数中,在区间()0,1上是增函数的是( ) A.x y = B.x y -=3 C.x y 1= D.42+-=x y6. 已知全集U =Z ,{}1012A =-,,,,{}2B x x x ==,则)(B C A U 为( ) A.{}12-, B.{}10-, C.{}01, D.{}12,7. 设全集{1,2,3,4,5,6,7,8}U =,集合{1,3,5}S =,{3,6}T =,则=)(T S C U () A .∅ B .{2,4,7,8} C .{1,3,5,6} D .{2,4,6,8}8. 集合{1,2,3}的真子集共有( )A .5个B .6个C .7个D .8个 9. 设A={x 0152=+-∈px x Z },B={x 052=+-∈q x x Z },若A ⋃B={2,3,5},A 、B 分别为( ) A .{3,5}、{2,3} B .{2,3}、{3,5}C .{2,5}、{3,5}D .{3,5}、{2,5} 10.反函数是( ) A. B. C. D. 二:填空题: (共2题,每小题10分,共20分)1.函数0y =的定义域是_____________________2. 设全集U =R ,集合Q ={x |0<x <5},则C U Q=____三:解答题: (共2题,每小题10分,共20分)1. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.2. 设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;若φ=B A C U )(,求m 的值。
必修一数学第一章测试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是方程x^2 - 4x + 4 = 0的解?A. x = 2B. x = -2C. x = 1D. x = -1答案:A2. 函数y = 3x + 2的斜率是多少?A. 3B. 2C. -3D. -2答案:A3. 集合{1, 2, 3}和{3, 4, 5}的交集是什么?A. {1, 2, 3}B. {3, 4, 5}C. {3}D. {1, 2, 4, 5}答案:C4. 以下哪个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)答案:C5. 圆的标准方程是什么?A. (x - h)^2 + (y - k)^2 = r^2B. x^2 + y^2 = r^2C. x^2 + y^2 = 2rD. (x - h)^2 + (y - k)^2 = 2r答案:A6. 函数y = 2x - 1的图像经过哪一条直线?A. y = xB. y = -xC. y = 2xD. y = -2x答案:C7. 已知等差数列的首项a1 = 3,公差d = 2,那么第5项a5的值是多少?A. 13B. 11C. 9D. 7答案:A8. 函数y = x^2 - 6x + 8的顶点坐标是多少?A. (3, -1)B. (-3, 1)C. (3, 1)D. (-3, -1)答案:A9. 抛物线y = x^2 + 2x - 3的对称轴方程是什么?A. x = -1B. x = 1C. x = 2D. x = -2答案:B10. 函数y = sin(x)在区间[0, π]上是增函数还是减函数?A. 增函数B. 减函数C. 非单调函数D. 常数函数答案:B二、填空题(每题5分,共30分)11. 已知函数f(x) = 2x^2 + 3x - 5,求f(-1)的值。
答案:-912. 已知等比数列的首项a1 = 2,公比q = 3,求第4项a4的值。
必修一数学第一章测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集的符号表示?A. NB. ZC. QD. R答案:D2. 函数y=f(x)的值域是指:A. 定义域B. 函数的表达式C. 函数的自变量D. 函数的取值范围答案:D3. 以下哪个命题是假命题?A. 存在x∈R,使得x²+1=0B. 对于任意x∈R,x²+1>0C. 对于任意x∈R,x²+1≥0D. 存在x∈R,使得x²+1>1答案:A4. 集合{1,2,3}的子集个数是:A. 2B. 4C. 6D. 8答案:D5. 函数y=2x+1的图象是:A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A6. 以下哪个选项是函数y=x³-3x的导数?A. 3x²-3B. 3x²+3C. x²-3D. x³-3x答案:A7. 函数y=x²+2x+1的最小值是:A. 0B. 1C. -1D. 2答案:B8. 以下哪个选项是函数y=x²-4x+4的对称轴?A. x=2B. x=-2C. x=4D. x=-4答案:A9. 函数y=x³-3x+1的单调递增区间是:A. (-∞, 1)B. (1, +∞)C. (-∞, -1)D. (-1, +∞)答案:B10. 函数y=x²-6x+8的顶点坐标是:A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)答案:B二、填空题(每题4分,共20分)1. 函数y=x²-4x+c的顶点坐标为(2, c-4),则c的值为______。
