2019年四川自贡市九年级上册期末考试数学试卷有答案
- 格式:docx
- 大小:462.65 KB
- 文档页数:10
第 1 页 共 21 页2019-2020学年四川省自贡市九年级上学期期末考试数学试卷一.选择题(每小题4分,共48分)1.下列汽车标志中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.下列事件:①.在足球比赛中,中国男足战胜德国男足;②.有交通信号灯的路口遇到红灯;③.连续两次抛掷一枚普通的正方体骰子得到的点数之和为13;④.任取一数为x ,使它满足x 3=x 2.其中随机事件有( )A .4个B .3个C .2个D .1个3.方程x 2+9x +9=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=( )A .﹣18B .18C .9D .04.社会主义核心价值观中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.现将12个词语写在12张不透明的卡片上(背面完全一样),背面朝上放在桌面上,从中随机抽取一张,抽到社会层面价值取向的卡片的概率为( )A .14B .112C .13D .16 5.若点(3,a ﹣2)与点(b +2,﹣1)关于原点对称,则点(b ,a )位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.已知a 是方程x 2﹣2x ﹣1=0的一个根,则代数式2a 2﹣4a ﹣1的值为( )A .1B .﹣2C .﹣2或1D .27.如图,A 、B 、C 三点在⊙O 上,∠AOC =100°,则∠ABC 等于( )A .140°B .110°C .120°D .130°8.将抛物线y =2x 2向左平移3个单位,再向上平移1个单位得到的抛物线,其解析式是( )。
四川省自贡市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)方程的根是()A .B .C .D .2. (1分) (2020八下·黄石期中) 如图,一张矩形报纸ABCD的长AB=a,宽BC=b,E,F分别是AB,CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽的比等于矩形ABCD的长与宽的比,则a:b等于()A .B .C .D .3. (1分) (2019八下·长春期末) 如图,在矩形中,,,过对角线交点作交于点,交于点,则的长是()A . 1B .C . 2D .4. (1分) (2019九上·文登期中) 如图,为坐标原点,点在轴的正半轴上,四边形是平行四边形,,反比例函数在第一象限内的图像经过点,与交于点,若点为的中点,且的面积为12,则的值为()A . 16B . 24C . 36D . 485. (1分)如图所示上山坡道的倾斜度,小明测得图中所示的数据,则该坡道倾斜角α的正切值是()A .B .C .D .6. (1分) (2019九上·镇江期末) 下列说法正确的是()A . 某种彩票的中奖机会是则买100张这种彩票一定会中奖B . 为了解全国中学生的睡眠情况,应该采用普查的方式C . 一组数据3,4,5,5,5,6,10的平均数大于中位数D . 同时抛掷两枚均匀的硬币,出现一枚正面朝上且另一枚反面朝上的概率是7. (1分)(2020·武汉模拟) 现有、、三个不透明的盒子,盒中装有红、黄、蓝球各1个,盒中装有红、黄球各1个,盒中装有红、蓝球各1个,这些球除颜色外都相同.现分别从、、三个盒子中任意摸出一个球,摸出的三个球至少有一个红球的概率是()A .B .C .D .8. (1分) (2019九上·临沧期末) 抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是()A . b2﹣4ac<0B . abc<0C .D . a﹣b+c<09. (1分) (2017九上·澄海期末) 如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB 上一点,则∠ACB=()A . 80°B . 90°C . 100°D . 无法确定10. (1分) (2016九下·广州期中) 如图,在矩形ABCD中,对角线AC、BD交与点O,以下说法错误的是()A . ∠ABC=90°B . AC=BDC . OA=OBD . OA=AD二、填空题 (共5题;共5分)11. (1分)(2019·温州模拟) 如图,在Rt△ABC中,∠B=90°,AB=2 ,BC= .将△ABC绕点A 按逆时针方向旋转90°得到△AB′C′,连结B′C,则sin ∠ACB′=________.12. (1分) (2018九上·青海期中) 小明把如图所示的矩形纸板ABCD挂在墙上,E为AD中点,且∠ABD=60°,并用它玩飞镖游戏(每次飞镖均落在纸板上),击中阴影区域的概率是________.13. (1分)无论a取什么实数,点P(a-1,2-4a+1)都在二次函数y上,Q(m,n)是二次函数y上的点,则4-2n+1=________.14. (1分) (2017九下·福田开学考) 如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=________.15. (1分)(2018·上城模拟) 在Rt△ABC中,∠C=90∘,若AB=4,sinA = ,则斜边AB边上的高CD的长为________.三、解答题 (共8题;共16分)16. (2分)(1)已知点P(a-1,3a+6)在y轴上,求点P的坐标.(2)已知点A(-3,m),B(n,4),若AB∥x轴,求m的值,并确定n的取值范围.17. (2分)小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量(单频数百分比位:t)2≤x<324%3≤x<41224%4≤x<515 30%5≤x<61020%6≤x<7 6 12%7≤x<836%8≤x<924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.18. (3分) (2017九上·西城期中) 在平面直角坐标系xOy中,抛物线y=﹣2x2+(m+9)x﹣6的对称轴是x=2.(1)求抛物线表达式和顶点坐标;(2)将该抛物线向右平移1个单位,平移后的抛物线与原抛物线相交于点A,求点A的坐标;(3)抛物线y=﹣2x2+(m+9)x﹣6与y轴交于点C,点A关于平移后抛物线的对称轴的对称点为点B,两条抛物线在点A、C和点A、B之间的部分(包含点A、B、C)记为图象M.将直线y=2x﹣2向下平移b(b>0)个单位,在平移过程中直线与图象M始终有两个公共点,请你写出b的取值范围________.19. (1分)(2018·武昌模拟) 如图,锐角△ABC内接于⊙O,若⊙O的半径为6,sinA= ,求BC的长.20. (1分)(2019·莲湖模拟) 如图,AB是⊙O的直径,直线AT切⊙O于点A,BT交⊙O于C,已知∠B=30°,AT=,求⊙O的直径AB和弦BC的长.21. (1分)一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm,求此圆锥的底面圆的半径。
