2016年重庆巴蜀中学高三理科一诊模拟考试数学试卷
- 格式:docx
- 大小:547.23 KB
- 文档页数:12
重庆市巴蜀中学2016届高三上学期一诊模拟考试(理)数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果复数i a a a a z )23(222+-+-+=为纯虚数,那么实数a 的值为( ) A.-2 B.1 C.2 D.1或-22.已知集合{})4(log 22x y x A -==,{}12+==x y y B ,则=B A ( ) A.φ B.(1,3) C. ),1(+∞ D.(1,2)3.直线l 过点(0,2),被圆0964:22=+--+y x y x C 截得的弦长为32,则直线l 的方程是( ) A.234+=x y B.231+-=x y C.y=2 D. 234+=x y 或y=2 4.执行如图所示的程序框图后,输出的结果为( ) A.87 B.109 C.98 D.1110 5.已知各项不为0的等差数列{}n a 满足0328274=+-a a a ,数列{}n b 是等比数列,且77a b =,则1083b b b =( ) A.1 B.8 C.4 D.26.已知函数f(x)是定义在),(+∞-∞上的奇函数,若对于任意的实0≥x ,都有)()2(x f x f =+,且当)2,0[∈x 时,)1(log )(2+=x x f ,则)2016()2015()2014(f f f +-+的值为( )A.-1B.-2C.2D.17.对于函数f(x)=xcosx ,现有下列命题:①函数f(x)是奇函数;②函数f(x)的最小正周期是π2;③点)0,2(π是函数f(x)的图象的一个对称中心;④函数f(x)在区间]4,0[π上单调递增.其中是真命题的为( )A.②④B.①④C.②③D.①③9.在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知b c a =-22,且C A C A sin cos 2)sin(=-,则b =( )A.6B.4C.2D.110.已知正三棱锥V-ABC 的正视图、侧视图和俯视图如图所示,则该正三棱锥侧视图的面积是( )A.39B.36C.38D.611.抛物线)0(22>=p px y 的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB=120°.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则ABMN 的最大值为( )A.2B.33 C.1 D.332 12.若函数f(x)在[a ,b ]上的值域为]2,2[ba ,则称函数f(x)为“和谐函数”.下列函数中:①411)(+-=x x g ;②)81)21((log )(21+=x x h ;③x x p 1)(=;④x x q ln )(=.“和谐函数”的个数为( )A.1个B.2个C.3个D.4个第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数⎩⎨⎧≤>=,0,2,0,log )(3x x x x f x 则=)))31(((f f f _______.14.二项式)()212(*∈-N n xx n的展开式中,二项式系数最大的项是第4项,则其展开式中的常数项是_____.15.△ABC 中,∠A=120°,∠A 的平分线AD 交边BC 于D ,且AB=2,CD=2DB ,则AD 的长为_____.16.A ,B ,C ,D 四点在半径为225的球面上,且AC=BD=5,AD=BC=41,AB=CD ,则三棱锥D-ABC 的体积是______.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知数列{}n a 的首项11=a ,且满足)(0)1(11*++∈=+-N n a a a n n n .(1)求数列{}n a 的通项公式;(2)设nnn a c 3=,求数列{}n c 的前n 项和n S .18.(本小题满分12分)某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),...,[90,100]后得到如图所示的部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图,统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;‘(2)若从60名学生中随机抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.19.(本小题满分12分)如图,在直四棱柱1111D C B A ABCD -中,底面是边长为1的正方形,侧棱21=AA ,E 是侧棱1BB 的中点.(1)求证:平面E AD 1⊥平面E D A 11; (2)求二面角B AC E --1的正切值.20.(本小题满分12分)椭圆)0(1:2222>>=+b a by a x C ,作直线l 交椭圆于P ,Q 两点,M 为线段PQ 的中点,O为坐标原点,设直线l 的斜率为1k ,直线OM 的斜率为2k ,3221-=k k . (1)求椭圆C 的离心率;(2)设直线l 与x 轴交于点)0,3(-D ,且满足QD DP 2=,当△OPQ 的面积最大时,求椭圆C 的方程.21.(本小题满分12分) 已知函数1ln )(+-=kx x x f .(1)若0)(≤x f 恒成立,试确定实数k 的取值范围;(2)证明:)2,(410)11(1ln 154ln 83ln 32ln 22≥∈++<++-+⋅⋅⋅+++*n N n n n n n n n .请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】 已知曲线C 的参数方程为:θθθ(,sin ,cos 2⎩⎨⎧==y x 为参数),直线l 的参数方程为:t t y t x (,1,32⎩⎨⎧+=+=为参数),点P(2,1),直线l 与曲线C 交于A ,B 两点. (1)写出曲线C 和直线l 在直角坐标系下的标准方程; (2)求PB PA ⋅的值.23.(本小题满分10分)【选修4-5:不等式选讲】 (1)设函数a x x x f --++=21)(的定义域为R ,试求a 的取值范围;(2)已知实数x ,y ,z 满足x+2y+3z=1,求222z y x ++的最小值.参考答案一、选择题1-5 ADDCB 6-10 ABACD 11-12BC 二、填空题 13.21log 314.-20 15.3416.20 三、解答题 17.解:(1)整理得1111=-+nn a a , ....................................3分 所以n n a n =-+=)1(11,所以na n 1=. ....................................6分 (2)由(1)知,nn n c 3⋅=, ....................................7分n n n S 333323132⨯+⋅⋅⋅+⨯+⨯+⨯=,①143233)1(3332313+⨯+⨯-+⋅⋅⋅+⨯+⨯+⨯=n n n n n S ,② ....................................9分①-②有132333332+⨯-+⋅⋅⋅+++=-n nn n S ,解得:4334)12(1+⨯-=+n n n S . ....................................12分 18.解:(1)设分数在[70,80)内的频率为x ,根据频率分布直方图,则有110)005.0025.02015.001.0(=+⨯++⨯+x ,可得x=0.3.所以频率分布直方图如图所示. .....................................4分估计本次考试的平均分为7105.09525.0853.07515.06515.0551.045=⨯+⨯+⨯+⨯+⨯+⨯=x . ..........6分(2)学生成绩在[40,60)的有156025.0=⨯人,在[60,80)的有276045.0=⨯人,在[80,100]的有18603.0=⨯人,并且ξ的可能取值为0,1,2,3,4. ........7分则1187)0(260215===C C P ξ;11827)1(260127115===C C C P ξ,590207)2(260227118115=+==C C C C P ξ; 29581)3(260118127===C C C P ξ;59051)4(260218===C C P ξ. ..........................9分 所以ξ的分布列为...................................11分1.2590514295813590207211827111870)(=⨯+⨯+⨯+⨯+⨯=ξE . ........................12分 19.(1)证明:如图,在矩形11A ABB 中,E 为1BB 中点且21=AA ,AB=1, 所以21==E A AE ,所以AE A 1△为等腰直角三角形,AE EA ⊥1. .......................................2分在直四棱柱1111D C B A ABCD -中,因为底面是边长为1的正方形, 所以⊥11D A 平面11ABB A . 又因为⊂AE 平面11ABB A ,所以AE D A ⊥11,所以⊥AE 平面E D A 11. ........................4分又因为⊂AE 平面E AD 1,所以平面E AD 1⊥平面E D A 11. ....................6分(2)解:方法一:因为AB ⊥平面11BCC B ,所以平面1ABC ⊥平面11BCC B ,所以只需在平面11BCC B 内过点E 作EF ⊥1BC 于F ,而EF ⊥平面1ABC . 如图,过F 作FG ⊥1AC 于G ,连接EG ,则∠EGF 就是二面角B AC E --1的平面角. .....................8分在1EBC △中,55211111=⋅==BC B C EB BC S EF EBC △, 所以5532211=-=EF E C F C . 在1ABC △中,1030sin 1111=⋅=∠⋅=AC AB F C G FC F C FG . ..................10分 在EFG RT △中,36tan ==∠FG EF EGF . 所以二面角B AC E --1的平面角的正切值大小为36. .................12分 方法二:以D 为原点,DA ,DC ,1DD 分别为x ,y ,z 轴建立如图所示的空间直角坐标系.由题意)2,0,1(1A ,E(1,1,1),)2,0,0(1D ,A(1,0,0),)2,1,0(1C ,C(0,1,0),B(1,1,0), (7)分)1,1,0(=AE ,)1,0,1(1-=E C ,设平面1AEC 的一个法向量为),,(z y x n =,则)1,1,1(00-=⇒⎩⎨⎧=-=+n z x z y ,同理可得,平面1ABC 的一个法向量为)1,0,2(=m , ..................10分 代入公式有:515353,cos =⋅>=<n m , 所以二面角B AC E --1的平面角的正切值大小为36. .................12分 20.解:(1)设),(11y x P ,),(22y x Q ,代入椭圆C 的方程有:1,1221221222222=+=+b y a x b y a x , .........................2分 两式相减:02212222122=-+-b y y a x x ,即0))(())((2121221212=+-++-by y y y a x x x x , 又⎪⎪⎩⎪⎪⎨⎧++=--=1212212121x x y y k x x y y k ,联立两个方程有322221-=-=a b k k , ........................4分解得:33==a c e . ..................5分 (2)由(1)知33==a c e ,得22222,3cbc a ==, 可设椭圆C 的方程为:222632c y x =+,设直线l 的方程为:3-=my x ,代入椭圆C 的方程有06634)32(222=-+-+c my y m , .............................6分因为直线l 与椭圆C 相交,所以0)66)(32(448222>-+-=∆c m m ,由韦达定理:3234221+=+m m y y ,32662221+-=m c y y .又QD DP 2=,所以212y y -=,代入上述两式有:329666222+-=-m m c , ...................8分所以32)66)(32(448232321222221+-+-=∆=-=∆m c m m a y y OD S OPQ..................9分2633211832182≤+=+=mm m m , .......................10分 当且仅当232=m 时,等号成立,此时52=c ,代入∆,有0>∆成立, 所以所求椭圆C 的方程为:1101522=+y x . .........................12分21.(1)解:由0)(≤x f 有:1ln +≥x kx , 即:x x k 1ln +≥,令x x x h 1ln )(+=, 0ln )(2=-='xxx h ,解得x=1, ........................2分在(0,1)上,0)(>'x h ;在),1(+∞上,0)(<'x h .所以h(x)在x=1时,取得最大值h(1)=1,即1≥k . ..................4分 (2)证明:由(1)知,当k=1时,1ln -≤x x ,当且仅当x=1时,取等号. 令)2,(2≥∈=*n N n n x ,有1ln 22-≤n n ,即2211ln 2nn n <<-, ..................6分 4)2)(1()32(211ln 154ln 83ln 32ln 2+-=+⋅⋅⋅++<-+⋅⋅⋅+++n n n n n ,① ...........9分 令n x 11+=,有3)11(1)11ln(<<+⇒<+e nn n n,② ...............11分①+②有:)2,(410)11(1ln 154ln 83ln 32ln 22≥∈++<++-+⋅⋅⋅+++*n N n n n n n n n . ......12分 22.解;(1)曲线C 的标准方程为:1222=+y x , 直线l 的标准方程为:0323=+--y x . ..........................5分(2)将直线l 的参数方程化为标准方程:⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 211232(t 为参数), ................6分 代入椭圆方程得:016)13(852=+++t t , ...........................8分 所以51621==⋅t t PB PA . ..........................10分 23.解:(1)由题设知,当R x ∈时,恒有021≥--++a x x , 即a x x ≥-++21,又321≥-++x x ,∴3≤a . ........................................5分(2)由柯西不等式1)32()321)((2222222=++≥++++z y x z y x , ∴141222≥++z y x , 当且仅当321z y x ==时,即141=x ,71=y ,143=z 时, 222z y x ++取最小值141. .........................10分。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果复数i a a a a z )23(222+-+-+=为纯虚数,那么实数a 的值为( ) A.-2 B.1 C.2 D.1或-2 【答案】A考点:复数的相关概念.2.已知集合{})4(log 22x y x A -==,{}12+==xy y B ,则=B A ( )A.φB.(1,3)C. ),1(+∞D.(1,2) 【答案】D 【解析】试题分析:由240x ->,得22x -<<,所以(2,2)A =-,又(1,)B =+∞,所以)2,1(=B A ,故选D .考点:1、函数的定义域与值域;2、集合的交集运算.3.直线l 过点(0,2),被圆0964:22=+--+y x y x C 截得的弦长为32,则直线l 的方程是( ) A.234+=x y B.231+-=x y C.2y = D. 234+=x y 或2y =【答案】D 【解析】试题分析:将圆C 的方程化为标准方程为:4)3()2(22=-+-y x ,所以圆心为(2,3),半径为2.由弦长公式L ==1d =.显然直线l 的斜率存在,设l 的方程为2y kx -=,即2y kx =+,则由点到直线的距离公式,得1d ==,解得0k =或34=k ,所以直线l 的方程为2y =或234+=x y ,故选D . 考点:1、点到直线的距离;2、弦长公式;3、直线的方程.【知识点睛】求直线与圆相交所得弦的长主要是有两种方法,一是直接利用弦长公式L =R 为圆的半径,d 为圆心到直线的距离,其次运用根与系数的关系及弦长公式:12|||AB x x =-4.执行如图所示的程序框图后,输出的结果为( )A.87 B.109 C.98 D.1110 【答案】C考点:程序框图.5.已知各项不为0的等差数列{}n a 满足0328274=+-a a a ,数列{}n b 是等比数列,且77a b =,则1083b b b =( )A.1B.8C.4D.2 【答案】B 【解析】试题分析:设等差数列的公差为d ,则由题意,得0)(3237277=++--d a a d a ,解得27=a 或07=a (舍去),所以33738107774()()8b b b b b q b q b q==,故选B . 考点:1、等差数列的通项公式;2、等比数列的通项公式.6.已知函数()f x 是定义在),(+∞-∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当)2,0[∈x 时,)1(log )(2+=x x f ,则)2016()2015()2014(f f f +-+的值为( )A.-1B.-2C.2D.1 【答案】A 【解析】试题分析:因为对于任意的实数0≥x ,都有)()2(x f x f =+,所以当0≥x ,()f x 是以2为周期的函数,又()f x 是定义在),(+∞-∞上的奇函数,所以(2014)(2015)(2016)f f f +-+=(2014)(2015)f f -+(2016)f =2(0)(1)(0)(1)log 21f f f f -+=-=-=-,故选A .