答案:42. 函数y=x³-6x的导数为______。
答案:3x²-63. 函数y=x²+2x+1的对称轴方程为______。
答案:x=-14. 函数y=x³-3x的单调递减区间为______。
高数第一章测试一、选择题(每题5分)1、当x →0时,下列函数哪一个是其他三个的高阶无穷小( )A .x 2 B. 1-cos x C. x - tan x D. ln(1+x 2)答案:C;211cos ~2x x -,22ln(1)~x x +, 222222000011tan cos 11sin 1cos lim lim lim lim 022cos 2cos x x x x x x x x x x x x x x x→→→→---===-=, ∴该选(C )2、设当x →0时,(1-cos x )ln(1+x 2)是比x sin x n 高阶的无穷小,而x sin x n 是比(2x e )高阶的无穷小,则正整数n 为()A.1B.2C.3D.4答案:B ;因为当0x →时,224121(1cos )ln(1)sin ,(1)2n n x x x x x x x e x +-+-,,所以214n <+<满足题设条件的2n =。
故选B 。
3、设232)(-+=x x x f ,则当x →0时() A. )(x f 与x 是等价无穷小量 B. )(x f 与x 是同阶但非等价无穷小量C. )(x f 与比x 较高阶的无穷小量D. )(x f 与比x 较低阶的无穷小量 答案:B ;【解法1】ln 22ln32121ln 2(ln 2)2!131ln 3(ln 3)2!()232(ln 2ln 3)()x x x x x x e x x e x x f x x x ο==+++ ==+++∴=+-=++ 故0x →时()f x 与x 是同阶但非等价无穷小量。
【解法2】 000()2322ln 23ln 3lim lim lim ln 2ln 31x x x x x x x f x x x →→→+-+===+ ∴0x →时()f x 与x 是同阶但非等价无穷小量。
4、下列极限存在的是() A.x x x x 1arctan sin lim 0→ B. x x x x 1arctan sin lim 0→ C. x x x x 1arctan sin lim 0→ D. x x x x 1arctan sin lim 0→答案:A;因为00sin sin 11lim arctan (1)()lim arctan 12222x x x x x x x x ππππ-→→=--==⨯=+,。
高等数学第一章测试题测试题一:导数与求导法则1. 求以下函数的导数:(a) $y = 3x^4 - 2x^3 + 5x^2 - 7x + 4$(b) $y = \sqrt{2x^3 + 5x^2 - 3x + 1}$(c) $y = e^x \cdot \ln{x} + \frac{1}{\sqrt{x}}$2. 利用导数的定义计算以下函数在给定点处的导数:(a) $f(x) = 3x^2 + 2x + 1$,在点$x = 2$处的导数(b) $g(x) = \frac{1}{x^2}$,在点$x = -1$处的导数(c) $h(x) = \sin{x}$,在点$x = \frac{\pi}{4}$处的导数3. 根据给定函数的导数,确定函数的表达式:(a) 已知函数$f'(x) = 2x^3 - 3x^2 + 5x - 1$,求$f(x)$。
(b) 已知函数$g'(x) = \frac{1}{x^2} - 3x$,求$g(x)$。
(c) 已知函数$h'(x) = e^x \cdot \cos{x}$,求$h(x)$。
测试题二:微分与应用1. 计算以下函数在给定点处的微分:(a) $y = \sqrt{x^2 + 3x + 2}$,在点$x = 2$处的微分(b) $y = e^x \cdot \ln{x}$,在点$x = 1$处的微分(c) $y = \sin{x} \cdot \cos{2x}$,在点$x = \frac{\pi}{6}$处的微分2. 使用微分,求以下函数的近似值:(a) $f(x) = \sqrt[3]{x}$,当$x$接近于$8$时的近似值(b) $g(x) = \ln{(1 + x)}$,当$x$接近于$0$时的近似值(c) $h(x) = e^{2x}$,当$x$接近于$0$时的近似值3. 利用微分进一步求解以下问题:(a) 当物体从起点开始以速度$v(t) = 5t - 2$移动时,求$t = 3$时的位移。