2019学年四川省自贡市九年级上学期期末统一考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 方程x(x-2)=2-x的解是()A.2 B. -2,1 C.-1 D.2,-12. 抛物线y=(2x-3)2+3的顶点坐标是()A. B. C. D.3. 关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B. C. D.4. 方程x2+6x=5的左边配成完全平方后所得方程为()A. B. C. D.以上答案均不对5. 如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30° B.45° C.60° D.70°6. 任给一些不同的实数n,得到不同的抛物线y=2x2+n,如当n=0,±2时,关于这些抛物线有以下结论:①开口方向都相同;②对称轴都相同;③形状都相同;④都有最低点,其中判断正确的个数是()A.1个 B.2个 C.3个 D.4个7. 如图,⊙O的半径为5,弦的长为8,是弦上的一个动点,则线段长的最小值为()A.3 B.2 C.5 D.48. 在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针旋转90°,得到△DFC,连接EF,若∠BEC=60°,则∠EFD等于()A.10° B.25° C.20° D.15°9. 已知二次函数,若在数组中随机取一个,则所得抛物线的对称轴在直线的右方的概率为()A. B. C.D.10. 如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()二、填空题11. 若一个75°的角绕顶点旋转15°,则重叠部分的角的大小是.12. 若圆锥的底面半径为4,高为3,则圆锥的侧面展开图的面积是.13. 同一圆中的内接正六边形和内接正方形的周长比为.14. 某校举行以“保护环境,从我做起”为主题的演讲比赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,前两名都是九年级同学的概率是.15. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是(把你认为正确的结论序号都填上).三、解答题16. 解方程:x2-x-6=017. 求证:圆的内接四边形对角互补.四、填空题18. 已知二次函数.(1)在给出的直角坐标系中画出它的示意图;(2)观察图象填空:①当时,随的增大而增大;②使的的取值范围是;③将图象向左平移1个单位再向上平移2个单位,所得的抛物线的解析式.五、解答题19. 如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=1,求BD的长.20. 某班班委主动为班上一位生病住院的同学筹集部分医药费,计划筹集450元,由全体班委同学分担,有5名同学闻讯后也自愿参加捐助,和班委同学一起平均分担,因此每个班委同学比原先少分担45元,问:该班班委有几个?21. 在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是.(2)从A、D、E、F四点中先后任意取两个不同的点,以所取的这两点及B、C为顶点画四边形,求所画四边形是平行四边形的概率.(用树状图或列表法求解)22. 若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B (x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1-x2|=;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为直角三角形时,求b2-4ac的值;(2)当△ABC为等边三角形时,求b2-4ac的值.23. 如图,三角板ABC中,∠ACB=90°,AB=2,∠A=30°,三角板ABC绕直角顶点C顺时针旋转90°得到△A1B1C,求:(1)的长;(2)在这个旋转过程中三角板AC边所扫过的扇形ACA1的面积;(3)在这个旋转过程中三角板所扫过的图形面积.24. 如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.(1)求抛物线的解析式;(2)连接BE,求h为何值时,△BDE的面积最大;(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.参考答案及解析第1题【答案】第3题【答案】第4题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
四川省自贡市九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A .B . 6C . -6D . 152. (2分)下面四个几何体中,俯视图是圆的几何体共有()A . 1个B . 2个C . 3个D . 4个3. (2分)(2020·嘉兴模拟) 如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是()A . 0B .C .D . 14. (2分)已知点M将线段AB黄金分割(AM>BM),则下列各式中不正确的是()A .B .C .D .5. (2分) (2019八上·鄞州期中) 如图,折叠长方形纸片ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,则折痕AE的长为()A . cmB . cmC . 12cmD . 13 cm6. (2分)(2020·章丘模拟) 抛物线y=ax2+bx+c的图象如图所示,那么一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致是()A .B .C .D .二、填空题 (共6题;共6分)7. (1分) (2016九上·北京期中) 二次函数y=x2﹣4x+m图象的顶点在x轴上,则m=________.8. (1分)(2020·通辽) 有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了________个人.9. (1分) (2020九上·阜阳期末) 如图,设P是等边三角形ABC内的一点,PA=1,PB=2,PC=,将△ABP绕点A按逆时针方向旋转,使AB与AC重合,点P旋转到P´外,则sin∠PCP′的值是________(不取近似值)10. (1分) (2017九上·江津期中) 二次函数的图象如图所示,自原点开始依次向上作内角为60度、120度的菱形(其中两个顶点在抛物线上另两个顶点在y轴上,相邻的菱形在y轴上有一个公共点),则第2009个菱形的周长=________.11. (1分)(2019·丹阳模拟) 如图,矩形ABCD中,AB=4,将矩形ABCD绕点C顺时针旋转90°,点B、D 分别落在点B′,D′处,且点A,B′,D′在同一直线上,则________.12. (1分)如图,在△ABC中,点D、E、F分别为BC、AD、CE的中点.若S△BFC=1,则S△ABC=________.