考点:1、函数的奇偶性;2、周期函数.【知识点睛】(1)若函数()f x 为偶函数,则函数在y 轴两侧单调性相反;若函数()f x 为奇函数,则函数在原点两侧的单调性相同;(2)利用函数的奇偶性把研究整个函数具有的性质问题转化到只研究部分(一半)区间上的问题,是简化问题的一种途径.7.对于函数()cos f x x x =,现有下列命题:①函数()f x 是奇函数;②函数()f x 的最小正周期是π2;③点)0,2(π是函数()f x 的图象的一个对称中心;④函数()f x 在区间]4,0[π上单调递增,其中是真命题的为( ) A.②④ B.①④ C.②③ D.①③ 【答案】B考点:1、命题真假的判定;2、函数的奇偶性;3、利用导数研究函数的单调性;4、函数的图象与性质.8.设x y ,满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数)0,0(>>+=b a by ax z 的最大值为12,则ba 32+的最小值为( ) A.625B.38C.311D.4【答案】A 【解析】试题分析:作出x y ,满足约束条件下平面区域,如图所示,由图知当目标函数)0,0(>>+=b a by ax z 经过点()4,6A 取得最大值12,即4612a b +=,亦即236a b +=,所以232323()6a b a b a b ++=+=131325()666b a a b a b ++≥+=,当且仅当b a a b =,即65a b ==时等号成立,故选A .考点:1、简单的线性规划问题;2、基本不等式.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值,在哪个端点,目标函数取得最小值;已知ax by m +=﹙0,0,0a b m >>>﹚求(c 0,0)c dd x y+>>的最小值,通常转化为c d x y +=1()c dm x y+(ax by +),展开后利用基本不等式求解. 9.在ABC ∆中,内角A B C ,,的对边长分别为a b c ,,,已知b c a =-22,且sin()A C -=2cos sin A C ,则b =( )A.6B.4C.2D.1 【答案】C考点:1、两角和与差的正弦;2、正余弦定理.10.已知正三棱锥V ABC -的正视图、侧视图和俯视图如图所示,则该正三棱锥侧视图的面积是( )A.39B.36C.38D.6 【答案】D考点:1、棱锥的三视图;2、棱锥的侧面积.11.抛物线)0(22>=p px y 的焦点为F ,已知点A B ,为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则ABMN 的最大值为( )A.2B.33C.1D.332 【答案】B 【解析】试题分析:过A B ,分别作抛物线准线的垂线AQ BP ,,垂足分别为Q P ,,连接AF BF ,,设a AF =,b BF =,则由抛物线定义,得AQ a =,BP b =,所以2ba MN +=.在ABF ∆中由余弦定理得:222222cos120AB a b ab a b ab =+-︒=++,所以ABMN=a b+=,当且仅当a b =时等号成立,故选B .考点:1、抛物线的定义;2、余弦定理;3、基本不等式.12.若函数()f x 在[,]a b 上的值域为]2,2[ba ,则称函数()f x 为“和谐函数”.下列函数中:①411)(+-=x x g ;②)81)21((log )(21+=x x h ;③x x p 1)(=;④x x q ln )(=,“和谐函数”的个数为( )A.1个B.2个C.3个D.4个 【答案】C考点:1、新定义;2、函数的单调性.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数⎩⎨⎧≤>=,0,2,0,log )(3x x x x f x 则=)))31(((f f f _____________.【答案】21log 3 【解析】试题分析:1331111((()))((log ))((1))(2)()log 3322f f f f f f f f f -==-===. 考点:分段函数求值.【方法点睛】对于分段函数结合复合函数的求值问题,一定要先求内层函数的值,因为内层函数的函数值就是外层函数的自变量的值.另外,要注意自变量x 的取值对应着哪一段区间,就使用哪一段解析式,体现考纲中要求了解简单的分段函数并能应用. 14.二项式)()212(*∈-N n xx n的展开式中,二项式系数最大的项是第4项,则其展开式中的常数项是_________. 【答案】-20 【解析】试题分析:由题意知,展开式中有7项,6n =.因为r r r r rr r r x C xx C T 262666612)1()21()2(---+-=-=,令620r -=,得3r =,所以常数项为336(1)20C -=-.考点:二项式定理.15.ABC ∆中,120A ∠=︒,A ∠的平分线AD 交边BC 于D ,且2AB =,2CD DB =,则AD 的长为___________.【答案】34考点:余弦定理.【一题多解】由题意B C D ,,三点共线,且12=BD CD ,则1233AD AC AB =+,根据角平分线的性质21==CD BD AC AB ,所以4AC =,222221214416()339999AD AD AC AB AC AB AC AB ==+=++⋅=,所以34=AD .16.A B C D ,,,四点在半径为225的球面上,且5AC BD ==, AD BC =,AB CD =,则三棱锥D ABC -的体积是____________.【答案】20 【解析】试题分析:根据题意构造长方体,其面上的对角线构成三棱锥D ABC -,如图所示,设长方体的长、宽、高分别为a b c ,,,则有2222222254150a b a c a b c ⎧+=⎪+=⎨⎪++=⎩,解得4a =,3b =,5c =,所以三棱锥的体积为435⨯⨯-11443532⨯⨯⨯⨯⨯=20.考点:1、棱锥的体积;2、长方体的性质.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知数列{}n a 的首项11=a ,且满足)(0)1(11*++∈=+-N n a a a n n n . (1)求数列{}n a 的通项公式;(2)设nn n a c 3=,求数列{}n c 的前n 项和n S .【答案】(1)n a n 1=;(2)4334)12(1+⨯-=+n n n S .考点:1、等差数列的定义;2、数列的通项;3、错位相减法.【易错点睛】用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.18.(本小题满分12分)某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段 后得到如图所示的部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望. 【答案】(1)分数在的有18603.0=⨯人,并且ξ的可能取值为0,1,2,3,4. ......................7分则1187)0(260215===C C P ξ;11827)1(260127115===C C C P ξ,590207)2(260227118115=+==C C C C P ξ; 29581)3(260118127===C C C P ξ;59051)4(260218===C C P ξ. ..........................9分 所以ξ的分布列为...................................11分1.2590514295813590207211827111870)(=⨯+⨯+⨯+⨯+⨯=ξE . ........................12分考点:1、频率分布直方图;2、平均分;3、分布列;4、数学期望.19.(本小题满分12分)如图,在直四棱柱1111D C B A ABCD -中,底面是边长为1的正方形,侧棱21=AA ,E 是侧棱1BB 的中点.(1)求证:平面E AD 1⊥平面E D A 11; (2)求二面角B AC E --1的正切值. 【答案】(1)见解析;(2)36.试题解析:(1)证明:如图,在矩形11A ABB 中,E 为1BB 中点且21=AA ,1AB =,(2)解:方法一:因为AB ⊥平面11BCC B ,所以平面1ABC ⊥平面11BCC B ,所以只需在平面11BCC B 内过点E 作1EF BC ⊥于F ,而EF ⊥平面1ABC . 如图,过F 作1FG AC ⊥于G ,连接EG ,则EGF ∠就是二面角B AC E --1的平面角. .....................8分在1EBC ∆中,55211111=⋅==BC B C EB BC S EF EBC △, 所以5532211=-=EF E C F C . 在1ABC ∆中,1030sin 1111=⋅=∠⋅=AC AB F C G FC F C FG . ..................10分设平面1AEC 的一个法向量为),,(z y x =,则)1,1,1(00-=⇒⎩⎨⎧=-=+z x z y ,同理可得,平面1ABC 的一个法向量为)1,0,2(=, ..................10分 代入公式有:515353,cos =⋅>=<n m ,所以二面角B AC E --1的平面角的正切值大小为36. .................12分 考点:1、空间垂直关系的判定;2、二面角.20.(本小题满分12分)椭圆)0(1:2222>>=+b a by a x C ,作直线l 交椭圆于P Q ,两点,M为线段PQ 的中点,O 为坐标原点,设直线l 的斜率为1k ,直线OM 的斜率为2k ,3221-=k k .(1)求椭圆C 的离心率;(2)设直线l 与x 轴交于点)0,3(-D ,且满足QD DP 2=,当OPQ ∆的面积最大时,求椭圆C 的方程.【答案】(1)e =(2)1101522=+y x . 【解析】(2)由(1)知33==a c e ,得22222,3c b c a ==, 可设椭圆C 的方程为:222632c y x =+,设直线l 的方程为:3-=my x ,代入椭圆C 的方程有06634)32(222=-+-+c my y m ,.......6分因为直线l 与椭圆C 相交,所以0)66)(32(448222>-+-=∆c m m ,由韦达定理:3234221+=+m my y ,32662221+-=m c y y . 又2=,所以212y y -=,代入上述两式有:329666222+-=-m m c ,..........8分 所以32)66)(32(448232321222221+-+-=∆=-=∆m c m m a y y OD S OPQ..................9分2633211832182≤+=+=mm m m , .......................10分 当且仅当232=m 时,等号成立,此时52=c ,代入∆,有0>∆成立, 所以所求椭圆C 的方程为:1101522=+y x . .........................12分 考点:1、椭圆的几何性质;2、直线与椭圆的位置关系;3、基本不等式.【方法点睛】直线与圆锥曲线相交时,常常借助根与系数的关系解决弦长问题.直线方程与圆锥曲线方程联立,消去y 后得到关于x 的一元二次方程.当0∆>时,直线与圆锥曲线相交,设交点为11(,)A x y ,22(,)B x y ,直线AB 的斜率为k,则直线被圆锥曲线截得的弦长12||()AB x x =+21.(本小题满分12分)已知函数1ln )(+-=kx x x f . (1)若0)(≤x f 恒成立,试确定实数k 的取值范围;(2)证明:)2,(410)11(1ln 154ln 83ln 32ln 22≥∈++<++-+⋅⋅⋅+++*n N n n n n n n n . 【答案】(1)1≥k ;(2)见解析.考点:1、导数与最值的关系;2、不等式恒成立问题.【方法点睛】由函数的极值、最值逆求参数的值(或取值范围)问题,往往需要对参数进行分类讨论,如何划分参数讨论的区间成为思维的难点.由于这类问题涉及函数的单调区间,因此分类的标准是使函数在指定的区间内其导数()f x '的符号能够确定为正或为负. 请从下面所给的22 , 23 ,24三题中任选一题做答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)【选修4-1:几何证明选讲】如图,在ABC ∆中,DC AB ⊥于D ,BE AC ⊥于E ,BE 交DC 于点F ,若3BF FC ==,2DF FE ==.(1)求证:AC AE AB AD ⋅=⋅; (2)求线段BC 的长度.【答案】(1)见解析;(2)30=BC .即3053532=⨯+⨯=⋅+⋅=BE BF CD CF BC , ........................8分 所以30=BC . . ..................10分 考点:1、四点共圆;2、割线定理.23.(本小题满分10分)【选修4-4:坐标系与参数方程】 已知曲线C 的参数方程为:θθθ(,sin ,cos 2⎩⎨⎧==y x 为参数),直线l 的参数方程为:t t y t x (,1,32⎩⎨⎧+=+=为参数),点()2,1P ,直线l 与曲线C 交于A B ,两点. (1)写出曲线C 和直线l 在直角坐标系下的标准方程; (2)求PB PA ⋅的值.【答案】(1)曲线C 的标准方程为:1222=+y x ;直线l 的标准方程为:0323=+--y x .(2)165.考点:1、参数方程与普通方程的互化;2、直线与椭圆的位置关系. 24.(本小题满分10分)【选修4-5:不等式选讲】 (1)设函数a x x x f --++=21)(的定义域为R ,试求a 的取值范围;(2)已知实数x y z ,,满足231x y z ++=,求222z y x ++的最小值. 【答案】(1)3≤a ;(2)141.考点:1、绝对值不等式的解法;2、柯西不等式.。
卷28 重庆巴蜀中学2016届高三一诊模拟考试【听力录音材料】Text 1M: Hurry up. Daddy is waiting outside in the taxi.W: Just a minute. I will take some food with us. I don’t care for the food on the plane.Text 2W: Excuse me, sir. How can I get to the nearest hospital? My son is seriously ill.M: Get into my car. I’ll take you to the hospital. Don’t worry. It’s not far from here.Text 3W: Do you happen to know what’s on after the news?M: I think it’s Animal Wor ld. Do you mind if we watch it?W: Um, can we watch the movie on Channel 6 instead?M: OK, that’s a good idea.Text 4W: What’s wrong with you, Jack? You are shaking all over.M: Our teacher wants to see me. I’m afraid I failed the exam again.W: You should have worked harder.Text 5M: Who is the best player in your school football team and basketball team?W: As I know, John is the most popular one in the football team, but Jack plays the best in the team. As for the basketball team, David is second to no one.Text 6W: Good afternoon, sir. When is the next train to London?M: Let me check. The next train to London departs at 11:30 am, half an hour from now.W: One ticket, please.M: OK. It costs 25 pounds.W: And here is 30 pounds. By the way, is food served in the train?M: Yes. Lunch is served at noon, just half an hour after you get on the train.W: Thanks.Text 7M: Nobody can stand this kind of heat.W: Yeah, we can’t even stay in the sun for five minutes.M: Anyway, I guess this afternoon there’s nothing we can do but stay at home.W: I guess so. I don’t want to be taken to the hospital on such a day. Do you have any advice for a person trying to keep cool?M: Drink a lot of liquids and spare yourself the worst of the heat!W: Yeah, you’re right. Let’s drink something. What do you have in the fridge?M: Oh, let me have a look. Do you want soda water, or apple juice?W: What else do you have?M: What about beer, a bottle of Tiger? It was produced one week ago.W: Great! That’s my favorite.Text 8W: I think we should take plenty of sun cream. It’ll be really hot.M: Sure I think we should buy a book called