第一章 函数与极限综合测试题A 卷一、填空题(每小题4分,共20分) 1、21lim(1)xx x→∞-= .2、当0x →+时,无穷小ln(1)Ax α=+与无穷小sin 3x β=等价,则常数A= .3、已知函数()f x 在点0x =处连续,且当0x ≠时,函数1()2x f x -=,则函数值 (0)f = . 4、111lim[]1223(1)n n n →∞+++⋅⋅+ = .5、若lim ()x f x π→存在,且sin ()2lim ()x xf x f x x ππ→=+-,则lim ()x f x π→= .二、选择题(每小题4分,共20分)1、当0x →+时, 无穷小量是 [ ].(A ) 1sin x x (B ) 1x e (C ) ln x (D) 1sin x x2、点1x =是函数311()1131x x f x x x x -<⎧⎪==⎨⎪->⎩的 [ ]. (A ) 连续点 (B ) 第一类非可去间断点 (C ) 可去间断点 (D) 第二类间断点 3、函数()f x 在点0x 处有定义是其在0x 处极限存在的 [ ]. (A ) 充分非必要条件 (B ) 必要非充分条件 (C ) 充要条件 (D) 无关条件4、已知极限22lim()0x x ax x→∞++=,则常数a 等于 [ ]. (A )1- (B )0 (C )1 (D) 2 5、极限201limcos 1x x e x →--等于 [ ].(A ) ∞ (B )2 (C )0 (D) 2- 三、解答题(共60分)1、(7分)计算极限 222111lim(1)(1)(1)23n n →∞--- . 2、(7分)求极限 3tan sin limx x xx →-. 3、(7分)求极限 123lim()21x x x x +→∞++. 4、(7分)求极限1x e →-5、(7分)设3214lim 1x x ax x x →---++ 具有极限l ,求,a l 的值.6、(8分)设3()32,()(1)n x x x x c x αβ=-+=-,试确定常数,c n ,使得()()x x αβ .7、(7分)试确定常数a ,使得函数21sin 0()0x x f x xa x x ⎧>⎪=⎨⎪+≤⎩在(,)-∞+∞内连续.8、(10分)设函数()f x 在开区间(,)a b 内连续,12a x x b <<<,试证:在开区间(,)a b 内至少存在一点c ,使得11221212()()()()(0,0)t f x t f x t t f c t t +=+>>.综合测试题A 卷答案一、填空题1、2e - 2、3 3、0 4、1 5、1 二、选择题1、(A )2、(C )3、(D )4、(A )5、(D ) 三、解答题1、原式=132411111lim()()()lim 223322n n n n n n n n →∞→∞-++⋅⋅⋅=⋅= .2、 原式=2322000sin 1sin 1cos 1cos 2lim lim lim cos cos 2x x x x x xx x x x x x x →→→--===.3、原式= 232lim (1)(1)lim(1)2121x x x x x x x eee →∞→∞+-++++===.4、原式=201sin 12lim 2x x xx →=.5、 因为1lim(1)0x x →-+=,所以 321lim(4)0x x ax x →---+=,因此 4a =,代入原式得321144(1)(1)(4)limlim 1011x x x x x x x x l x x →-→---++--===++. 6、 此时,()()x x αβ7、 当0x >时,()f x 连续,当0x <时,()f x 连续.20001lim ()lim sin 0,lim ()lim()x x x x f x x f x a x a x+-→→→→===+= 所以,当0a =时,()f x 在0x =连续,因此,当0a =时,()f x 在(,)-∞+∞内连续. 8、 因为()f x 在(,)a b 内连续,12a x x b <<<,所以 ()f x 在12[,]x x 上连续,由连续函数的最大值、最小值定理知,()f x 在12[,]x x 上存在最大值M 和最小值m,即在12[,]x x 上,()m f x M ≤≤,所以12112212()()()()t t m t f x t f x t t M +≤+≤+,又因为 120t t +>,所以32221()32(1)(2)(1)(2)3lim ,3,2(1)α→=-+=-+-+=∴==- x x x x x x x x c n c x c112212()()t f x t f x m M t t +≤≤+,由连续函数的介值定理知:存在12(,)(,)c x x a b ∈⊂,使得112212()()()t f x t f x f c t t +=+.