三、解答题 (共11题;共104分)13. (10分)已知如图为一几何体的三视图:(1)写出这个几何体的名称;(2)若从正面看的长为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留π).14. (10分) (2017九上·灌云期末) 已知关于x的方程x2+ax﹣2=0.(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为2,求a的值及该方程的另一根.15. (10分) (2019八下·温州期中) 如图5×5方格中,小正方形边长为1个单位长度,每个小正方形的顶点叫做格点.请按下列要求画出一个符合题意的四边形,且顶点在格点上,并写出所画图形的周长.(1)在图1中画:是中心对称图形,但不是轴对称图形,且面积为8;(2)在图2中画:既是中心对称图形,又是轴对称图形,且各边长都是无理数,面积为16. (10分)(2017·石家庄模拟) “赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组50≤x<606第2组60≤x<708第3组70≤x<8014第4组80≤x<90a第5组90≤x<10010请结合图表完成下列各题:(1)①表中a的值为________;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是________.(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.17. (5分) (2019八上·保山月考) 如图,R t△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,求CD的长.18. (15分)(2019·南浔模拟) 已知x与y成反比例,且当x=-2时,y=3.(1)求y关于x的函数解析式;(2)当x=-1时,求y的值19. (10分)今年“五一”假期,某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点,再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°,.已知A点海拔191米,C点海拔791米.(1)求B点的海拔;(2)求斜坡AB的坡度.20. (2分)(2019·天府新模拟) 为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,当种植樱桃的面积x不超过15亩时,每亩可获得利润y=1900元;超过15亩时,每亩获得利润y(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数,反比例函数或二次函数中的一种)x(亩)20253035y(元)1800170016001500(1)请求出种植樱桃的面积超过15亩时每亩获得利润y与x的函数关系式;(2)如果小王家计划承包荒山种植樱桃,受条件限制种植樱桃面积x不超过50亩,设小王家种植x亩樱桃所获得的总利润为W元,求小王家承包多少亩荒山获得的总利润最大,并求总利润W(元)的最大值.21. (2分) (2018九上·阜宁期末) 在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若Rt△AQP≌Rt△ACP≌Rt△BQP,求的值;(3)已知AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值.22. (15分)已知抛物线y1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2.(1)求抛物线的解析式;(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出y1≥y2时x的取值范围.23. (15分) (2019八上·历城期中) 如图,已知直线与轴、轴分别交于点,以为边在第一象限内作长方形.(1)点的坐标为________,点的坐标为________.(2)如图,将△ABC对折,使得点与点重合,折痕交于点交于点,求点的坐标;(3)在第一象限内,是否存在点 (点除外),使得与全等?若存在,请求出点的坐标;若不存在,请说明理由;参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共6分)7-1、8-1、9-1、10-1、11-1、12-1、三、解答题 (共11题;共104分)13-1、13-2、14-1、14-2、15-1、15-2、16-1、16-2、16-3、17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、。
2019年自贡市初三数学上期末试题含答案一、选择题1.若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( ) A .1x 0=,2x 4= B .1x 2=-,2x 6= C .13x 2=,25x 2= D .1x 4=-,2x 0=2.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2B .1C .0D .﹣13.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( ) A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点4.下列四个图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .5.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( ) A .59B .49C .56D .136.“射击运动员射击一次,命中靶心”这个事件是( ) A .确定事件 B .必然事件 C .不可能事件 D .不确定事件 7.方程x 2=4x 的解是( ) A .x =0B .x 1=4,x 2=0C .x =4D .x =28.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A .310B .925C .920D .359.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3 B .1、﹣3 C .﹣1、﹣3 D .1、3 10.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3)11.关于y=2(x ﹣3)2+2的图象,下列叙述正确的是( ) A .顶点坐标为(﹣3,2) B .对称轴为直线y=3C .当x≥3时,y 随x 增大而增大D .当x≥3时,y 随x 增大而减小12.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+12x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2二、填空题13.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是27,则袋中红球约为________个.14.