How to Travel the World on $50 a Day. It’ll have some good ideas about where to go and where to stay.W: Forget it, darling. We shouldn’t put too much in our backpacks. We won’t be able to carry it all.M: But a book isn’t that heavy, is it?W: OK. It’s up to you.M: Where should we go first, darling?W: I think we should go to Indonesia first. I’ve got some friends there who can pick us up.M: Great! Then we can fly to Australia and America. Australia is a fantastic country.W: I think we should go to Australia by ship. It’ll be cheaper than flying.M: All right. It’s a little slow, but we can enjoy beautiful scenery.Text 9W: OK. They were t he last customers, so we’re done for the evening. How did you find it?M: I enjoyed it.W: Oh good. I think it went really well on the whole and you’re very friendly and natural with the customers. And you serve the dessert quickly.M: Thank you.W: Well, there’re just a few little things. First, once people at the table have finished, can you just make sure you clear the plates as soon as possible? This way they can have a bit of space and have some time to just chat a bit.M: OK. I’ll make sure I do it ne xt time.W: And um, it’d be really good that you could just try to keep the water glasses filled. Just fill them if you notice that they’re empty as you’re walking around or when you’re taking orders. M: Oh, I thought if I do that, probably I’ll just inter rupt them.W: No, it’s fine if you can just very quietly go over and fill them. However, it gets easier as you go on. The first night’s always the most difficult one. You did really well.Text 10Let’s first talk about the importance of exercise. Many people today live a “modern” life. You may, for instance, drive to work, sit in an office all day, then drive home and spend the evening watching TV. That kind of lifestyle is not very healthy. In fact, it can lead to all kinds of health problems. One of the most common problems is heart disease, but other common results are being overweight and having high blood pressure.Let me suggest some ways to exercise. In the first place, you should start exercising slowly, 15 to 20 minutes each day, and slowly increase your amount of exercise. In this way you can avoid injury. Another thing is to choose an activity you enjoy, and one you’ll stick to. In general,exercising is much more fun if you do it with other people.。
2016年重庆一中高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|y=ln(1﹣x)},集合N={y|y=e x,x∈R(e为自然对数的底数)},则M∩N=()A.{x|x<1} B.{x|x>1} C.{x|0<x<1}D.∅2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣C.D.﹣3.设平面α与平面β相交于直线l,直线a在平面α内,直线b在平面β内,且b⊥l,则“a ⊥b”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若f(x)为偶函数,且当x∈[0,+∞)时,f(x)=,则不等式f(x﹣1)<1的解集为()A.{x|0<x<2}B.{x|﹣1<x<1}C.{x|0<x<1}D.{x|﹣2<x<2}5.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺,容纳米2000斛(1丈=10尺,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面周长约为()A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺6.设点O是边长为1的正△ABC的中心(如图所示),则(+)•(+)=()A.B.﹣C.﹣D.7.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为()A.B.C.D.8.设实数x,y满足约束条件,已知z=2x+y的最大值是7,最小值是﹣26,则实数a的值为()A.6 B.﹣6 C.﹣1 D.19.如图,把圆周长为1的圆的圆心C 放在y 轴上,顶点A (0,1),一动点M 从A 开始逆时针绕圆运动一周,记=x ,直线AM 与x 轴交于点N (t ,0),则函数t=f (x )的图象大致为( )A .B .C .D .10.一个几何体的三视图如图所示,该几何体的体积为( )A .B .C .D .11.已知F 是双曲线C :﹣=1(a >0,b >0)的右焦点,O 是双曲线C 的中心,直线y=x 是双曲线C 的一条渐近线,以线段OF 为边作正三角形AOF ,若点A 在双曲线C 上,则m 的值为( )A .3+2B .3﹣2C .3+D .3﹣12.设函数f (x )=ax 3+bx 2+cx +d 有两个极值点x 1,x 2,若点P (x 1,f (x 1))为坐标原点,点Q (x 2,f (x 2))在圆C :(x ﹣2)2+(y ﹣3)2=1上运动时,则函数f (x )图象的切线斜率的最大值为( )A .3+B .2+C .2+D .3+二、填空题:本大题共4小题,每小题5分.13.已知函数y=f (x +1)﹣1(x ∈R )是奇函数,则f (1)= .14.在二项式(+2x)n的展开式中,前3项的二项式系数之和等于79,则展开式中x4的系数为.15.已知直线l1:x+2y=a+2和直线l2:2x﹣y=2a﹣1分别与圆(x﹣a)2+(y﹣1)2=16相交于A,B和C,D,则四边形ABCD的内切圆的面积为.16.在四边形ABCD中,AB=7,AC=6,,CD=6sin∠DAC,则BD的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n}中,a1=1,a2=3,其前n项和为S n,且当n≥2时,a n+1S n﹣a n S n=0.﹣1(1)求证:数列{S n}是等比数列,并求数列{a n}的通项公式;(2)令b n=,记数列{b n}的前n项和为T n,求T n.18.某班级举办知识竞赛活动,现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表:(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);(2)决赛规则如下:为每位参加决赛的选手准备4道判断题,选手对其依次口答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对1道,则获得二等奖.某同学进入决赛,每道题答对的概率p的值恰好与频率分布表中不少于80分的频率的值相同.(1)求该同学恰好答满4道题而获得一等奖的概率;2X X X的数学期望.工人将如图所示的长方体ABCD ﹣EFGH材料切割成三棱锥H﹣ACF.(Ⅰ)若点M,N,K分别是棱HA,HC,HF的中点,点G是NK上的任意一点,求证:MG∥平面ACF;(Ⅱ)已知原长方体材料中,AB=2m,AD=3m,DH=1m,根据艺术品加工需要,工程师必须求出该三棱锥的高.(i)甲工程师先求出AH所在直线与平面ACF所成的角θ,再根据公式h=AH•sinθ求出三棱锥H﹣ACF的高.请你根据甲工程师的思路,求该三棱锥的高.(ii)乙工程师设计了一个求三棱锥的高度的程序,其框图如图所示,则运行该程序时乙工程师应输入的t的值是多少?(请直接写出t的值,不要求写出演算或推证的过程).20.已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足|+|=•(+)+2.(1)求曲线C的方程;(2)动点Q(x0,y0)(﹣2<x0<2)在曲线C上,曲线C在点Q处的切线为直线l:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE 的面积之比是常数?若存在,求t的值.若不存在,说明理由.21.已知函数f(x)=aln(x+b),g(x)=ae x﹣1(其中a≠0,b>0),且函数f(x)的图象在点A(0,f(0))处的切线与函数g(x)的图象在点B(0,g(0))处的切线重合.(1)求实数a,b的值;(2)记函数φ(x)=xf(x﹣1),是否存在最小的正常数m,使得当t>m时,对于任意正实数x,不等式φ(t+x)<φ(t)•e x恒成立?给出你的结论,并说明结论的合理性.[选修4-1:几何证明选讲]22.如图,已知AB=AC,圆O是△ABC的外接圆,CD⊥AB,CE是圆O的直径.过点B 作圆O的切线交AC的延长线于点F.(Ⅰ)求证:AB•CB=CD•CE;(Ⅱ)若,,求△ABC的面积.[选修4-4:坐标系与参数方程]23.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,且曲线C的左焦点F 在直线l上.(Ⅰ)若直线l与曲线C交于A、B两点.求|FA|•|FB|的值;(Ⅱ)设曲线C的内接矩形的周长为P,求P的最大值.[选修4-5:不等式选讲]24.已知函数f(x)=|x+a|+|2x﹣1|(a∈R).(l)当a=1,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含[,1],求a的取值范围.2016年重庆一中高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|y=ln(1﹣x)},集合N={y|y=e x,x∈R(e为自然对数的底数)},则M∩N=()A.{x|x<1} B.{x|x>1} C.{x|0<x<1}D.∅【考点】对数函数的定义域;交集及其运算.【分析】分别求出M、N的范围,在求交集.【解答】解:∵集合M={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},N={y|y=e x,x∈R(e为自然对数的底数)}={y|y>0},∴M∩N={x|0<x<1},故选C.2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣C.D.﹣【考点】复数的基本概念.【分析】复数z=sinθ﹣+(cosθ﹣)i是纯虚数,可得sinθ﹣=0,cosθ﹣≠0,可得cosθ,即可得出.【解答】解:∵复数z=sinθ﹣+(cosθ﹣)i是纯虚数,∴sinθ﹣=0,cosθ﹣≠0,∴cosθ=﹣.则tanθ==﹣.故选:B.3.设平面α与平面β相交于直线l,直线a在平面α内,直线b在平面β内,且b⊥l,则“a ⊥b”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】分析题可知:在题目的前提下,由“a⊥b”不能推得“α⊥β”,由面面垂直的性质定理可由“α⊥β”推出“a⊥b”,从而可得答案.【解答】解:由题意可得α∩β=l,a⊂α,b⊂β,若再满足a⊥b,则不能推得α⊥β;但若满足α⊥β,由面面垂直的性质定理可得a⊥b故“a⊥b”是“α⊥β”的必要不充分条件.故选B4.若f(x)为偶函数,且当x∈[0,+∞)时,f(x)=,则不等式f(x﹣1)<1的解集为()A.{x|0<x<2}B.{x|﹣1<x<1}C.{x|0<x<1}D.{x|﹣2<x<2}【考点】其他不等式的解法.【分析】由条件利用函数的单调性以及图象的对称性可得﹣1<x﹣1<1,由此求得x的范围.【解答】解:∵f(x)为偶函数,且当x∈[0,+∞)时,f(x)=,故f(x)在[0,+∞)上单调递增,在(﹣∞,0]上单调递减.则由不等式f(x﹣1)<1,结合函数的单调性可得|x﹣1|<1,即﹣1<x﹣1<1,求得0<x <2,故选:A.5.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺,容纳米2000斛(1丈=10尺,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面周长约为()A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺【考点】旋转体(圆柱、圆锥、圆台).【分析】设圆锥的底面半径为r,由题意和圆柱的体积公式列出方程,求出r,由圆的周长公式求出圆柱底面周长.【解答】解:设圆锥的底面半径为r,由题意得,πr2×13=2000×1.62,解得r≈9(尺),所以圆柱底面周长c=2πr≈54(尺)=5丈4尺,故选:B.6.设点O是边长为1的正△ABC的中心(如图所示),则(+)•(+)=()A.B.﹣C.﹣D.【考点】平面向量数量积的运算.【分析】根据三角形的重心的性质及向量加法平行四边形法则、向量数乘的几何意义便可得出,,从而根据条件进行向量数量积的运算即可求出的值.【解答】解:根据重心的性质,,=;又;∴====.故选C.7.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】分别计算奖票的所有排列情况和第四次活动结束的抽取方法即可.【解答】解:将5张奖票不放回地依次取出共有A=120种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票.共有3A A=36种取法,∴P==.故选:C.8.设实数x,y满足约束条件,已知z=2x+y的最大值是7,最小值是﹣26,则实数a的值为()A.6 B.﹣6 C.﹣1 D.1【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得a值.【解答】解:先作出对应的平面区域如图,∵z=2x+y的最大值是7,最小值是﹣26,∴作出2x+y=7和2x+y=﹣26的图象,由图象知2x+y=7与x+y﹣4=0相交于C,2x+y=﹣26与3x﹣2y+4=0相交于B,由得,即C(3,1),由得,即B(﹣8,﹣10),∵B,C同时在直线x﹣ay﹣2=0上,∴得,得a=1,故选:D.9.如图,把圆周长为1的圆的圆心C放在y轴上,顶点A(0,1),一动点M从A开始逆时针绕圆运动一周,记=x,直线AM与x轴交于点N(t,0),则函数t=f(x)的图象大致为()A .B .C .D .【考点】函数的图象.【分析】根据动点移动过程的规律,利用单调性进行排除即可得到结论.【解答】解:当x 由0→时,t 从﹣∞→0,且单调递增,由→1时,t 从0→+∞,且单调递增,∴排除A ,B ,C ,故选:D .10.一个几何体的三视图如图所示,该几何体的体积为( )A .B .C .D .【考点】由三视图求面积、体积.【分析】根据三视图知该几何体是四棱锥,且是棱长为2的正方体一部分,画出直观图,由正方体的性质、分割法、柱体和椎体的体积公式求出该几何体的体积.【解答】解:根据几何体的三视图得:该几何体是四棱锥M ﹣PSQN ,且四棱锥是棱长为2的正方体的一部分,直观图如图所示:由正方体的性质得,所以该四棱锥的体积为:V=V 三棱柱﹣V 三棱锥=×22×2﹣××22×2=,故选A .11.已知F是双曲线C:﹣=1(a>0,b>0)的右焦点,O是双曲线C的中心,直线y=x是双曲线C的一条渐近线,以线段OF为边作正三角形AOF,若点A在双曲线C 上,则m的值为()A.3+2B.3﹣2C.3+D.3﹣【考点】双曲线的简单性质.【分析】根据正三角形的性质,结合双曲线的性质求出,m=,A(c,c),将A 点的坐标代入双曲线方程可得到关于m的方程,进行求解即可.【解答】解:∵F(c,0)是双曲线C:﹣=1(a>0,b>0)的右焦点,直线y=是双曲线C的一条渐近线,又双曲线C的一条渐近线为y=x,∴m=,又点A在双曲线C上,△AOF为正三角形,∴A(c,c),∴﹣=1,又c2=a2+b2,∴﹣=1,即+m﹣﹣=1,∴m2﹣6m﹣3=0,又m>0,∴m=3+2.故选:A.12.设函数f(x)=ax3+bx2+cx+d有两个极值点x1,x2,若点P(x1,f(x1))为坐标原点,点Q(x2,f(x2))在圆C:(x﹣2)2+(y﹣3)2=1上运动时,则函数f(x)图象的切线斜率的最大值为()A.3+B.2+C.2+D.3+【考点】利用导数研究函数的极值.