第一章 函数与极限综合测试题B 卷一、填空题(每小题5分,共30分) 1、若()2110x x f x x x ++⎛⎫=≠ ⎪⎝⎭,则()f x =2、ln 12sin x x →+=3、102lim arccos xx x π→⎛⎫= ⎪⎝⎭4、limn →∞⋅=5、121limn n n n n n ββαααβ→∞⎡-⎤⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 6、()lim 1txtxt x e f x e →+∞+=+,()f x 的间断点是二、选择题(每小题5分,共30分)1、(),012,12,12x x f x x x x <<⎧⎪==⎨⎪-<≤⎩的连续区间为 [ ] .(A )[]0,2; (B )()0,2; (C )[)(]0,11,2 ; (D )()(]0,11,2 .2、01sinlimsin x x x x→的值为 [ ]. (A )1 (B )∞ (C )不存在 (D )0.3、若222lim 22x x ax bx x →++=--,则必有 [ ]. (A )2,8a b == (B )2,5a b == (C )0,8a b ==- (D )2,8a b ==-. 4、若0x →时,()f x 为无穷小,且()f x 是2x 的高阶无穷小, 则()20limsin x f x x→= [ ].(A )0 (B )1 (C )∞ (D )12. 5、()11121arccot1xxe f x xe-=+,则0x =是()f x 的 [ ]. (A )可去间断点 (B )跳跃间断点 (C )无穷间断点 (D )振荡间断点.6、(),0,0x e x f x a x x ⎧<=⎨+≥⎩,要使()f x 在0x =处连续,则a = [ ].(A )2 (B )1 (C )0 (D )1-. 三、计算题(每小题6分,共30分) 1、求13521lim 2482n n n →∞-⎛⎫++++⎪⎝⎭ .2、讨论函数()221lim1nn n x f x x x →∞-=+的连续性,若有间断点,判别其类型. 3、设()()()4,1,2122,1x ax bx x x x f x x ⎧++≠≠-⎪-+=⎨⎪=⎩在1x =处连续,求,a b 的值.4、求22212lim 12n n n n n n n n n →∞⎛⎫+++⎪++++++⎝⎭ . 5、求()()222ln sin limln 2x xx x e x e x x→+---.四、证明题(共10分)1、若()f x 在[],a b 上连续,12n a x x x b <<<<< ,证明:在[]1,n x x 上必有ξ,使()()()()121n f f x f x f x nξ=+++⎡⎤⎣⎦ .综合测试B 卷答案一、填空题1、()20x x x -≠; 2、2; 3、2e π-; 4、2; 5、2βα+; 6、0x =二、选择题1、(D)2、(C)3、(D)4、(A)5、(B)6、(B) 三、计算题 1、()12121231,2,222n n n n n n n --++=-= ,13521lim 3.2482n n n →∞-⎛⎫++++= ⎪⎝⎭2、()22,11lim0,11,1nnn x x x f x x x x x x →∞⎧->⎪-===⎨+⎪<⎩,1x =±也是第一类(跳跃)间断点.3、,2,3a b ==-.4、()()221111221n n n n n x n n n n n ++≤≤++++,由夹逼准则1lim 2n n x →∞=. 5、 原式()()222222002sin ln 1ln sin ln lim lim ln ln ln 1x x x x x x x x x x e e e x e x e e →→⎛⎫+ ⎪+-⎝⎭==⎛⎫--- ⎪⎝⎭2222222000sin sin lim lim lim 1x x xx x x x x e x x e e x e xx --→→→==-=-=-- . 四、证明题因为()f x 在[],a b 上连续,[][]1,,n x x a b ⊂,故()f x 在[]1,n x x 上连续,因而在[]1,n x x 上()f x 必有最大值M 和最小值m .于是()(),1,2,i m f x Mi n ≤≤= ,作和,有()1ni i nm f x nM =≤≤∑,于是()11ni i m f x M n =≤≤∑.由介值定理的推论,[]1,n x x 上连续的函数()f x 必取得介于最大值M 与最小值m 之间的任何值,即存在[]1,n x x ξ∈,使()()11ni i f f x n ξ==∑.。