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:_______.15.己知抛物线2114y x =+具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线2114y x =+上一个动点,则△PMF 周长的最小值是__________.16.某地区2017年投入教育经费2 500万元,2019年计划投入教育经费3 025万元,则2017年至2019年,该地区投入教育经费的年平均增长率为_____. 17.二次函数22(1)3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是_____.18.点A (x 1,y 1)、B (x 2,y 2)在二次函数y=x 2﹣4x ﹣1的图象上,若当1<x 1<2,3<x 2<4时,则y 1与y 2的大小关系是y 1_____y 2.(用“>”、“<”、“=”填空)19.三角形两边长分别是4和2,第三边长是2x 2﹣9x +4=0的一个根,则三角形的周长是_____.20.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.三、解答题21.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?22.石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.23.已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.24.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题(1)请补全条形统计图;(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人?(3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A,B两球分在同一组的概率.25.汽车产业的发展,有效促进我国现代建设.某汽车销售公司2007年盈利3000万元,到2009年盈利4320万元,且从2007年到2009年,每年盈利的年增长率相同,该公司2008年盈利多少万元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】二次函数y=ax2+1的图象经过点(-2,0),得到4a+1=0,求得a=-,代入方程a(x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax2+1的图象经过点(-2,0),∴4a+1=0,∴a=-14,∴方程a(x-2)2+1=0为:方程-(x-2)2+1=0,解得:x1=0,x2=4,故选:A.【点睛】本题考查了二次函数与x轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.2.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A.本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.3.D解析:D 【解析】 【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误. 【详解】当1a =-时,()224125=--+=-++y x x x , ∴当2x =-时,函数取得最大值5,故A 正确; 当1a =时,()224125y x x x =--=--, ∴函数图象开口向上,对称轴为2x =, ∴当2x ≥时,y 随x 的增大而增大,故B 正确; 当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误; 故选D. 【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键.4.D解析:D 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确. 故选D . 【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.B解析:B 【解析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.6.D解析:D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.7.B解析:B【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2=4x,x2﹣4x=0,x(x﹣4)=0,x﹣4=0,x=0,x1=4,x2=0,故选B.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.8.A解析:A【解析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:∴63P2010==两次红,故选A.9.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.10.C解析:C【分析】由题意使x=0,求出相应的y 的值即可求解. 【详解】∵y=3(x ﹣2)2﹣5, ∴当x=0时,y=7, ∴二次函数y=3(x ﹣2)2﹣5与y 轴交点坐标为(0,7). 故选C. 【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.11.C解析:C 【解析】∵ y=2(x ﹣3)2+2的图象开口向上,顶点坐标为(3,2),对称轴为直线x=3, ∴当3x 时,y 随x 的增大而增大.∴选项A 、B 、D 中的说法都是错误的,只有选项C 中的说法是正确的. 故选C.12.D解析:D 【解析】 【分析】抛物线的形状只是与a 有关,a 相等,形状就相同. 【详解】y =2(x ﹣1)2+3中,a =2. 故选D . 【点睛】本题考查了抛物线的形状与a 的关系,比较简单.二、填空题13.25【解析】【分析】【详解】试题分析:根据实验结果估计袋中小球总数是10÷=35个所以袋中红球约为35-10=25个考点:简单事件的频率解析:25 【解析】 【分析】 【详解】试题分析:根据实验结果估计袋中小球总数是10÷27=35个,所以袋中红球约为35-10=25个.考点:简单事件的频率.14.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二解析:(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差,据此即可列出方程.【详解】根据题意得:(x+1)2 -1=24,即:(x+1)2 =25.故答案为(x+1)2 =25.