【分析】先求出c=0,d=0,得到x2=﹣>0,f(x2)=>0,判断出a<0,b>0,得到k max=,根据二次函数的性质求出的最大值,从而求出k的最大值即可.【解答】解:f′(x)=3ax2+2bx+c,若点P(x1,f(x1))为坐标原点,则f′(0)=0,f(0)=0,故c=0,d=0,∴f′(x)=3ax2+2bx=0,解得:x2=﹣,∴f(x2)=,又Q(x2,f(x2))在圆C:(x﹣2)2+(y﹣3)2=1上,∴x2=﹣>0,f(x2)=>0,∴a<0,b>0,∴k max=﹣=,而表示⊙C上的点Q与原点连线的斜率,由,得:(1+k2)x2﹣(6k+4)x+12=0,得:△=0,解得:k=,∴的最大值是2+,∴k max=3+,故选:D.二、填空题:本大题共4小题,每小题5分.13.已知函数y=f(x+1)﹣1(x∈R)是奇函数,则f(1)=1.【考点】函数奇偶性的性质.【分析】直接利用函数的奇偶性的性质求解即可.【解答】解:函数y=f(x+1)﹣1(x∈R)是奇函数,可知x=0时,y=0,可得0=f(1)﹣1,则f(1)=1.故答案为:1.14.在二项式(+2x)n的展开式中,前3项的二项式系数之和等于79,则展开式中x4的系数为.【考点】二项式系数的性质.【分析】由=79,化简解出n=12.再利用二项式定理的通项公式即可得出.【解答】解:∵=79,化为n2+n﹣156=0,n∈N*.解得n=12.∴的展开式中的通项公式T r+1==22r﹣12x r,令r=4,则展开式中x4的系数==.故答案为:.15.已知直线l1:x+2y=a+2和直线l2:2x﹣y=2a﹣1分别与圆(x﹣a)2+(y﹣1)2=16相交于A,B和C,D,则四边形ABCD的内切圆的面积为8π.【考点】直线与圆的位置关系.【分析】由直线方程判断出两条直线垂直,联立后求出交点坐标后可得:交点是圆心,求出四边形ABCD的边长和形状,再求出内切圆的半径和面积.【解答】解:由题意得直线l1:x+2y=a+2和直线l2:2x﹣y=2a﹣1,则互相垂直,由得,,∴直线l1和直线l2交于点(a,1),∵圆(x﹣a)2+(y﹣1)2=16的圆心是(a,1),∴四边形ABCD是正方形,且边长是,则四边形ABCD的内切圆半径是2,∴内切圆的面积S==8π,故答案为:8π.16.在四边形ABCD中,AB=7,AC=6,,CD=6sin∠DAC,则BD的最大值为8.【考点】正弦定理.【分析】由CD=6sin∠DAC,可得CD⊥AD.点D在以AC为直径的圆上(去掉A,B,C).可得:当BD经过AC的中点O时取最大值,利用余弦定理可得:OB,可得BD的最大值=OB+AC.【解答】解:由CD=6sin∠DAC,可得CD⊥AD.∴点D在以AC为直径的圆上(去掉A,B,C).∴当BD经过AC的中点O时取最大值,OB2=32+72﹣2×3×7cos∠BAC=25,解得OB=5,∴BD的最大值=5+AC=8.故答案为:8.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n}中,a1=1,a2=3,其前n项和为S n,且当n≥2时,a n+1S n﹣a n S n=0.﹣1(1)求证:数列{S n}是等比数列,并求数列{a n}的通项公式;(2)令b n=,记数列{b n}的前n项和为T n,求T n.【考点】数列的求和;等比数列的通项公式.【分析】(1)利用递推关系与等比数列的通项公式即可证明.(2)当n≥2时,b n==,又.利用“裂项求和”方法即可得出.【解答】(1)证明:当n≥2时,a n+1S n﹣a n S n=0.﹣1∴,∴,又由S1=1≠0,S2=4≠0,可推知对一切正整数n均有S n≠0,则数列{S n}是等比数列,公比q==4,首项为1.∴.=3×4n﹣2,又a1=S1=1,当n≥2时,a n=S n﹣S n﹣1∴a n=.(2)解:当n≥2时,b n===,又.∴,则,当n≥2时,b n=,则,n=1时也成立.综上:.18.某班级举办知识竞赛活动,现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表:(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);(2)决赛规则如下:为每位参加决赛的选手准备4道判断题,选手对其依次口答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对1道,则获得二等奖.某同学进入决赛,每道题答对的概率p的值恰好与频率分布表中不少于80分的频率的值相同.(1)求该同学恰好答满4道题而获得一等奖的概率;X的数学期望.离散型随机变量及其分布列.【分析】(1)由频率分布表的性质和频率=能求出结果.(2)(1)先求出p=0.4,由此能求出该同学恰好答满4道题而获得一等奖的概率.(2)该同学答题个数为2,3,4,即X=2,3,4,分别求出相应的概率,由此能求出X的分布列和E(X).【解答】解:(1)由频率分布表的性质得:d==50,a==0.44,b=50﹣8﹣22﹣14=6,c==0.12.…(2)由(1)得p=0.4…(1)…(2)该同学答题个数为2,3,4,即X=2,3,4,,…X+4×0.648=3.488…19.某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如图所示的长方体ABCD ﹣EFGH材料切割成三棱锥H﹣ACF.(Ⅰ)若点M,N,K分别是棱HA,HC,HF的中点,点G是NK上的任意一点,求证:MG∥平面ACF;(Ⅱ)已知原长方体材料中,AB=2m,AD=3m,DH=1m,根据艺术品加工需要,工程师必须求出该三棱锥的高.(i)甲工程师先求出AH所在直线与平面ACF所成的角θ,再根据公式h=AH•sinθ求出三棱锥H﹣ACF的高.请你根据甲工程师的思路,求该三棱锥的高.(ii)乙工程师设计了一个求三棱锥的高度的程序,其框图如图所示,则运行该程序时乙工程师应输入的t的值是多少?(请直接写出t的值,不要求写出演算或推证的过程).【考点】点、线、面间的距离计算;程序框图;直线与平面平行的判定.【分析】(Ⅰ)证法一:利用线面平行的判定证明MK∥平面ACF,MN∥平面ACF,从而可得平面MNK∥平面ACF,利用面面平行的性质可得MG∥平面ACF;证法二:利用线面平行的判定证明MG∥平面ACF;(Ⅱ)(i)建立空间直角坐标系,求出平面ACF的一个法向量,求出AH所在直线与平面ACF所成的角θ,再根据公式h=AH•sinθ求出三棱锥H﹣ACF的高(ii)t=2.【解答】(Ⅰ)证法一:∵HM=MA,HN=NC,HK=KF,∴MK∥AF,MN∥AC.∵MK⊄平面ACF,AF⊂平面ACF,∴MK∥平面ACF,同理可证MN∥平面ACF,…∵MN,MK⊂平面MNK,且MK∩MN=M,∴平面MNK∥平面ACF,…又MG⊂平面MNK,故MG∥平面ACF.…证法二:连HG并延长交FC于T,连接AT.∵HN=NC,HK=KF,∴KN∥FC,则HG=GT,又∵HM=MA,∴MG∥AT,…∵MG⊄平面ACF,AT⊂平面ACF,∴MG∥平面ACF.…(Ⅱ)解:(i)如图,分别以DA,DC,DH所在直线为x轴,y轴,z轴建立空间直角坐标系O﹣xyz.则有A(3,0,0),C(0,2,0),F(3,2,1),H(0,0,1).…,.设平面ACF的一个法向量,则有,解得,令y=3,则,…∴,…∴三棱锥H﹣ACF的高为.…(ii)t=2.…20.已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足|+|=•(+)+2.(1)求曲线C的方程;(2)动点Q(x0,y0)(﹣2<x0<2)在曲线C上,曲线C在点Q处的切线为直线l:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE 的面积之比是常数?若存在,求t的值.若不存在,说明理由.【考点】圆锥曲线的轨迹问题;利用导数研究曲线上某点切线方程.【分析】(1)用坐标表示,,从而可得+,可求|+|,利用向量的数量积,结合M(x,y)满足|+|=•(+)+2,可得曲线C的方程;(2)假设存在点P(0,t)(t<0),满足条件,则直线PA的方程是y=,直线PB的方程是y=分类讨论:①当﹣1<t<0时,l∥PA,不符合题意;②当t≤﹣1时,,,分别联立方程组,解得D,E的横坐标,进而可得△QAB与△PDE的面积之比,利用其为常数,即可求得结论.【解答】解:(1)由=(﹣2﹣x,1﹣y),=(2﹣x,1﹣y)可得+=(﹣2x,2﹣2y),∴|+|=,•(+)+2=(x,y)•(0,2)+2=2y+2.由题意可得=2y+2,化简可得x2=4y.(2)假设存在点P(0,t)(t<0),满足条件,则直线PA的方程是y=,直线PB的方程是y=∵﹣2<x0<2,∴①当﹣1<t<0时,,存在x0∈(﹣2,2),使得∴l∥PA,∴当﹣1<t<0时,不符合题意;②当t ≤﹣1时,,,∴l 与直线PA ,PB 一定相交,分别联立方程组,,解得D ,E 的横坐标分别是,∴∵|FP |=﹣∴=∵∴=×∵x 0∈(﹣2,2),△QAB 与△PDE 的面积之比是常数∴,解得t=﹣1,∴△QAB 与△PDE 的面积之比是2.21.已知函数f (x )=aln (x +b ),g (x )=ae x ﹣1(其中a ≠0,b >0),且函数f (x )的图象在点A (0,f (0))处的切线与函数g (x )的图象在点B (0,g (0))处的切线重合. (1)求实数a ,b 的值;(2)记函数φ(x )=xf (x ﹣1),是否存在最小的正常数m ,使得当t >m 时,对于任意正实数x ,不等式φ(t +x )<φ(t )•e x 恒成立?给出你的结论,并说明结论的合理性. 【考点】利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值. 【分析】(1)求出f (x )的导数,求得切线的斜率和方程;求得g (x )的导数,求得切线的斜率和方程,由切线重合,可得方程,解得a ,b ;(2)等价变形可构造函数,则问题就是求m (t +x )<m (t )恒成立.求出m(x )的导数,令h (x )=lnx +1﹣xlnx ,求出导数,单调区间,运用零点存在定理可得h (x )的零点以及m (x )的单调性和最值,结合单调性,即可判断存在.【解答】解:(1)∵f(x)=aln(x+b),导数,则f(x)在点A(0,alnb)处切线的斜率,切点A(0,alnb),则f(x)在点A(0,alnb)处切线方程为,又g(x)=ae x﹣1,∴g'(x)=ae x,则g(x)在点B(0,a﹣1)处切线的斜率k=g'(0)=a,切点B(0,a﹣1),则g(x)在点B(0,a﹣1)处切线方程为y=ax+a﹣1,由,解得a=1,b=1;(2),构造函数,则问题就是求m(t+x)<m(t)恒成立.,令h(x)=lnx+1﹣xlnx,则,显然h'(x)是减函数,又h'(1)=0,所以h(x)在(0,1)上是增函数,在(1,+∞)上是减函数,而,h(1)=ln1+1﹣ln1=1>0,h(e)=lne+1﹣elne=1+1﹣e=2﹣e<0,所以函数h(x)=lnx+1﹣xlnx在区间(0,1)和(1,+∞)上各有一个零点,令为x1和x2(x1<x2),并且有在区间(0,x1)和(x2,+∞)上,h(x)<0,即m'(x)<0;在区间(x1,x2)上,h(x)>0,即m'(x)>0,从而可知函数m(x)在区间(0,x1)和(x2,+∞)上单调递减,在区间(x1,x2)上单调递增.m(1)=0,当0<x<1时,m(x)<0;当x>1时,m(x)>0,还有m(x2)是函数的极大值,也是最大值,题目要找的m=x2,理由:当t>x2时,对于任意非零正数x,t+x>t>x2,而m(x)在(x2,+∞)上单调递减,所以m(t+x)<m(t)一定恒成立,即题目要求的不等式恒成立;当0<t<x2时,取x=x2﹣t,显然m(t+x)=m(x2)>m(t),题目要求的不等式不恒成立,说明m不能比x2小;综合可知,题目所要求的最小的正常数m就是x2,即存在最小正常数m=x2,当t>m时,对于任意正实数x,不等式m(t+x)<m(t)•e x恒成立.[选修4-1:几何证明选讲]22.如图,已知AB=AC,圆O是△ABC的外接圆,CD⊥AB,CE是圆O的直径.过点B 作圆O的切线交AC的延长线于点F.(Ⅰ)求证:AB•CB=CD•CE;(Ⅱ)若,,求△ABC的面积.【考点】与圆有关的比例线段.【分析】(Ⅰ)连接AE,证明Rt△CBD∽Rt△CEA,结合AB=AC,即可证明:AB•CB=CD•CE;(Ⅱ)证明△ABF~△BCF,可得AC=CF,利用切割线定理有FA•FC=FB2,求出AC,即可求△ABC的面积.【解答】证明:(Ⅰ)连接AE,∵CE是直径,∴∠CAE=90°,又CD⊥AB,∴∠CDB=90°,∵∠CBD=∠CEA,故Rt△CBD∽Rt△CEA,…∴,∴AC•CB=CD•CE又AB=AC,∴AB•CB=CD•CE.…(Ⅱ)∵FB是⊙O的切线,∴∠CBF=∠CAB.∴在△ABF和△BCF中,,∴△ABF~△BCF,∴,∴FA=2AB=2AC,∴AC=CF…设AC=x,则根据切割线定理有FA•FC=FB2∴x•2x=8,∴x=2,∴.…[选修4-4:坐标系与参数方程]23.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,且曲线C的左焦点F 在直线l上.(Ⅰ)若直线l与曲线C交于A、B两点.求|FA|•|FB|的值;(Ⅱ)设曲线C的内接矩形的周长为P,求P的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)求出曲线C的普通方程和焦点坐标,将直线l的参数方程代入曲线C的普通方程利用根与系数的关系和参数的几何意义得出;(II)设矩形的顶点坐标为(x,y),则根据x,y的关系消元得出P关于x(或y)的函数,求出此函数的最大值.【解答】解:(I)曲线C的直角坐标方程为x2+3y2=12,即.∴曲线C的左焦点F的坐标为F(﹣2,0).∵F(﹣2,0)在直线l上,∴直线l的参数方程为(t为参数).将直线l的参数方程代入x2+3y2=12得:t2﹣2t﹣2=0,∴|FA|•|FB|=|t1t2|=2.(II)设曲线C的内接矩形的第一象限内的顶点为M(x,y)(0,0<y<2),则x2+3y2=12,∴x=.∴P=4x+4y=4+4y.令f(y)=4+4y,则f′(y)=.令f′(y)=0得y=1,当0<y<1时,f′(y)>0,当1<y<2时,f′(y)<0.∴当y=1时,f(y)取得最大值16.∴P的最大值为16.[选修4-5:不等式选讲]24.已知函数f(x)=|x+a|+|2x﹣1|(a∈R).(l)当a=1,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含[,1],求a的取值范围.【考点】绝对值不等式的解法.【分析】对第(1)问,利用零点分段法,令|x+1|=0,|2x﹣1|=0,获得分类讨论的标准,最后取各部分解集的并集即可;对第(2)问,不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,由此去掉一个绝对值符号,再探究f(x)≤2x的解集与区间[,1]的关系.【解答】解:(1)当a=1时,由f(x)≥2,得|x+1|+|2x﹣1|≥2,①当x≥时,原不等式可化为(x+1)+(2x﹣1)≥2,得x≥,∴x≥;②当﹣1≤x<时,原不等式可化为(x+1)﹣(2x﹣1)≥2,得x≤0,∴﹣1≤x≤0;③当x<﹣1时,原不等式可化为﹣(x+1)﹣(2x﹣1)≥2,得x≤,∴x<﹣1.综上知,原不等式的解集为{x|x≤0,或}.(2)不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,从而原不等式可化为|x+a|+(2x﹣1)≤2x,即|x+a|≤1,∴当x∈[,1]时,﹣a﹣1≤x≤﹣a+1恒成立,∴,解得,故a的取值范围是[﹣].2016年9月4日。
2015-2016学年重庆市巴蜀中学高三(上)期中数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共计60分,在每小题给出的四个选项中,只有一项符合题目要求)1.设集合,则A∩B=( )A.(﹣∞,1] B.[0,1] C.(0,1] D.(﹣∞,0)∪(0,1]2.设a,b∈R,则“a≥1且b≥1”是“a+b≥2”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知命题p:“∃x∈R,e x﹣x﹣1≤0”,则命题¬p( )A.∀x∈R,e x﹣x﹣1>0 B.∀x∉R,e x﹣x﹣1>0C.∀x∈R,e x﹣x﹣1≥0D.∃x∈R,e x﹣x﹣1>04.圆x2+y2﹣4x+2=0与直线l相切于点A(3,1),则直线l的方程为( )A.2x﹣y﹣5=0 B.x﹣2y﹣1=0 C.x﹣y﹣2=0 D.x+y﹣4=05.定义在R上的偶函数f(x)满足f(x)=f(x+2)=f(2﹣x),当x∈[3,4]时,f(x)=x﹣2,则( )A.f(1)>f(0)B.f(1)>f(4)C.D.6.函数的零点个数是( )A.0 B.l C.2 D.47.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于( ) A.2 B.3 C.6 D.98.已知实数x,y满足平面区域,则x2+y2的最大值为( ) A.B.1 C.D.89.已知函数是(﹣∞,+∞)上的减函数,那么a的取值范围是( )A.(1,3)B.(1,2] C.[2,3)D.(2,3)10.已知A,B,P是双曲线上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积,则该双曲线的离心率为( )A.B.C.D.11.函数y=的部分图象大致为( )A. B. C. D.12.已知函数f(x)=e x﹣ax有两个零点x1<x2,则下列说法错误的是( )A.a>e B.x1+x2>2C.x1x2>1 D.有极小值点x0,且x1+x2<2x0二、填空题(本大题共4小题,每小题5分,共计20分)13.定积分=__________.14.设函数,则使f(a)<0的实数a的取值范围是__________.15.已知a>0,b>0,且a+2b=1,则的最小值为__________.16.过点作直线交抛物线x2=2py(p>0)于A、B且M为A、B中点,过A、B分别作抛物线切线,两切线交于点N,若N在直线y=﹣2p上,则p=__________.三、解答题(本大题共6小题,17题10分,18-22题每题12分,共计70分)17.坐标系与参数方程已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(t是参数).(1)将曲线C的极坐标方程和直线l参数方程转化为普通方程;(2)若直线l与曲线C相交于A、B两点,且,试求实数m值.18.设函数(1)若f(1)>4,求a的取值范围;(2)证明f(x)≥2.19.