【点睛】本题考查了一元二次方程的应用——图形问题,解题的关键是明确图中不规则图形的面积计算方法.15.5【解析】【分析】过点M作ME⊥x轴于点EME与抛物线交于点P′由点P′在抛物线上可得出P′F=P′E结合点到直线之间垂线段最短及MF为定值即可得出当点P 运动到点P′时△PMF周长取最小值【详解】解解析:5【解析】【分析】过点M作ME⊥x轴于点E,ME与抛物线交于点P′,由点P′在抛物线上可得出P′F=P′E,结合点到直线之间垂线段最短及MF为定值,即可得出当点P运动到点P′时,△PMF周长取最小值.【详解】解:过点M作ME⊥x轴于点E,ME与抛物线交于点P′,如图所示.∵点P′在抛物线上,∴P′F=P′E.又∵点到直线之间垂线段最短,22-+-=2,(30)(32)∴当点P运动到点P′时,△PMF周长取最小值,最小值为ME+MF=3+2=5.故答案为5.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征以及点到直线的距离,根据点到直线之间垂线段最短找出△PMF周长的取最小值时点P的位置是解题的关键.16.10【解析】【分析】设年平均增长率为x则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元建立方程2500(1+x)2=3025求解即可【详解】解:设年平均增长 解析:10% 【解析】 【分析】设年平均增长率为x ,则经过两次变化后2019年的经费为2500(1+x)2; 2019年投入教育经费3025万元,建立方程2500(1+x)2=3025,求解即可. 【详解】解:设年平均增长率为x ,得 2500(1+x)2=3025,解得x=0.1=10%,或x=-2.1(不合题意舍去).所以2017年到2019年该地区投入教育经费的年平均增长率为10%. 【点睛】本题考查一元二次方程的应用--求平均变化率的方法,能够列出式子是解答本题的关键.17.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时 解析:35y -≤≤【解析】 【分析】先确定抛物线的对称轴和顶点坐标,再根据抛物线的性质以对称轴为界分情况求解即得答案. 【详解】解:∵抛物线的解析式是22(1)3y x =+-,∴抛物线的对称轴是直线:1x =-,顶点坐标是(-1,-3),抛物线的开口向上,当x <-1时,y 随x 的增大而减小,当x >-1时,y 随x 的增大而增大, 且当2x =-时,1y =-;当x =1时,y =5;∴当21x -<≤-时,31y -≤<-,当11x -<≤ 时,35y -<≤, ∴当21x -<≤时,y 的取值范围是:35y -≤≤. 故答案为:35y -≤≤. 【点睛】本题考查的是二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题关键.18.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上解析:< 【解析】 【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】由二次函数y=x2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为<.19.【解析】【分析】先利用因式分解法求出方程的解再由三角形的三边关系确定出第三边最后求周长即可【详解】解:方程2x2﹣9x+4=0分解因式得:(2x﹣1)(x﹣4)=0解得:x=或x=4当x=时+2<4解析:【解析】【分析】先利用因式分解法求出方程的解,再由三角形的三边关系确定出第三边,最后求周长即可.【详解】解:方程2x2﹣9x+4=0,分解因式得:(2x﹣1)(x﹣4)=0,解得:x=12或x=4,当x=12时,12+2<4,不能构成三角形,舍去;则三角形周长为4+4+2=10.故答案为:10.【点睛】本题主要考查了解一元二次方程,正确使用因式分解法解一元二次方程是解答本题的关键. 20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x的值,直接计算.【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),∴x1+x2=2,x1x2=﹣3,则x1﹣x2=﹣=﹣=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.三、解答题21.所围矩形猪舍的长为12m 、宽为8m【解析】【分析】设矩形猪舍垂直于住房墙一边长为xm 可以得出平行于墙的一边的长为(27﹣2x+1)m .根据矩形的面积公式建立方程求出其解就可以了.【详解】解:设矩形猪舍垂直于住房墙一边长为xm 可以得出平行于墙的一边的长为(27﹣2x+1)m ,由题意得x(27﹣2x+1)=96,解得:x 1=6,x 2=8,当x =6时,27﹣2x+1=16>15(舍去),当x =8时,27﹣2x+1=12.答:所围矩形猪舍的长为12m 、宽为8m .【点睛】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.22.(1)(20+2x ),(40﹣x );(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.【解析】【分析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.【详解】(1)、设每件童装降价x 元时,每天可销售20+2x 件,每件盈利40-x 元,故答案为(20+2x ),(40-x );(2)、根据题意可得:(20+2x)(40-x)=1200,解得:121020x x ==,,即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000, 230x 6000x -+=,∵此方程无解,∴不可能盈利2000元.【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.23.(1)2或3秒;(2)不能.【解析】【分析】(1)设经过x秒钟,△PBQ的面积等于6cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解.(2)通过判定得到的方程的根的判别式即可判定能否达到8cm2.【详解】(1)设经过x秒以后△PBQ面积为6cm2,则1×(5﹣x)×2x=6,2整理得:x2﹣5x+6=0,解得:x=2或x=3.答:2或3秒后△PBQ的面积等于6cm2 .(2)设经过x秒以后△PBQ面积为8cm2,则1×(5﹣x)×2x=8,2整理得:x2﹣5x+8=0,△=25﹣32=﹣7<0,所以,此方程无解,故△PQB的面积不能等于8cm2.【点睛】此题主要考查了一元二次方程的应用,找到关键描述语“△PBQ的面积等于6cm2”,得出等量关系是解决问题的关键.24.(1)详见解析;(2)280人;(3).【解析】【分析】(1) 由总人数以及条形统计图求出喜欢“豆腐干” 的人数,补全条形统计图即可;(2) 求出喜欢“笋干”的百分比, 乘以1000即可得到结果;(3) 列表得出所有等可能的情况数, 找出A,B两球分在同一组的情况数, 即可求出所求的概率.【详解】解:(1)喜爱豆腐干的人数为50﹣14﹣21﹣5=10,条形图如图所示:(2)根据题意得:1000××100%=280(人),所以估计全校同学中最喜爱“笋干”的同学有280人. (3)列表如下:A B C D AA ,B A ,C A ,D BB ,A B ,C B ,D CC ,A C ,B C ,D D D ,A D ,B D ,C∴A 、B 两球分在同一组的概率为=. 【点睛】本题主要考查条形统计图、用样本估计总体及列表法或树状图求概率.25.2008年盈利3600万元.【解析】【分析】设该公司从2007年到2009年,每年盈利的年增长率是x ,根据题意列出方程进行求解即可求出年增长率;然后根据2007年的盈利,即可算出2008年的盈利.【详解】解:设每年盈利的年增长率为x ,由题意得:3000(1+x )2=4320,解得:10.2x =,2 2.2x =-(不合题意,舍去),∴年增长率20%,∴3000×(1+20%)=3600,答:该公司2008年盈利3600万元.【点睛】本题考查了一元二次方程的应用,解题的关键是求出从2007年到2009年,每年盈利的年增长率.。
2018-2019学年四川省自贡市九年级(上)期末数学试卷一.选择题(每小题4分,共48分)1.(4分)下列汽车标志中,不是中心对称图形的是()A.B.C.D.2.(4分)一元二次方程(x﹣5)2=x﹣5的解是()A.x=5B.x=6C.x=0D.x1=5,x2=6 3.(4分)在平面直角坐标系中,如果⊙O是以原点为圆心,以7为半径的圆,那么A(﹣3,4)与⊙O的位置关系是()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定4.(4分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0B.﹣1C.﹣2D.﹣35.(4分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n 的值约为()A.20B.30C.40D.506.(4分)今年,某公司推出一款新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买手机的活动,一部售价为9688元的新手机,前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.7.(4分)如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D;若∠A=23°,则∠D的度数是()A.23°B.44°C.46°D.57°8.(4分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.(4分)下列说法正确的是()A.概率很小的事件不可能发生B.随机事件发生的概率为C.不可能事件发生的概率为0D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次10.(4分)如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°11.(4分)某商店现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元利润,应将销售单价定为()A.56元B.57元C.59元D.57元或59元12.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是()A.2个B.3个C.4个D.5个二.填空题(本大题共6个小题,每题4分,共24分)13.(4分)抛物线y=(x﹣1)2﹣3的顶点是.14.(4分)如图,六边形ABCDEF是⊙O的内接正六边形,若正六边形的面积等于,则⊙O的面积等于.15.(4分)同时掷两枚标有数字1~6的正方体骰子,数字和为1的概率为,数字和为9的概率为.16.(4分)用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高为.17.(4分)x1,x2是方程x2+2x﹣3=0的两个根,则代数式x12+3x1+x2=.18.(4分)如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=4,O,H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为.三、解答题(共8个题,.共78分)19.(8分)解方程:x2+2x﹣4=0.20.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,连接AC,BC.(1)求证:∠A=∠BCD;(2)若AB=10,CD=6,求BE的长.21.(8分)某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图1所示位置放置,现将Rt△AEF绕点A按逆时针方向旋转角α(0°<α<90°),如图2,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:BM=FN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.22.(8分)阅读下列例题的解答过程:解方程:3(x﹣2)2+7(x﹣2)+4=0解:设x﹣2=y,则原方程可以化为3y+7y+4=0∵a=3,b=7,c=4,∴b2﹣4ac=72﹣4×3×4=1>0∴y=∴当y=﹣1时,x﹣2=﹣1,∴x=1;当y=﹣时,x﹣2=﹣,∴x=.∴原方程的解为:x1=1,x2=.请仿照上面的例题解一元二次方程:2(x﹣3)2﹣5(x﹣3)+2=0.23.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上游是抛物线形状,当水面的宽度为10cm时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点的坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为4m,求水面上涨的高度.24.(10分)金堂有“花园水城”之称,某校就同学们对“金堂历史文化”的了解程度进行随机抽样调查,将调查结果绘制成如下两幅统计图:根据统计图的信息,解答下列问题:(1)本次共凋查名学生,条形统计图中m=;(2)若该校共有学生1200名,则该校约有名学生不了解“金堂历史文化”;(3)调查结果中,该校九年级(2)班学生中了解程度为“很了解”的同学进行测试,发现其中有四名同学相当优秀,他们是三名男生、一名女生,现准备从这四名同学中随机抽取两人去市里参加“金堂历史文化”知识竞赛,用树状图或列表法,求恰好抽中一男生一女生的概率.25.(12分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若AB=4+,BC=2,求⊙O的半径.26.(14分)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,线段OD=OC.(1)求抛物线的解析式;(2)抛物线上是否存在点M,使得△CDM是以CD为直角边的直角三角形?若存在,请求出M点的坐标;若不存在,请说明理由.