设f(x)=alnx﹣x+4,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y 轴.(1)求a的值;(2)求函数f(x)在的最值.20.砷是广泛分布于自然界中的非金属元素,长期饮用高砷水会直接危害群众的身心健康和生命安全,而近水农村地区,水质情况更需要关注.为了解甲、乙两地区农村居民饮用水中砷含量的基本情况,分别在两地随机选取10个村子,其砷含量的调查数据如下(单位:ACC1A1):甲地区的10个村子饮用水中砷的含量:52 32 41 72 43 35 45 61 53 44乙地区的10个村子饮用水中砷的含量:44 56 38 61 72 57 64 71 58 62(Ⅰ)根据两组数据完成茎叶图,试比较两个地区中哪个地区的饮用水中砷含量更高,并说明理由;(Ⅱ)国家规定居民饮用水中砷的含量不得超过50,现医疗卫生组织决定向两个地区中每个砷超标的村子派驻一个医疗救助小组.用样本估计总体,把频率作为概率,若从乙地区随机抽取3个村子,用X表示派驻的医疗小组数,试写出X的分布列并求X的期望.21.已知椭圆C两焦点坐标分别为,,且经过点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点A(0,﹣1),直线l与椭圆C交于两点M,N.若△AMN是以A为直角顶点的等腰直角三角形,试求直线l的方程.22.已知f(x)=e2x+(1﹣2t)e x+t2(1)若g(t)=f(1),讨论关于t的函数y=g(t)在t∈[0,m](m>0)上的最小值;(2)若对任意的t∈R,x∈[0,+∞)都有f(x)≥ax+2﹣cosx,求a的范围.2015-2016学年重庆市巴蜀中学高三(上)期中数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共计60分,在每小题给出的四个选项中,只有一项符合题目要求)1.设集合,则A∩B=( )A.(﹣∞,1] B.[0,1] C.(0,1] D.(﹣∞,0)∪(0,1]【考点】交集及其运算.【专题】集合思想;定义法;集合.【分析】化简集合A、B,再求A∩B.【解答】解:∵集合A={x|x2≤1}={x|﹣1≤x≤1}=[﹣1,1],B={x|≥0}={x|x>0}=(0,+∞);∴A∩B=(0,1].故选:C.【点评】本题考查了集合的化简与简单运算问题,是基础题目.2.设a,b∈R,则“a≥1且b≥1”是“a+b≥2”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据充分条件和必要条件的定义结合不等式的关系进行判断即可.【解答】解:若a≥1且b≥1则a+b≥2成立,当a=0,b=3时,满足a+b≥2,但a≥1且b≥1不成立,即“a≥1且b≥1”是“a+b≥2”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件,比较基础.3.已知命题p:“∃x∈R,e x﹣x﹣1≤0”,则命题¬p( )A.∀x∈R,e x﹣x﹣1>0 B.∀x∉R,e x﹣x﹣1>0C.∀x∈R,e x﹣x﹣1≥0D.∃x∈R,e x﹣x﹣1>0【考点】特称命题;命题的否定.【专题】推理和证明.【分析】利用含逻辑连接词的否定是将存在变为任意,同时将结论否定,可写出命题的否定.【解答】解:∵命题p:“∃x∈R,e x﹣x﹣1≤0”,∴命题¬p:∀x∈R,e x﹣x﹣1>0,故选:A【点评】题考查特称命题、含逻辑连接词的否定形式,属于基础题.4.圆x2+y2﹣4x+2=0与直线l相切于点A(3,1),则直线l的方程为( )A.2x﹣y﹣5=0 B.x﹣2y﹣1=0 C.x﹣y﹣2=0 D.x+y﹣4=0【考点】直线与圆的位置关系.【专题】计算题.【分析】根据圆x2+y2﹣4x+2=0与直线l相切于点A(3,1),得到直线l过(3,1)且与过这一点的半径垂直,做出过这一点的半径的斜率,再做出直线的斜率,利用点斜式写出直线的方程.【解答】解:∵圆x2+y2﹣4x+2=0与直线l相切于点A(3,1),∴直线l过(3,1)且与过这一点的半径垂直,∵过(3,1)的半径的斜率是=1,∴直线l的斜率是﹣1,∴直线l的方程是y﹣1=﹣(x﹣3)即x+y﹣4=0故选D.【点评】本题考查直线与圆的位置关系,本题解题的关键是根据圆的切线具有的性质,做出圆的切线的斜率,本题是一个基础题.5.定义在R上的偶函数f(x)满足f(x)=f(x+2)=f(2﹣x),当x∈[3,4]时,f(x)=x﹣2,则( )A.f(1)>f(0)B.f(1)>f(4)C.D.【考点】抽象函数及其应用.【专题】计算题;数形结合;函数思想;函数的性质及应用.【分析】利用函数的周期性以及函数的奇偶性,结合函数的解析式求解即可.【解答】解:定义在R上的偶函数f(x)满足f(x)=f(x+2)=f(2﹣x),函数的周期为2,关于x=2对称,当x∈[3,4]时,f(x)=x﹣2,f(1)=f(3)=3﹣2=1,=f()=f()=f()=,f(0)=f(2)=f(4)=2.∴.故选:C.【点评】本题考查抽象函数的应用,函数值的求法,函数的奇偶性的应用,考查计算能力.6.函数的零点个数是( )A.0 B.l C.2 D.4【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】由f(x)=0,得,然后在坐标系中分别作出函数y=|log2x|,y=的图象,利用图象观察函数零点的个数.【解答】解:∵函数的定义域为{x|x>0},∴由f(x)=0,得,在坐标系中分别作出函数y=|log2x|,y=的图象如图:由图象可知两个函数只有两个交点,∴函数f(x)的零点个数为2个.故选:C【点评】本题主要考查函数零点的个数判断,利用数形结合的思想是解决本题的关键.7.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于( ) A.2 B.3 C.6 D.9【考点】函数在某点取得极值的条件;基本不等式.【专题】计算题.【分析】求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等.【解答】解:∵f′(x)=12x2﹣2ax﹣2b,又因为在x=1处有极值,∴a+b=6,∵a>0,b>0,∴,当且仅当a=b=3时取等号,所以ab的最大值等于9.故选:D.【点评】本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值需注意:一正、二定、三相等.8.已知实数x,y满足平面区域,则x2+y2的最大值为( )A.B.1 C.D.8【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用z的几何意义进行求解即可.【解答】解:作出不等式组对应的平面区域如图;设z=x2+y2的,则z的几何意义是区域内的点到原点的距离的平方,由图象知,OA的距离最大,由得,即A(2,2),即z=x2+y2的最大值为z=22+22=4+4=8,故选:D【点评】本题主要考查线性规划以及点到直线的距离的应用,利用数形结合是解决本题的关键.9.已知函数是(﹣∞,+∞)上的减函数,那么a的取值范围是( )A.(1,3)B.(1,2] C.[2,3)D.(2,3)【考点】函数单调性的性质.【专题】分类讨论;转化思想;分类法;函数的性质及应用.【分析】若函数是(﹣∞,+∞)上的减函数,则,解得a的取值范围.【解答】解:∵函数是(﹣∞,+∞)上的减函数,∴,解得:a∈[2,3),故选:C【点评】本题考查的知识点是分段函数的应用,正确理解分段函数的单调性,是解答的关键.10.已知A,B,P是双曲线上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积,则该双曲线的离心率为( )A.B.C.D.【考点】双曲线的简单性质;直线的斜率.【专题】计算题.【分析】根据双曲线的对称性可知A,B关于原点对称,设出A,B和P的坐标,把A,B点坐标代入双曲线方程可求得直线PA和直线PB的斜率之积,进而求得a和b的关系,进而根据a,b和c的关系求得a和c的关系即双曲线的离心率.【解答】解:根据双曲线的对称性可知A,B关于原点对称,设A(x1,y1),B(﹣x1,﹣y1),P(x,y),则,,.故选D【点评】本题主要考查了双曲线的简单性质.涉及了双曲线的对称性质,考查了学生对双曲线基础知识的全面掌握.11.函数y=的部分图象大致为( )A. B. C. D.【考点】对数函数的图像与性质.【专题】函数的性质及应用.【分析】判断奇偶性排除B,C,再利用特殊函数值判断即可得出答案.【解答】解:∵y=f(x)=,∴f(﹣x)===f(x),∴f(x)是偶函数,图象关于y轴对称,所以排除B,C.∵f(2)=>0,∴(2,f(2))在x轴上方,所以排除A,故选:D.【点评】本题考查了对数,指数函数的性质,奇函数的偶函数的图象性质,考查了学生对于函数图象的整体把握,属于中档题.12.已知函数f(x)=e x﹣ax有两个零点x1<x2,则下列说法错误的是( )A.a>e B.x1+x2>2C.x1x2>1 D.有极小值点x0,且x1+x2<2x0【考点】函数在某点取得极值的条件.【专题】计算题;导数的概念及应用.【分析】对四个选项分别进行判断,即可得出结论.【解答】解:∵f(x)=e x﹣ax,∴f′(x)=e x﹣a,令f′(x)=e x﹣a>0,①当a≤0时,f′(x)=e x﹣a>0在x∈R上恒成立,∴f(x)在R上单调递增.②当a>0时,∵f′(x)=e x﹣a>0,∴e x﹣a>0,解得x>lna,∴f(x)在(﹣∞,lna)单调递减,在(lna,+∞)单调递增.∵函数f(x)=e x﹣ax有两个零点x1<x2,∴f(lna)<0,a>0,∴e lna﹣alna<0,∴a>e,正确;又f(2)=e2﹣2a>0,∴x2>2,∴x1+x2>2,正确;f(0)=1>0,∴0<x1<1,x1x2>1,不正确;f(x)在(﹣∞,lna)单调递减,在(lna,+∞)单调递增,∴有极小值点x0=lna,且x1+x2<2x0=2lna,正确.故选:C.【点评】本题考查了利用导数求函数的极值,研究函数的零点问题,利用导数研究函数的单调性,对于利用导数研究函数的单调性,注意导数的正负对应着函数的单调性.二、填空题(本大题共4小题,每小题5分,共计20分)13.定积分=.【考点】定积分.【专题】计算题;导数的综合应用.【分析】首先求出被积函数的原函数,然后代入积分上限和下限求值.【解答】解:=()|=;故答案为:.【点评】本题考查了定积分的计算;找出被积函数的原函数是解答的关键.14.设函数,则使f(a)<0的实数a的取值范围是(0,1).【考点】分段函数的应用.【专题】计算题;分类讨论;函数的性质及应用.【分析】按分段函数的分类讨论f(a)的表达式,从而分别解不等式即可.【解答】解:若a≤0,则f(a)=≥1,故f(a)<0无解;若a>0,则f(a)=log2a<0,解得,0<a<1;综上所述,实数a的取值范围是(0,1).故答案为:(0,1).【点评】本题考查了分段函数的简单解法及分类讨论的思想应用.15.已知a>0,b>0,且a+2b=1,则的最小值为.【考点】基本不等式.【专题】不等式的解法及应用.【分析】利用“乘1法”和基本不等式的性质即可得出.【解答】解:∵a>0,b>0,且a+2b=1,∴=(a+2b)=3+=,当且仅当a=b时取等号.∴的最小值为.故答案为:.【点评】本题考查了“乘1法”和基本不等式的性质,属于基础题.16.过点作直线交抛物线x2=2py(p>0)于A、B且M为A、B中点,过A、B分别作抛物线切线,两切线交于点N,若N在直线y=﹣2p上,则p=.【考点】直线与圆锥曲线的关系.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】由抛物线x2=2py(p>0),得y′=,设A(x1,y1),B(x2,y2),过点A的切线方程为x1x=p(y+y1),过点B的切线方程为x2x=p(y+y2),由已知得点A,B在直线xx0=p(y0+y)上,由此能求出p的值.【解答】解:由抛物线x2=2py(p>0),得y′=,设A(x1,y1),B(x2,y2),∴过点A的切线方程为:y﹣y1=,即x1x=p(y+y1),同理求得过点B的切线方程为:x2x=p(y+y2),设N(x0,y0),∵过A、B分别作抛物线切线,两切线交于点N,∴,∴点A(x1,y1),B(x2,y2)在直线xx0=p(y0+y)上,∵直线AB过定点M(1,2),∴,∵N在直线y=﹣2p上,∴N(0,﹣2),∴p=.故答案为:.【点评】本题考查抛物线中参数p的值的求法,是中档题,解题时要认真审题,注意导数的几何意义的合理运用.三、解答题(本大题共6小题,17题10分,18-22题每题12分,共计70分)17.坐标系与参数方程已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(t是参数).(1)将曲线C的极坐标方程和直线l参数方程转化为普通方程;(2)若直线l与曲线C相交于A、B两点,且,试求实数m值.【考点】简单曲线的极坐标方程;直线与圆相交的性质;直线的参数方程.【专题】计算题.【分析】(Ⅰ)先将原极坐标方程ρ=2cosθ两边同乘以ρ后化成直角坐标方程,通过消去参数将直线l参数方程化成直线l的直角坐标方程;(Ⅱ)由(1)知:圆心的坐标为(2,0),圆的半径R=2,利用圆心到直线l的距离列出关于m的方程即可求得实数m值.【解答】解:(Ⅰ)曲线C的极坐标方程是ρ=4cosθ化为直角坐标方程为:x2+y2﹣4x=0直线l的直角坐标方程为:y=x﹣m(Ⅱ)由(1)知:圆心的坐标为(2,0),圆的半径R=2,∴圆心到直线l的距离,∴、∴m=1或m=3.【点评】本小题主要考查简单曲线的极坐标方程、直线的参数方程、直线与圆相交的性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.极坐标方程化成直角坐标方程关键是利用直角坐标与极坐标间的关系:ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.属于基础题.18.设函数(1)若f(1)>4,求a的取值范围;(2)证明f(x)≥2.【考点】绝对值不等式的解法.【专题】转化思想;综合法;不等式的解法及应用.【分析】(1)由条件利用绝对值的意义求得a的取值范围.(2)由条件利用绝对值三角不等式,基本不等式,证得不等式f(x)≥2成立.【解答】解:(1)由题意可得,f(1)=|1+a|+|1﹣a|>4,|1+a|+|1﹣a|表示数轴上的a对应点到﹣1、1对应点的距离之和,而2、﹣2对应点到﹣1、1对应点的距离之和正好等于4,故由|1+a|+|1﹣a|>4可得a<﹣2,或 a>2.(2)函数f(x)=|a+|+|a﹣x|≥|(a+)﹣(a﹣x)|=|+x|=|x|+|≥2=2,当且仅当|x|=,即x=±1时,取等号,故f(x)≥2.【点评】本题主要考查绝对值的意义,绝对值三角不等式,基本不等式的应用,属于中档题.19.设f(x)=alnx﹣x+4,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y 轴.(1)求a的值;(2)求函数f(x)在的最值.【考点】利用导数研究曲线上某点切线方程.【专题】计算题;方程思想;综合法;导数的概念及应用;导数的综合应用.【分析】(1)求出函数的导数,求得切线的斜率,由两直线垂直的条件,可得a的值;(2)求出函数的导数,求得单调区间和极值,以及端点的函数值,即可得到所求的最值.【解答】解:(1)f(x)=alnx﹣x+4的导数为f′(x)=﹣1,则在点(1,f(1))处的切线的斜率为a﹣1,切线垂直于y轴,可得a﹣1=0,解得a=1;(2)f(x)=lnx﹣x+4的导数为f′(x)=﹣1,由f′(x)=0,可得x=1,由x>1,f′(x)<0,f(x)递减;由0<x<1,f′(x)>0,f(x)递增.可得x=1处取得极大值,也为最大值,且为3;由f()=﹣ln2,f(4)=ln4,f(4)<f(),可得f(4)为最小值,且为ln4.【点评】本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查运算能力,属于基础题.20.砷是广泛分布于自然界中的非金属元素,长期饮用高砷水会直接危害群众的身心健康和生命安全,而近水农村地区,水质情况更需要关注.为了解甲、乙两地区农村居民饮用水中砷含量的基本情况,分别在两地随机选取10个村子,其砷含量的调查数据如下(单位:ACC1A1):甲地区的10个村子饮用水中砷的含量:52 32 41 72 43 35 45 61 53 44乙地区的10个村子饮用水中砷的含量:44 56 38 61 72 57 64 71 58 62(Ⅰ)根据两组数据完成茎叶图,试比较两个地区中哪个地区的饮用水中砷含量更高,并说明理由;(Ⅱ)国家规定居民饮用水中砷的含量不得超过50,现医疗卫生组织决定向两个地区中每个砷超标的村子派驻一个医疗救助小组.用样本估计总体,把频率作为概率,若从乙地区随机抽取3个村子,用X表示派驻的医疗小组数,试写出X的分布列并求X的期望.【考点】离散型随机变量的期望与方差;茎叶图;离散型随机变量及其分布列.【专题】概率与统计.【分析】(I)法1:求出甲地区调查数据的平均数为,乙地区调查数据的平均数为,推出乙地区的饮用水中砷含量更高.法2:利用茎叶图可直接推出结果,乙地区的引用水中砷含量更高.(II)由题可知若从乙地区随即抽取一个村子,需要派驻医疗小组的概率:得到X的分布列,求出期望.【解答】解:(I)法1:设甲地区调查数据的平均数为,;设乙地区调查数据的平均数为,.由以上计算结果可得,因此可以看出乙地区的饮用水中砷含量更高.法2:从茎叶图可以看出,甲地区的调查结果中有80%的叶集中在茎“3”“4”“5”,而乙地区有80%的叶集中在茎“5”“6”“7”,因此乙地区的引用水中砷含量更高…(II)由题可知若从乙地区随即抽取一个村子,需要派驻医疗小组的概率:X的分布列为…∵…【点评】本题考查茎叶图以及离散型随机变量的分布列期望的求法,考查计算能力.21.已知椭圆C两焦点坐标分别为,,且经过点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点A(0,﹣1),直线l与椭圆C交于两点M,N.若△AMN是以A为直角顶点的等腰直角三角形,试求直线l的方程.【考点】直线与圆锥曲线的综合问题.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)利用椭圆的定义求出a,根据椭圆,,求出c,从而可求b,即可求椭圆C的标准方程;(Ⅱ)设直线l的方程为y=kx+m,代入椭圆方程,利用韦达定理,根据|AM|=|AN|,线段MN 中点为Q,所以AQ⊥MN,分类讨论,利用△AMN是以A为直角顶点的等腰直角三角形,即可求直线l的方程.【解答】解:(Ⅰ)设椭圆标准方程为.依题意,所以a=2.又,所以b2=a2﹣c2=1.于是椭圆C的标准方程为.…(Ⅱ)依题意,显然直线l斜率存在.设直线l的方程为y=kx+m,则由得(4k2+1)x2+8kmx+4m2﹣4=0.因为△=64k2m2﹣4(4k2+1)(4m2﹣4)>0,得4k2﹣m2+1>0.…①设M(x1,y1),N(x2,y2),线段MN中点为Q(x0,y0),则于是.因为|AM|=|AN|,线段MN中点为Q,所以AQ⊥MN.(1)当x0≠0,即k≠0且m≠0时,,整理得3m=4k2+1.…②因为AM⊥AN,,所以=,整理得5m2+2m﹣3=0,解得或m=﹣1.当m=﹣1时,由②不合题意舍去.由①②知,时,.(2)当x0=0时,(ⅰ)若k=0时,直线l的方程为y=m,代入椭圆方程中得.设,,依题意,若△AMN为等腰直角三角形,则AQ=QN.即,解得m=﹣1或.m=﹣1不合题意舍去,即此时直线l的方程为.(ⅱ)若k≠0且m=0时,即直线l过原点.依椭圆的对称性有Q(0,0),则依题意不能有AQ⊥MN,即此时不满足△AMN为等腰直角三角形.综上,直线l的方程为或或.…(14分)【点评】本题考查椭圆的方程,考查直线与椭圆的位置关系,考查分类讨论的数学思想,考查学生分析解决问题的能力.22.已知f(x)=e2x+(1﹣2t)e x+t2(1)若g(t)=f(1),讨论关于t的函数y=g(t)在t∈[0,m](m>0)上的最小值;(2)若对任意的t∈R,x∈[0,+∞)都有f(x)≥ax+2﹣cosx,求a的范围.【考点】导数在最大值、最小值问题中的应用;利用导数求闭区间上函数的最值.【专题】综合题;转化思想;综合法;导数的综合应用.【分析】(1)g(t)=f(1),利用配方法,分类讨论,即可得出关于t的函数y=g(t)在t∈[0,m](m>0)上的最小值;(2)若对任意的t∈R,x∈[0,+∞)都有f(x)≥ax+2﹣cosx,e x≥ax+2﹣cosx,x∈[0,+∞)恒成立,构造函数,利用当a≤0时,t′(x)≤0,即可求a的范围.【解答】解:(1)g(t)=f(1)=e2+(1﹣2t)e+t2=(t﹣e)2+e,∴m<e,y min=g(m)=(m﹣e)2+e;m≥e,y min=g(e)=e;(2)f(x)≥ax+2﹣cosx,可化为f(x)=(e x﹣t)2+e x≥ax+2﹣cosx∴e x≥ax+2﹣cosx,x∈[0,+∞)恒成立令t(x)=ax+2﹣e x﹣cosx≤0,x∈[0,+∞)恒成立∵t′(x)=﹣e x+sinx+a,当a≤0时,t′(x)≤0,∴t(x)在[0,+∞)是减函数,∴t(x)max=t(0)=0,∴t(x)≤0,成立.∴当a≤0时,对任意的t∈R,x∈[0,+∞)都有f(x)≥ax+2﹣cosx.【点评】本题考查二次函数的最小值,考查导数知识的运用,考查学生分析解决问题的能力,属于中档题.。