(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,连接QE.若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由.2018-2019学年四川省自贡市九年级(上)期末数学试卷参考答案与试题解析一.选择题(每小题4分,共48分)1.【解答】解:A、不是中心对称图形,故本选项符合题意;B、是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项不符合题意.故选:A.2.【解答】解:(x﹣5)2﹣(x﹣5)=0,(x﹣5)(x﹣5﹣1)=0,x﹣5=0或x﹣5﹣1=0,所以x1=5,x2=6.故选:D.3.【解答】解:∵点A(﹣3,4),∴AO==5,∵⊙O是以原点O(0,0)为圆心,以7为半径的圆,∴点A在⊙O内,故选:C.4.【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选:B.5.【解答】解:根据题意得=0.4,解得:n=20,故选:A.6.【解答】解:由题意得y=,即y=,故选:D.7.【解答】解:连接OC,如图,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵∠COD=2∠A=46°,∴∠D=90°﹣46°=44°.故选:B.8.【解答】解:由图象开口向上可知a>0,对称轴x=﹣<0,得b>0.所以一次函数y=bx+a的图象经过第一、二、三象限,不经过第四象限.故选:D.9.【解答】解:A、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;B、随机事件发生的概率P为0<P<1,故本选项错误;C、不可能事件发生的概率为0,故本选项正确;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选:C.10.【解答】解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.11.【解答】解:将销售单价定为x元/件,则每星期可卖出[20(60﹣x)+300]件,根据题意得:(x﹣40)[20(60﹣x)+300]=6080,整理得:x2﹣115x+3304=0,解得:x1=56,x2=59.∵要使顾客获得实惠,∴x=56.故选:A.12.【解答】解:∵由抛物线开口向下,∴a<0,∵对称轴在y轴的右侧,∴b>0,∴ab<0,所以①正确;∵点(0,1)和(﹣1,0)都在抛物线y=ax2+bx+c上,∴c=1,a﹣b+c=0,∴b=a+c=a+1,而a<0,∴0<b<1,所以②错误,④正确;∵a+b+c=a+a+1+1=2a+2,而a<0,∴2a+2<2,即a+b+c<2,∵抛物线与x轴的一个交点坐标为(﹣1,0),而抛物线的对称轴在y轴右侧,在直线x=1的左侧,∴抛物线与x轴的另一个交点在(1,0)和(2,0)之间,∴x=1时,y>0,即a+b+c>0,∴0<a+b+c<2,所以③正确;∵x>﹣1时,抛物线有部分在x轴上方,有部分在x轴下方,∴y>0或y=0或y<0,所以⑤错误.故选:B.二.填空题(本大题共6个小题,每题4分,共24分)13.【解答】解:∵抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),∴y=(x﹣1)2﹣3的顶点坐标是(1,﹣3).故答案为(1,﹣3).14.【解答】解:连接OE、OD,∵六边形ABCDEF是正六边形,∴∠DEF=120°,∴∠OED=60°,∵OE=OD,∴△ODE是等边三角形,∴DE=OE,设OE=DE=r,作OH⊥ED交ED于点H,则sin∠OED=,∴OH=,∵正六边形的面积等于,∴正六边形的面积=וr×6=3,解得:r=,∴⊙O的面积等于2π,故答案为:2π.15.【解答】解:根据题意画图如下:总共有36种等可能的情况,数字和为1的情况没有,数字之和为9的情况有4种,所以数字和为1的概率为0,数字和为9的概率为:P(数字之和为9)==;故答案为:0,.16.【解答】解:扇形的弧长即圆锥的底面周长是,若底面半径是R,则,∴R=2,∴圆锥的高是.17.【解答】解:∵x1,x2是方程x2+2x﹣3=0的两个根,∴x12+2x1﹣3=0,即x12+2x1=3,x1+x2=﹣2,则x12+3x1+x2=x12+2x1+x1+x2=3﹣2=1,故答案为:1.18.【解答】解:如图,根据旋转的性质知△OBH≌△O1BH1,Rt△ABC中,∠A=30°,BC=4;∴AC=4,AB=8;∴BO=4,CH=2;Rt△BHC中,由勾股定理,得:BH2=CH2+BC2=(2)2+42=28;∴S阴影=S扇形BH1H﹣S扇形BOO1=﹣=×(28﹣16)=4π.三、解答题(共8个题,.共78分)19.【解答】解:移项得x2+2x=4,配方得x2+2x+1=4+1,即(x+1)2=5,开方得x+1=±,∴x1=,x2=﹣.20.【解答】(1)证明:∵直径AB⊥弦CD,∴弧BC=弧BD.∴∠A=∠BCD;(2)连接OC∵直径AB⊥弦CD,CD=6,∴CE=ED=3.∵直径AB=10,∴CO=OB=5.在Rt△COE中,∵OC=5,CE=3,∴OE==4,∴BE=OB﹣OE=5﹣4=1.21.【解答】(1)证明:∵用两块完全相同的且含60°角的直角三角板ABC与AFE按如图所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),∴AB=AF,∠BAM=∠F AN,在△ABM和△AFN中,,∴△ABM≌△AFN(ASA),∴BM=FN;(2)解:当旋转角α=30°时,四边形ABPF是菱形.理由:连接AP,∵∠α=30°,∴∠F AN=30°,∴∠F AB=120°,∵∠B=60°,∴∠B+∠F AB=180°,∴AF∥BP,∴∠F=∠FPC=60°,∴∠FPC=∠B=60°,∴AB∥FP,∴四边形ABPF是平行四边形,∵AB=AF,∴平行四边形ABPF是菱形.22.【解答】解:设x﹣3=y,则原方程化为2y2﹣5y+2=0,整理,得(y﹣2)(2y﹣1)=0.解得y=2或y=.所以x﹣3=2或x﹣3=,解得x=5或x=.23.【解答】解:(1)选择方案二,根据题意知点B的坐标为(10,0),由题意知,抛物线的顶点坐标为(5,5),且经过点O(0,0),B(10,0),设抛物线解析式为y=a(x﹣5)2+5,把点(0,0)代入得:0=a(0﹣5)2+5,即a=﹣,∴抛物线解析式为y=﹣(x﹣5)2+5,故答案为:方案二,(10,0);(2)由题意知,当x=5﹣2=3时,y =﹣(3﹣5)2+5=,答:水面上涨的高度为m.24.【解答】解:(1)由题目图表提供的信息可知总人数=24÷40%=60(人),m=60﹣12﹣24﹣6=18,故答案为:60,18;(2)1200×=240(人),答:该校约有240名学生不了解“金堂历史文化”;(3)列表如下:由上表可知,共12种可能,其中一男一女的可能性有6种,分别是(男,女)三种,(女,男)三种,∴P(一男一女)==.25.