2016届重庆市巴蜀中学高三上学期第三次月考数学(理)试题及解析一、选择题1.在复平面内,复数2i z i-=的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】A【解析】试题分析:22(2)12i i iz i i i--===+,所以复数z 在复平面内的点为(1,2),位于第一象限,故选A .【考点】1、复数的运算;2、复数的几何意义.2.设非零向量a 与b 的夹角为θ,则(,)2πθπ∈是0a b ⋅< 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】试题分析:因为当θ为钝角或平角时0a b ⋅< 均成立,所以(,)2πθπ∈是0a b ⋅<的充分不必要条件,故选A .【考点】1、充分条件与必要条件的判定;2、平面向量的夹角.3.设集合A ,B 分别是函数23log (9)y x =-的定义域和值域,则A B = ( ) A .(3,2)- B .(]3,2- C .(]0,2 D .(0,2) 【答案】B【解析】试题分析:由290x ->,解得33x -<<,所以{|33}A x x =-<<,又2099x <-≤,所以23log (9)2x -≤,所以{|2}B y y =≤,所以A B = (]3,2-,故选B .【考点】对数函数的定义域与值域.4.若双曲线22221x y a b -=(a ,0b >)的渐进线方程为3y x =±,则该双曲线的离心率为( )A C .2 D 【答案】B【解析】试题分析:由条件,得3b a =,所以e ==B . 【考点】双曲线的几何性质.A .2454C AB .2456C C .2454A AD .2456A【答案】D【解析】试题分析:1班、2班的安排方式有25A 种,剩余4个班的安排方式有46种,所以共有2456A 各安排方式,故选D .【考点】计数原理.6.已知x ,y 满足约束条件1,20,10,y x y x y ≤⎧⎪+-≥⎨⎪--≤⎩则目标函数2z x y =-的最大值为( )A .1B .3C .52 D .72【答案】B【解析】试题分析:作出变量x ,y 满足的平面区域,如图所示,由图知当目标函数2z x y =-经过点(2,1)A 时,取得最大值,且max 2213z =⨯-=,故选B .【考点】简单的线性规划问题.7.当7m =时,执行如图所示的程序框图,输出的S 值为( )A .7B .42C .210D .840【解析】试题分析:当输入7,1k m S ===,判断框内的条件为5?k <,所以进入循环的k 的值依次为765,,,因此执行S S k = 后,则由765210S =⨯⨯=,故选C . 【考点】程序框图.8.已知24()sin sin f x x x =-,则()f x 的单调增区间为( ) A .,44k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈B .3,44k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈C .,422k k πππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ D .,242k k πππ⎡⎤+⎢⎥⎣⎦()k Z ∈ 【答案】D【解析】试题分析:因为24222111()s in si n s i n c o 488f x x x x x x x=-===-,则令242k x k πππ≤≤+()k z ∈,解得242k k x πππ≤≤+()k z ∈,所以函数()f x 的单调增区间为,242k k πππ⎡⎤+⎢⎥⎣⎦()k Z ∈,故选D . 【考点】1、二倍角;3、函数的单调性.9.定义行列式运算:12142334 a a a a a a a a =-,函数cos 2()sin 2xf x x =,则要得到函数()f x 的图像,只需将2cos 2y x =的图像( )A .向左平移23π个单位B .向左平移3π个单位 C .向右平移23π个单位 D .向右平移3π个单位【答案】D【解析】试题分析:由题意,得(3s in 2c os 22s i n(26263f x x x x xππππ=-=-=--=,所以要得到函数()f x 的图像,只需将2cos 2y x =的图像向右平移3π个单位. 【考点】1、三角函数图象的平移变换;2、两角和与差的正弦;3、新定义.10.由点P 向圆222x y +=引两条切线PA ,PB ,A ,B 是切点,则PA PB ⋅的最小A.6-.3- C.3 D.6 【答案】D【解析】试题分析:根据题意,作出示意图,如图所示,设||||(0)PA PB x x ==>,APO α∠=,则2APB α∠=,||PO ==,所以||sin ||AO PO α==,2cos cos 212sin APB αα∠==-=2222x x -+,所以2222228||||cos 2(2)6622x PA PB PA PB x x x x α-===++-≥++=6,当且仅当22822x x +=+,即x =D .【考点】1、平面向量的数量积;2、二倍角;3、基本不等式.【方法点睛】向量数量积的运算有两种方法:①当已知向量的模和夹角时,可利用定义法求解,即a b =||||cos ,a b a b <> ;②当已知向量的坐标时,可利用坐标法求解,即若11(,)a x y = ,22(,)b x y =,则a b=1212x x y y +.当向量夹角与三角形内角有关时,可利用三角函数解决.11.设21(0),()4cos 1(0),x x f x x x x π⎧+≥=⎨-<⎩()1()g x kx x R =-∈,若函数()()y f x g x =-在[]2,3x ∈-内有4个零点,则实数k 的取值范围是( )A.11)3 B.113⎛⎤ ⎥⎝⎦ C. D.(4⎤⎦【答案】B【解析】试题分析:当0x =时,显然有()()f x g x ≠,即0x =不是()()y f x g x =-的零点;当0x ≠时,()()y f x g x =-的零点个数即为方程()()f x g x =的根的个数,则由21(0)14cos 1(0)x x kx x x x π⎧+>-=⎨-<⎩,即2(0)4c o s (0)x x k xx x π⎧+>⎪=⎨⎪<⎩,则()()y f x g x =-的零点个数为函数y k =与2(0)4cos (0)x x y xxx π⎧+>⎪=⎨⎪<⎩的交点个数,作出这两个函数的图象,如图所示,由图知113k ≤,故选B .【考点】1、函数的零点;2、函数的图象.【方法点睛】函数零点的几种等价形式:函数()()y f x g x =-有零点⇔函数()()y f x g x =-在x 轴有交点⇔方程()()0f xg x -=有根⇔函数()y f x =与()y g x =有交点.解答此类试题往往作出函数()y f x =与()y g x =的图象,利用数列结合的思想解答.12.已知()y f x =是(0,)+∞上的可导函数,满足[](1)2()'()0x f x xf x -+>(1x ≠)恒成立,(1)2f =,若曲线()f x 在点(1,2)处的切线为()y g x =,且()2016g a =,则a 等于( )A .500.5-B .501.5-C .502.5-D .503.5- 【答案】C 【解析】试题分析:令2()()F x x f x =,则2()2()'()[2()'()]F x x f x x f x x f x x f x '=+=+,当1x >时,()0F x '>,()F x 在(1,)+∞上递增;当01x <<时,()0F x '<时,()F x 在(0,1)上递减.因为(1)0F '=,所以2(1)'(1)0f f +=,所以'(1)4f =-,所以切线方程为24(1)y x -=--,即46y x =-+,所以由462016a -+=,得502.5a =-,故选C .【考点】1、导数的几何意义;2、利用导数研究函数的单调性;3、不等式恒成立. 二、填空题【解析】试题分析:因为a b,所以420x +=,解得2x =-,所以222||(42)(21)5a b +=-+-+=,所以||a b +=【考点】1、向量平行的充要条件;2、平面向量的模.14.61(2)2x x-的展开式中常数项为 . 【答案】20-【解析】试题分析:展开式的通项公式为666216611(2)()()222rr r r r r rr T C x C x x ---+=-=-⋅⋅,由620r -=,得3r =,所以展开式中常数项为363361()2202C --⋅⋅=-.【方法点睛】(1)求二项展开式()na b +中的指定项,通常利用通项公式1r n r rr n T C a b-+=进行化简后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数1r +,代回通项公式即可;(2)对于三项式问题一般先转化为二项式再解决.【考点】二项式定理.15.设抛物线24y x =的焦点为F ,A ,B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若3||2PF =,则M 点的横坐标为 . 【答案】2【解析】试题分析:由题意,得2p =,(1,0)F ,准线为1x =-,设11(,)A x y 、22(,)B x y ,直线AB 的方程为(1)y k x =-,代入抛物线方程消去y ,得2222(24)0k x k x k -++=,所以212224k x x k++=,121x x =.又设00(,)P x y ,则01212112()[(1)(1)]22y y y k x k x k =+=-+-=,所以021x k =,所以212(,)P k k.因为0213||112PF x k =+=+=,解得22k =,所以M 点的横坐标为221224222k x x k ++==.【考点】1、直线与抛物线的位置关系;2、抛物线的几何性质. 【方法点睛】抛物线标准方程中的参数p 的几何意义是指焦点到准线的距离,参数p 的几何意义在解题时常常用到,特别是具体的标准方程中应找到相当于p 的值,才易于确定焦点坐标和准线方法.在解答过程中,通常将抛物线上一点到焦点的距离转化为到准线的距离来求解.16.△ABC 的面积为S ,BA BC ⋅= ,则22sin sin A C +的取值范围是 .【答案】77(,]164【解析】试题分析:由BA BC ⋅= ,得1cos sin 2ca B ac B =,即c o s s i nB B =,又22cos sin 1B B +=,所以3cos 4B =.221cos 21cos 2sin sin 22A C A C --+=+=1cos[()()]2A C A C -++-+1cos[()()]2A C A C -+--=cos()cos()1A C A C +-+=cos cos()1B AC -+=3cos()14A C -+.因为0AB π<<-,0C B π<<-,所以B A C B ππ-<-<-,所以当A C =时,m a xc o s ()1A C-=,当A C B π-=-或A C B π-=-时,m i n3c o s ()c o s 4A C B -=-=-,所以737cos()11644A C <-+≤,即22sin sin A C +的取值范围是77(,]164.【考点】1、三角形面积公式;2、二倍角;3、两角和与差的余弦. 三、解答题17.(本小题满分12分)已知函数2()c o s s i n (3c o 13f x x x x π=+(x R ∈).(1)求()f x 的最小正周期;(2)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值,并分别写出相应的x 的值. 【答案】(1)T π=;(2)4x π=时,max 3()4f x =-;12x π=-时,min 3()2f x =-. 【解析】试题分析:(1)先利用两角和与差的正弦与二倍角公式简化表达式,再用2T πω=求得最小正周期;(2)根据x 的范围求得23x π-的范围,从而求得最值.试题解析:(1)2()cos sin()34f x x x x π=++21cos (sin )12x x x x =111cos 2sin 2142x x +=-1sin 2214x x =- 1sin(2)123x π=--, 所以()f x 的最小正周期为22T ππ==. (2)∵,44x ππ⎡⎤∈-⎢⎥⎣⎦,∴52,366x πππ⎡⎤-∈-⎢⎥⎣⎦, 当236x ππ-=,即4x π=时,max 113()1224f x =⨯-=-;当232x ππ-=-,即12x π=-时,min 13()(1)122f x =⨯--=-.【考点】1、两角和与差的正弦;2、二倍角;3、三角函数的图象与性质.【方法点睛】三角函数的性质由函数的解析式确定,在解答三角函数性质的综合性问题时,首先要抓住函数,而函数解析式往往要通过三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,再利用正弦(余弦)函数的性质求解. 18.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且coscos CA =. (1)求A 的值;(2)若6B π=,BC 边上的中线AM =ABC 的面积.【答案】(1)6A π=;(2)【解析】试题分析:(1)先由正弦定理转化已知等式,然后用两角和与差的正弦化简,得sin sin()B A C =+,再通过角的范围求得A 的值;(2)设CM x =,则2AC x =,由余弦定理可求得x 的值,进而求得△ABC 的面积.试题解析:(1)因为(2)cos cos b A C ,由正弦定理得(2sin )cos cos B C A A C =,即2sin cos cos cos sin ))B A A C A C A C =+=+,因为B A C π=--,所以sin sin()B A C =+,所以2sin cos B A B =,因为0B π<<,所以sin 0B >,所以cos A = 因为0A π<<,所以A π=.(2)由(1)知6A B π==,所以AC BC =,23C π=,设CM x =,则2AC x =,在△ACM 中,由余弦定理可得x =所以1222sin 23ABC S x x π∆=⋅⋅⋅= 【考点】1、两角和与差的正弦;2、正余弦定理;3、三角形的面积公式.【方法点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,选用时应注意题中所给条件,如果式子中含有角的余弦或边的二次式,则要考虑用余弦定理;如果式中含有角的正弦或边的一次式时,则考虑用正弦定理,当两者特征均不明显时,则要考虑两个定理可能都用. 19.(本小题满分12分)某商家对他所经销的一种商品的日销售量(单位:吨)进行统若以上表中频率作为概率,且每天的销售量相互独立.(1)求5天中该种商品恰好有两天的销售量为1.5吨的概率;(2)已知每顿该商品的销售利润为2千元,X 表示该种商品某两天销售利润的和(单位:千元),求X 的分布列和数学期望. 【答案】(1)0.3125;(2)() 6.2E X =,分布列见解析.【解析】试题分析:(1)先求出,a b 的值,再利用二项分布的概率公式示出5天中该种商品恰好有两天的销售量为1.5吨的概率;(2)写出X 可取得的值,利用相互独立事件的概率求出X 取每一个值的概率,列出分布列,从而求得期望. 试题解析:(1)250.550a ==,150.350b ==, 依题意,随机选取一天,销售量为1.5吨的概率0.5p =, 设5天中该种商品有Y 天的销售量为1.5吨,而~(5,0.5)Y B ,所以22355(2)0.5(10.5)0.312516P Y C ==⨯⨯-==. (2)X 的可能取值为4,5,6,7,8,2(4)0.20.04P X ===,(5)20.20.50.2P X ==⨯⨯=,2(6)0.520.20.30.37P X ==+⨯⨯=,(7)20.30.50.3P X ==⨯⨯=, 2(8)0.30.09P X ===,X20.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,以原点120+=相切. (1)求椭圆C 的方程;(2)设(4,0)A -,过点(3,0)R 作与x 轴不重合的直线l 交椭圆C 于P ,Q 两点,连接AP ,AQ 分别交直线163x =于M ,N 两点,若直线MR 、NR 的斜率分别为1k 、2k ,试问:12k k 是否为定值?若是,求出该定值,若不是,请说明理由.【答案】(1)2211612x y +=;(2)是定理,理由见解析. 【解析】试题分析:(1)根据离心率、直线与圆相切建立关于,,a b c 的方程组,过得,,a b c ,从而得到椭圆的方程;(2)设11(,)P x y ,22(,)Q x y ,直线PQ 的方程为3x my =+,联立椭圆方程消去x ,得到关于y 的方程,再利用韦达定理得到12,y y 之间的关系,从而得到12k k 的关系.试题解析:(1)由题意得2221,2,,c a b a b c ⎧=⎪⎪=⎪=+⎪⎩解得4,2,a b c =⎧⎪=⎨⎪=⎩故椭圆C 的方程为2211612x y +=.(2)设11(,)P x y ,22(,)Q x y ,直线PQ 的方程为3x my =+,由221,16123,x y x my ⎧+=⎪⎨⎪=+⎩得22(34)18210m y my ++-=.∴1221834m y y m -+=+,1222134y y m -=+, 由A ,P ,M 三点共线可知,111643M y y x =+,所以112834M y y x =⋅+; 同理可得222834N y y x =⋅+ 所以12916164933N M N My y y y k k =⨯=--121216(4)(4)y y x x =++.因为1212(4)(4)(7)(7)x x my my ++=++212127()49m y y m y y =+++,所以121221212167()49y y k k m y y m y y =+++222221161234211877493434m m m m m -⨯+==---⨯+⨯+++.【考点】1、直线与圆锥曲线的位置关系;2、椭圆的几何性质;3、直线的斜率.【方法点睛】解答直线与椭圆的位置关系的相关问题时,其常规思路是先把直线方程与椭圆方程联立,消元、化简,再应用根与系数的关系建立方程,解决相关问题.涉及弦长问题利用弦长公式AB=12x -或AB =21211y y k -+解决,往往会更简单.21.(本小题满分12分)设函数2()ln (32)f x x a x x =+-+,其中a R ∈. (1)讨论()f x 极值点的个数; (2)设12a =-,函数()2()(3)2g x f x x λ=-++,若1x ,2x (12x x ≠)满足12()()g x g x =且1202x x x +=,证明:0'()0g x ≠.【答案】(1)当0a <时,函数()f x 在(0,)+∞上有唯一极值点;当809a ≤≤时,函数()f x 在(0,)+∞上无极值点;当89a >时,函数()f x 在(0,)+∞上有两个极值点;(2)见解析.【解析】试题分析:(1)先求导并通分,再通过讨论a 的取值,求导数大于0得增区间,导数小于0得减区间,从而根据单调性求极值;(2)根据题意,得2()2g x x xλ=--,再用反证法证明.试题解析:(1)函数()f x 的定义域为(0,)+∞,1(23)1'()(23)ax x f x a x x x-+=+-=. 令()(23)1g x ax x =-+.①当0a =时,()1x ϕ=,()ln f x x =,所以,函数()f x 在(1,)-+∞上单调递增,无极值;②当0a <时,()x ϕ在3(0,)4上单调递增,在3(,)4+∞上单调递减,且(0)10ϕ=>,所以,()x ϕ在(0,)+∞上有唯一零点,从而函数()f x 在(0,)+∞上有唯一极值点;③当0a >时,若39()1048a ϕ=-≥,即809a <≤时,则()0x ϕ≥在(0,)+∞上恒成立, 从而'()0f x ≥在(0,)+∞上恒成立,函数()f x 在(0,)+∞上单调递增,无极值; 若39()1048a ϕ=-<,即89a >,由于(0)10ϕ=>,则()x ϕ在(0,)+∞上有两个零点,从而函数()f x 在(0,)+∞上有两个极值点. 综上所述:当0a <时,函数()f x 在(0,)+∞上有唯一极值点; 当809a ≤≤时,函数()f x 在(0,)+∞上无极值点; 当89a >时,函数()f x 在(0,)+∞上有两个极值点. (2)2()2ln g x x x x λ=--,2()2g x x xλ=--.假设结论不成立,则有22111222120002ln 2ln , 2,220,x x x x x x x x x x x λλλ⎧⎪--=--⎪⎪+=⎨⎪⎪--=⎪⎩①②③由①,得221121222ln ()()0xx x x x x λ----=,∴12012ln22x x x x x λ=--,由③,得0022x x λ=-,∴12120ln1x x x x x =-,即121212ln 2xx x x x x =-+,即11212222ln 1x x x x x x -=+.④ 令12x t x =,不妨设12x x <,22()ln 1t u t t t -=-+(01t <<),则22(1)'()0(1)t u t t t -=>+, ∴()u t 在01t <<上增函数,()(1)0u t u <=, ∴④式不成立,与假设矛盾. ∴0'()0g x ≠.【考点】1、利用导数研究函数的单调性;2、函数的极值;3、反证法.22.(本小题满分10分)选修4—1:几何证明选讲如图所示,AB 是O 的直径,AC 切O 于点A ,AC AB =,CO 交O 于点P ,CO 的延长线交O 于点F ,BP 的延长线交AC 于点E .(1)求证:AP FAPC AB=;(2)若O 的直径1AB =,求tan CPE ∠的值.【答案】(1)见解析;(2)12. 【解析】试题分析:(1)由弦切角定理得PAC F ∠=∠,从而得到APC FAC ∆∆ ,进而证得AP FAPC AB=;(2)由切割线定理,得2AC CP CF =⋅,从而求得PC 的长,又根据FA BE ,得CPE F ∠=∠,再结合(1)求得tan F ∠的值,即为tan CPE ∠的值.试题解析:(1)∵AC 为O 的切线,PA 是弦,∴PAC F ∠=∠, ∵C C ∠=∠,∴△APC FAC ∆ , ∴AP PCFA AC=, ∵AB AC =,∴AP FAPC AB=. (2)∵AC 切O 于点A ,CPF 为O 的割线,则有2()AC CP CF CP CP PF =⋅=+,∵1PF AB AC ===,∴12PC =. ∵//FA BE ,∴CPE F ∠=∠,∵FP 为O 的直径,∴∠90FAP =︒,由(1)中证得AP PCFA AC=,在Rt FAP ∆中,tan F ∠=. 【考点】1、弦切角定理;2、切割线定理;3、圆中的比例线段. 23.(本小题满分10分)选修4—4:坐标系与参数方程在以坐标原点为极点,x 轴的正半轴为极轴建立的极坐标系中,曲线1C 的极坐标方程为2ρ=,正三角形ABC 的顶点都在1C 上,且A ,B ,C 依逆时针次序排列,点A 的坐标为(2,0).(1)求点B ,C 的直角坐标系;(2)设P 是圆2C :22(1x y +=上的任意一点,求22||||PB PC +的取值范围.【答案】(1)(1B -,(1,C -;(2)[]8,24.【解析】试题分析:(1)由A ,B ,C 都在以原点为圆心,以2为半径的圆上,得,OB OC的角分别为120,240︒︒,从而求得点B ,C 的直角坐标系;(2)设点(cos ,sin )(02)P αααπ≤≤,把22||||PB PC +用三角函数表示出来,利用余弦函数的有界性求得22||||PB PC +的取值范围.试题解析:(1)B 点的坐标为(2cos120,2sin120)︒︒,即(1B -;C 点的坐标为(2cos 240,2sin 240)︒︒,即(1,C -.(2)由圆的参数方程,可设点(cos ,sin )(02)P αααπ≤≤,于是222222||||(cos 1)(sin (cos 1)sin PB PC αααα+=++-+++164cos αα=+-168cos()3πα=++,∴22||||PB PC +的范围是[]8,24.【考点】1、点的极坐标与直角坐标的互化;2、两角和与差的余弦;3、余弦函数的图象与性质. 24.(本小题满分10分)选修4—5:不等式选讲 已知函数()|||2|f x x a x =++-.(1)当4a =-时,求不等式()6f x ≥的解集;(2)若()|3|f x x ≤-的解集包含[]0,1,求实数a 的取值范围. 【答案】(1)(,0][6,)-∞+∞ ;(2)10a -≤≤.【解析】试题分析:(1)利用零点分段法去掉绝对值符号,分段求解即可;(2)根据题意把不等式式转化为||23x a x x ++-≤-在[]1,2上恒成立,由此可得出实数a 的取值范围.试题解析:(1)当4a =-时,()6f x ≥,即|4||2|6x x -+-≥,即2,426x x x ≤⎧⎨-+-≥⎩或24,426x x x <<⎧⎨-+-≥⎩或4,426,x x x ≥⎧⎨-+-≥⎩解得0x ≤或6x ≥.所以解集为(,0][6,)-∞+∞ .(2)原命题等价于()|3|f x x ≤-在[]0,1上恒成立,即||23x a x x ++-≤-在[]1,2上恒成立,即11x a x --≤≤-在[]1,2上恒成立,即10a -≤≤. 【考点】1、绝对值不等式的解法;2、不等式恒成立问题.。
2016年高考数学(理科)模拟试卷(一)(本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题 满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =( ) A .[0,1] B .(0,1) C .(0,1] D .[0,1) 2.复数(3+2i)i =( )A .-2-3iB .-2+3iC .2-3iD .2+3i 3.命题“∀x ∈R ,|x |+x 2≥0”的否定是( ) A .“∀x ∈R ,|x |+x 2<0” B .“∀x ∈R ,|x |+x 2≤0” C .“∃x 0∈R ,|x 0|+x 20<0” D .“∃x 0∈R ,|x 0|+x 20≥0”4.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是( ) A .f (x )=-x |x | B .f (x )=x +1xC .f (x )=tan xD .f (x )=ln x x5.设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n =( )A .4B .5C .6D .76.曲线y =x 3-2x +4在点(1,3)处切线的倾斜角为( ) A.π6 B.π3 C.π4 D.π27.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a =( )A.12B.45C .2D .9 8.某几何体的三视图如图M11,则它的体积为( )图M11A .72πB .48π C.30π D .24π9.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π,则该函数的图象是( ) A .关于直线x =π8对称 B .关于点⎝ ⎛⎭⎪⎫π4,0对称C .关于直线x =π4对称D .关于点⎝ ⎛⎭⎪⎫π8,0对称 10.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .211.在同一个平面直角坐标系中画出函数y =a x,y =sin ax 的部分图象,其中a >0,且a ≠1,则下列所给图象中可能正确的是( )A BC D12.已知定义在区间⎣⎢⎡⎦⎥⎤0,3π2上的函数y =f (x )的图象关于直线x =3π4对称,当x ≥3π4时,f (x )=cos x .若关于x 的方程f (x )=a 有解,记所有解的和为S ,则S 不可能为( )A.54πB.32πC.94π D.3π 第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须做答.第22~24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.14.二项式(x +y )5的展开式中,含x 2y 3的项的系数是________.(用数字作答) 15.如图M12,在平行四边形ABCD 中,AP ⊥BD ,垂足为点P ,AP =3,则AP →·AC →=________.图M1216.阅读如图M13所示的程序框图,运行相应的程序,输出S 的值为________.图M13三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,c =2,cos C =34.(1)求sin A 的值; (2)求△ABC 的面积.18.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.19.(本小题满分12分)如图M14,在四棱锥P ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D AE C 为60°,AP =1,AD =3,求三棱锥E ACD 的体积.图M1420.(本小题满分12分)已知函数f (x )=a ln x -ax -3(a ∈R ). (1)当a =1时,求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,问:m 在什么X 围取值时,对于任意的t ∈[1,2],函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤m2+f ′x 在区间(t,3)上总存在极值?(3)求证:ln22×ln33×ln44×…×ln n n <1n(n ≥2,n ∈N *).21.(本小题满分12分)已知直线l :y =kx +2(k 为常数)过椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点B 和左焦点F ,直线l 被圆O :x 2+y 2=4截得的弦AB 的中点为M .(1)若|AB |=4 55,某某数k 的值;(2)如图M15,顶点为O ,对称轴为y 轴的抛物线E 过线段BF 的中点T ,且与椭圆C 在第一象限的交点为S ,抛物线E 在点S 处的切线m 被圆O 截得的弦PQ 的中点为N ,问:是否存在实数k ,使得O ,M ,N 三点共线?若存在,请求出k 的值;若不存在,请说明理由.图M15 图M16请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目上.如果多做,则按所做的第一个题目计分,做答量请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10)选修41:几何证明选讲如图M16,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上—点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径; (2)若AC =BD ,求证:AB =ED .23.(本小题满分10)选修44:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.24.(本小题满分10)选修45:不等式选讲 若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值.(2)是否存在a ,b ,使得2a +3b =6?并说明理由.2016年高考数学(理科)模拟试卷(一)1.D 解析:由M ={x |x ≥0,x ∈R }=[0,+∞),N ={x |x 2<1,x ∈R }=(-1,1),得M ∩N =[0,1).2.B 解析:(3+2i)i =3i +2i·i=-2+3i.故选B.3.C 解析:对于命题的否定,要将命题中的“∀”变为“∃”,且否定结论,则命题“∀x ∈R ,|x |+x 2≥0”的否定是“∃x 0∈R ,|x 0|+x 20<0”.故选C.4.A5.A 解析:∵{a n }是等差数列,且a 1+a 2+a 3=15,∴a 2=5.又∵a 1a 2a 3=105,∴a 1a 3=21.由⎩⎪⎨⎪⎧a 1a 3=21,a 1+a 3=10及{a n }递减可求得a 1=7,d =-2.∴a n=9-2n .由a n ≥0,得n ≤4.故选A.6.C 解析:f ′(x )=3x 2-2,f ′(1)=1,所以切线的斜率是1,倾斜角为π4.7.C 解析:∵f (0)=20+1=2,f [f (0)]=f (2)=4a ,∴22+2a =4a .∴a =2. 8.C 解析:几何体是由半球与圆锥叠加而成,它的体积为V =12×43π×33+13×π×32×52-32=30π.9.A 解析:依题意,得T =2πω=π,ω=2,故f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,所以f ⎝ ⎛⎭⎪⎫π8=sin ⎝⎛⎭⎪⎫2×π8+π4=sin π2=1≠0,f ⎝ ⎛⎭⎪⎫π4=sin ⎝⎛⎭⎪⎫2×π4+π4=sin 3π4=22≠0,因此该函数的图象关于直线x =π8对称,不关于点⎝⎛⎭⎪⎫π4,0和点⎝ ⎛⎭⎪⎫π8,0对称,也不关于直线x =π4对称.故选A.10.A 解析:如图D129,将点(5,3)代入z =y -2x ,得最小值为-7.图D12911.D 解析:正弦函数y =sin ax 的最小正周期为T =2πa.对于A ,T >2π,故a <1,而y =a x的图象是增函数,故A 错误; 对于B ,T <2π,故a >1,而函数y =a x是减函数,故B 错误; 对于C ,T =2π,故a =1,∴y =a x=1,故C 错误; 对于D ,T >2π,故a <1,∴y =a x是减函数.故选D.12.A 解析:作函数y =f (x )的草图(如图D130),对称轴为x =3π4,当直线y =a 与函数有两个交点(即方程有两个根)时,x 1+x 2=2×3π4=3π2;当直线y =a 与函数有三个交点(即方程有三个根)时,x 1+x 2+x 3=2×3π4+3π4=9π4;当直线y =a 与函数有四个交点(即方程有四个根)时,x 1+x 2+x 3+x 4=4×3π4=3π.故选A.图D13013.12 解析:从10件产品中任取4件,共有C 410种基本事件,恰好取到1件次品就是取到1件次品且取到3件正品,共有C 13C 37种,因此所求概率为C 13C 37C 410=12.14.10 解析:展开式的通项为T k +1=C k 5x5-k y k,则T 4=C 35x 2y 3=10x 2y 3,故答案为10.15.18 解析:设AC ∩BD =O ,则AC →=2(AB →+BO →),AP →·AC →=AP →·2(AB →+BO →)=2AP →·AB →+2AP →·BO →=2AP →·AB →=2AP →·(AP →+PB →)=2|AP →|2=18.16.-4 解析:由题意,得第一次循环:S =0+(-2)3=-8,n =2; 第二次循环:S =-8+(-2)2=-4,n =1,结束循环,输出S 的值为-4. 17.解:(1)∵cos C =34,∴sin C =74.∵asin A =c sin C ,∴1sin A =274,∴sin A =148. (2)∵c 2=a 2+b 2-2ab cos C ,∴2=1+b 2-32b ,∴2b 2-3b -2=0.∴b =2.∴S △ABC =12ab sin C =12×1×2×74=74.18.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知,P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215, 故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设可获利润为X 万元,则X 的可能取值为0,100,120,220. 因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=15, P (X =120)=P (E F )=23×25=415, P (X =220)=P (EF )=23×35=25.故所求的分布列为:数学期望为E (X )=0×215+100×15+120×415+220×25=300+480+132015=210015=140.19.(1)证明:如图D131,连接BD 交AC 于点O ,连接EO .因为底面ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . 因为EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)解:因为PA ⊥平面ABCD ,平面ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图D131,以A 为坐标原点,AB →,AD →,AP →的方向为x 轴、y 轴、z 轴的正方向,|AP →|为单位长,建立空间直角坐标系Axyz ,则D ()0,3,0,E ⎝ ⎛⎭⎪⎫0,32,12,AE →=⎝⎛⎭⎪⎫0,32,12.图D131设B (m,0,0)(m >0),则C (m ,3,0),AC →=(m ,3,0). 设n 1=(x ,y ,z )为平面ACE 的法向量, 则⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0.可取n 1=⎝⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量, 由题设易知,|cos 〈n 1,n 2〉|=12,即33+4m 2=12.解得m =32(m =-32,舍去). 因为E 为PD 的中点,所以三棱锥E ACD 的高为12.故三棱锥E ACD 的体积V =13×12×3×32×12=38.20.解:f ′(x )=ax-a (x >0). (1)当a =1时,f ′(x )=1x -1=1-xx,令f ′(x )>0时,解得0<x <1,∴f (x )在(0,1)上单调递增; 令f ′(x )<0时,解得x >1,∴f (x )在(1,+∞)上单调递减. (2)∵函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°, ∴f ′(2)=a2-a =1.∴a =-2,f ′(x )=-2x+2.∴g (x )=x 3+x 2⎝ ⎛⎭⎪⎫m 2+2-2x =x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,g ′(x )=3x 2+(4+m )x -2.∵对任意的t ∈[1,2],函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤m2+f ′x 在区间(t,3)上总存在极值,且g ′(0)=-2,∴只需⎩⎪⎨⎪⎧g ′t <0,g ′3>0.由题知,对任意的t ∈[1,2],g ′(t )<0恒成立,∴⎩⎪⎨⎪⎧g ′1<0,g ′2<0,g ′3>0.解得-373<m <-9.(3)证明:令a =-1,f (x )=-ln x +x -3,∴f (1)=-2. 由(1)知,f (x )=-ln x +x -3在(1,+∞)上单调递增, ∴当x ∈(1,+∞)时,f (x )>f (1),即-ln x +x -1>0. ∴ln x <x -1对一切x ∈(1,+∞)成立. ∵n ≥2,n ∈N *,则有0<ln n <n -1.∴0<ln n n <n -1n .∴ln22×ln33×ln44×…×ln n n <12×23×34×…×n -1n =1n (n ≥2,n ∈N *).21.解:(1)圆O 的圆心为O (0,0),半径为r =2. ∵OM ⊥AB ,|AB |=4 55,∴|OM |=r 2-⎝ ⎛⎭⎪⎫|AB |22=4 55. ∴2k 2+1=4 55.∴k 2=14.图D132又k =k FB >0,∴k =12. (2)如图D132,∵F ⎝ ⎛⎭⎪⎫-2k ,0,B (0,2),T 为BF 中点, ∴T ⎝ ⎛⎭⎪⎫-1k ,1. 设抛物线E 的方程为y =tx 2(t >0),∵抛物线E 过点T ,∴1=t ·1k2,即t =k 2. ∴抛物线E 的方程为y =k 2x 2.∴y ′=2k 2x .设S (x 0,y 0),则k m =y ′0|x x ==2k 2x 0.假设O ,M ,N 三点共线,∵OM ⊥l ,ON ⊥m ,∴l ∥m .又k l =k >0,∴k l =k m .∴k =2k 2x 0.∴x 0=12k ,y 0=k 2x 20=k 2·14k 2=14. ∵S 在椭圆C 上,∴x 20a 2+y 20b2=1. 结合b =2,c =2k ,a 2=b 2+c 2=4+4k2. 得14k 24+4k2+1164=1.∴k 2=-5963. ∴k 无实数解,矛盾.∴假设不成立.故不存在实数k ,使得O ,M ,N 三点共线.22.证明:(1)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又因为∠PGD =∠EGA ,所以∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PFA .又AF ⊥EP ,所以∠PFA =90°,所以∠BDA =90°,故AB 为圆的直径.图D133(2)如图D133,连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°.在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD ,从而得Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .因为AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角,所以ED 为圆的直径,又由(1)知AB 为圆的直径,所以ED =AB .23.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧ x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|, 则|PA |=d sin30°=2 55|5sin(θ+α)-6|, 其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|PA |取得最大值,最大值为22 55.当sin(θ+α)=1时,|PA |取得最小值,最小值为2 55. 24.解:(1)由ab =1a +1b ≥2ab,得ab ≥2,当且仅当a =b =2时等号成立. 故a 3+b 3≥2a 3b 3≥4 2,当且仅当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥2 6ab ≥4 3.由于4 3>6,从而不存在a ,b ,使2a +3b =6.。
重庆市巴蜀中学初2016届三下(一诊)考试数 学 试 题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答. 2.作答前认真阅读答题卡上的注意事项.一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑. 1.21的相反数为( ▲ ). A .2B .-2C .21 D .21-2.巴蜀中学剪纸比赛中,下列获得一等奖的四幅作品中,是轴对称图形的是( )A. B. C. D. 3.下列计算正确的是( )A.4222a a a =+ B.3632)(b a b a -=- C. 632a a a =⋅ D. 428a a a =÷4.在平面直角坐标系中,点 P( 2, 3) 向左平移一个单位,再向上平移三个单位,则所得到的点的坐标为( )A . (3,0)B . (1,6)C . (3,6)D . (1,0) 5.如图所示,该几何体的主视图是( )A. B. C.D. 6.函数31+=x y 的取值范围是( )A. 3-≠xB.3->xC. 3-≥xD. 3-≤x7.一个圆形人工湖如图所示,弦AB 是湖上一座桥,已知桥AB 长100m ,测得圆周角 ∠ACB =45°,则这个人工湖的直径 AD 为( )A.m 250B. m 2100C. m 2150D. m 2200 8.某校九年级(1)班全体学生期末体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是( )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分 C. 该班学生这次考试成绩的中位数是45分 D .该班学生这次考试成绩的平均数数是45分9.在平面直角坐标系中,直线2+-=x y 与反比例函数xy 1=的图象有唯一公共点,若直线b x y +-=与反比例函数xy 1=的图象有2个公共点,则b 的取值范围是( )A.2>bB.22<<-bC.22-<>b b 或D.2-<b10.甲、乙两车从 A 城出发匀速行驶至 B 城,在整个行驶过程中,甲、乙两车离开A 的距离y (千米)与甲车行驶时间t (小时)之间的函数关系如图所示,则下列结论:① A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时; ③乙车出发后 2.5 小时追上甲车; ④当甲、乙两车相距50千米时,45=t 或415=t其中正确的结论有( )A .1 个B .2 个C .3 个D .4 个11. 如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形面积为62cm ,第②个图形面积为182cm ,第③个图形面积为362cm ,......那么,第⑥个图形面积为( )A.842cm B.902cm C.1262cm D.1682cm12.如图,二次函数)0(2≠++=a c bx ax y 的图象的对称轴为直线1=x ,且经过点(0,2),有下列结论:①0>ac ;②042>-ac b ;③b c a -<+2;④41-<a ;⑤5-=x 或7-=x 时函数值相等。
2016年重庆巴蜀中学高三理科一诊模拟考试数学试卷
一、选择题(共12小题;共60分)
1. 如果复数为纯虚数,那么实数的值为
A. B. C. D. 或
2. 已知集合,,则
A. B. C. D.
3. 直线过点,被圆:截得的弦长为,则直线的方程是
A. B.
C. D. 或
4. 执行如图所示的程序框图后,输出的结果为
A. B. C. D.
5. 已知各项不为的等差数列满足,数列是等比数列,且,
则
A. B. C. D.
6. 已知函数是定义在上的奇函数,若对任意的实数,都有
,且当时,,则的值为
A. B. C. D.
7. 对于函数,现有下列命题:
①函数是奇函数;
②函数的最小正周期是;
③点是函数的图象的一个对称中心;
④函数在区间上单调递增.其中是真命题的为
A. ②④
B. ①④
C. ②③
D. ①③
8. 设,满足约束条件若目标函数的最大值为,则
的最小值为
A. B. C. D.
9. 在中,内角,,的对边长分别为,,,已知,且
,则
A. B. C. D.
10. 已知正三棱锥的三视图如图所示,则该正三棱锥侧视图的面积是
A. B. C. D.
11. 抛物线的焦点为,已知点,为抛物线上的两个动点,且满足
.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为
A. B. C. D.
12. 若函数在上的值域为,则称函数为“和谐函数”.下列函数中:①
;②;③;④,“和谐函数”的个数为
A. B. C. D.
二、填空题(共4小题;共20分)
13. 已知函数,则.
14. 二项式的展开式中,二项式系数最大的项是第项,则其展开式中的常数
项是.
15. 在中,,的平分线交边于点,且,,则
的长为.
16. ,,,四点在半径为的球面上,且,,,则三
棱锥的体积是.
三、解答题(共7小题;共91分)
17. 已知数列的首项=,且满足.
(1)求数列的通项公式;
(2)设,求数列的前项和.
18. 某校从参加高一年级期中考试的学生中随机抽出名学生,将其数学成绩(均为整数)分成六
段,,,后得到如图所示的部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求分数在内的频率,并补全这个频率分布直方图,统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(2)若从名学生中随机抽取人,抽到的学生成绩在记分,在记分,在记分,用表示抽取结束后的总计分,求的分布列和数学期望.
19. 如图,在直四棱柱中,底面是边长为的正方形,侧棱,是侧棱
的中点.
(1)求证:平面平面;
(2)求二面角的正切值.
20. 已知椭圆,作直线交椭圆于,两点,为线段的中点,为
坐标原点,设直线的斜率为,直线的斜率为,.
(1)求椭圆的离心率;
(2)设直线与轴交于点,且满足,当的面积最大时,求椭圆的方程.
21. 已知函数.
(1)若恒成立,试确定实数的取值范围;
(2)证明:.
22. 已知曲线的参数方程为(为参数),直线的参数方程为(为
参数),点,直线与曲线交于,两点.
(1)写出曲线和直线的普通方程;
(2)求的值.
23. (1)设函数的定义域为,试求的取值范围;
(2)已知实数,,满足,求的最小值.
答案
第一部分
1. A 【解析】因为复数为纯虚数,
所以解得.
2. D 【解析】由,得,
所以.
又,
所以=.
3. D 【解析】将圆的方程化为标准方程,该圆的圆心为,半径为.由弦长公式为圆的半径,为弦心距),得
.若直线的斜率不存在,则直线的方程为,不满足题意,
所以直线的斜率存在.设的方程为,即.由点到直线的距离公式,得,解得或,
所以直线的方程为或.
4. C 【解析】由程序框图知,该程序计算的是数列的前项和,即
5. B
【解析】设等差数列的公差为,由,得,解得或(舍去),
所以.
6. A 【解析】因为对任意的实数,都有,所以当时,是周期为的周期函数.又因为是定义在上的奇函数,所以
.7. B 【解析】函数的定义域为,
因为,
所以函数是奇函数,故①为真命题;
因为,,,故②为假命题;
因为,,,故③为假命题;
因为,当时,,,
所以,
所以函数在区间上单调递增,故④为真命题.
8. A 【解析】作出不等式组表示的平面区域,如图所示.
由图可知,当目标函数经过点时取得最大值,
即,即.
所以
当且仅当,即时等号成立.
9. C 【解析】由,
得,
即.
由正余弦定理,得,
整理得
又
联立得.
10. D
【解析】由三视图可得正三棱锥的直观图如图,根据三个视图间的关系及图上数据可得,取的中点,连接,,
则在底面上的射影在线段上,且,
所以侧视图中,
所以三棱锥侧视图的面积.
11. A 【解析】设,,
由抛物线定义,得,,
在梯形中,.
由余弦定理得,,
配方得,,
又因为,
所以,
得到.
所以,即的最大值为.
12. C 【解析】由题意知,若在区间上单调递增,需满足,;
若在区间上单调递减,需满足,.
①在上为增函数,则,,即,是函数的两个根,即,则,作出函数和的图象如图,则两个函数有两个交点,满足条件.
②在上为减函数,则,.即即,当,
时,满足条件.
③在上为增函数,则,,即,是函数的两个根,即
,作出和的图象如图,则两个函数图象没有交点,不满足条件.
④当时,为增函数,则,,即,是函数的两个根,作出和的图象如图,两个函数有两个交点,满足条件.
第二部分
13.
【解析】.
14.
【解析】由题意知,展开式中有项,所以.
因为,令,得,
所以常数项为.
15.
【解析】由角平分线的性质,得,
所以.
因为,
所以由余弦定理,得
即,解得.
16.
【解析】根据题意构造长方体,其面上的对角线构成三棱锥,如图所示.
设长方体的长、宽、高分别为,,,则有解得,,,所以三棱锥的体积为.
第三部分
17. (1)由,
整理得,
所以数列是首项为,公差为的等差数列,
所以,
所以.
(2)由()知,所以,
得,
所以.
18. (1)设分数在内的频率为,根据频率分布直方图,则有
,可得,所以频率分布直方图如图所示.
估计本次考试的平均分为
(2)学生成绩在的有人,在的有人,在的有人,并且的可能取值为,,,,.
则;,;
;.
所以的分布列为
.
19. (1)如图,在矩形中,为的中点,且,,
所以,
所以为等腰直角三角形,
所以.
在直四棱柱中,
因为底面是边长为的正方形,
所以平面,
又因为平面,
所以,
所以平面.
又因为平面,
所以平面平面.
(2)因为平面,
所以平面平面.
如图,过点作于点,过点作于点,连接,
则就是二面角的平面角.
在中,,
所以.
在中,.
在中,.
所以二面角的平面角的正切值大小为.
20. (1)设,,代入椭圆的方程有,,两式相减得
,
即.
又
联立两个方程有,
解得.
(2)由()知,得,.
可设椭圆的方程为.
设直线的方程为,代入椭圆的方程有.因为直线与椭圆相交,
所以.
由根与系数的关系,得,.
又,
所以,代入上述两式得,
所以
当且仅当时,等号成立.
此时,代入,有成立,
所以所求椭圆的方程为.
21. (1)函数的定义域为.
由,得,即.
令,由,
解得.
在上,;在上,.
所以在时取得最大值,故.
(2)由()知,当时,,
当且仅当时取等号.
令,有,即,当且仅当时取等号,
所以
令,有,即
,得.
22. (1)由得
,得,
所以曲线的普通方程为.
直线的参数方程为(为参数),
所以直线的普通方程为.
(2)将直线的参数方程化为标准方程为(为参数),代入曲线的方程得
,
所以.
23. (1)由题设知,当时,恒有,即,
又,所以.
(2)由柯西不等式,得,
所以,当且仅当,即,,时,取得最小值.。