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥P A,∴P A是⊙O的切线;(2)解:过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=2,∴BE=BC=,CE=3,∵AB=4+,∴AE=AB﹣BE=4,∴在Rt△ACE中,AC==5,∴AP=AC=5.∴在Rt△P AO中,OA=,∴⊙O的半径为.26.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)2+3.将C(0,1)代入得:4a+3=1,解得:a=﹣.∴y=﹣(x﹣2)2+3=﹣x2+2x+1.(2)①C为直角顶点时如图①:作CM⊥CD,CM交抛物线与点M.设直线CD为y=kx+1.∵OD=OC∴OD=1∴D(1,0)把D(1,0)代入y=kx+1得:k=﹣1,∴y=﹣x+1.∴直线CM的解析式为:y=x+1,则:,解之得:M(2,3 ),恰好与Q点重合.②D为直角顶点时:如图②所示:设直线MD的解析式为y=x+b,将点D的坐标代入得:1+b=0,解得b=﹣1,∴MD的解析式为y=x﹣1.将y=x﹣1与y=﹣x2+2x+1联立解得:x=+1或x=1﹣.则M为(+1,)或(1﹣,﹣).综上所述,符合题意的M有三点,分别是(2,3 )或(+1,)或(1﹣,﹣).(3)存在.如图③所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′.由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′.∵F′C″+F′P′+P′C′是点C′,C″之间的折线段,∴F′C″+F′P′+P′C′>C′C″,即△P′CF′的周长大于△PCE的周长.)如答图④所示,连接C′E.∵C,C′关于直线QE对称,△QCE为等腰直角三角形,∴△QC′E为等腰直角三角形,∴△CEC′为等腰直角三角形,∴点C′的坐标为(4,5).∵C,C″关于x轴对称,∴点C″的坐标为(0,﹣1).过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6,在Rt△C′NC″中,由勾股定理得:C′C″===2.综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为2.。
四川省自贡市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)满足等式(x+3) =1的所有实数x的和是()A . 1B . ﹣1C . ﹣5D . ﹣62. (2分)解下面方程:(1)(x-2)2=5(2)x2-3x-2=0(3)x2+x-6=0,较适当的方法分别为()A . (1)直接开平法方(2)因式分解法(3)配方法B . (1)因式分解法(2)公式法(3)直接开平方法C . (1)公式法(2)直接开平方法(3)因式分解法D . (1)直接开平方法(2)公式法(3)因式分解法3. (2分)在统计中,样本的标准差可以反映这组数据的()A . 集中程度B . 分布规律C . 离散程度D . 数值大小4. (2分)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,OM=,则sin∠CBD的值等于()A .B .C .D .5. (2分)若有二次函数y=ax2+c,当x取x1 , x2(x1≠x2)时,函数值相等,则当x=x1+x2时,函数值为()A . a+cB . a-cC . -cD . c6. (2分) (2018九上·浙江月考) 如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为()A . 3B . 4C . 5D . 2.67. (2分)如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD⊥AC于D,设BP=x,则PD+PE=()A .B .C .D .8. (2分)(2017·邵阳模拟) 下列函数中,当x>0时,y的值随x的值增大而减小的函数是()A . y=3xB . y=x﹣1C . y=D . y=2x2二、填空题 (共10题;共15分)9. (1分)在中国地理地图册上,连接上海、香港、台湾三地构成一个三角形,用刻度尺测得它们之间的距离如图所示.飞机从台湾直飞上海的距离约为 1 286千米,那么飞机从台湾绕道香港再到上海的飞行距离约为________ 千米.10. (2分)(2020·北京模拟) 某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.假定每位顾客购买商品的可能性相同.商品甲乙丙丁顾客人数100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率为________.(2)如果顾客购买了甲,并且同时也在乙、丙、丁中进行了选购,则购买________(填乙、丙、丁)商品的可能性最大.11. (1分) (2019九上·瑞安月考) 已知两个相似三角形△ABC与△DEF的相似比为3,则△ABC与△DEF的面积之比为________。
2019-2020学年四川省自贡市九年级(上)期末数学试卷一.选择题(每小题4分,共48分)1.(4分)下列汽车标志中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.(4分)下列事件:①.在足球比赛中,中国男足战胜德国男足;②.有交通信号灯的路口遇到红灯;③.连续两次抛掷一枚普通的正方体骰子得到的点数之和为13;④.任取一数为x ,使它满足32x x =.其中随机事件有( )A .4个B .3个C .2个D .1个3.(4分)方程2990x x ++=的两根为1x ,2x ,则1212(x x x x +-= )A .18-B .18C .9D .04.(4分)社会主义核心价值观中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.现将12个词语写在12张不透明的卡片上(背面完全一样),背面朝上放在桌面上,从中随机抽取一张,抽到社会层面价值取向的卡片的概率为( )A .14B .112C .13D .165.(4分)若点(3,2)a -与点(2,1)b +-关于原点对称,则点(,)b a 位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.(4分)已知a 是方程2210x x --=的一个根,则代数式2241a a --的值为( )A .1B .2-C .2-或1D .27.(4分)如图,A 、B 、C 三点在O e 上,100AOC ∠=︒,则ABC ∠等于( )A .140︒B .110︒C .120︒D .130︒8.(4分)将抛物线22y x =向左平移3个单位,再向上平移1个单位得到的抛物线,其解析式是( )A .22(3)1y x =++B .22(3)1y x =--C .22(3)1y x =+-D .22(3)1y x =-+9.(4分)关于x 的一元二次方程2(3)410a x x ---=有实数根,则a 的值范围是( )A .1a -…且3a ≠B .1a >-且3a ≠C .3a ≠D .1a -…10.(4分)若一个圆锥的底面半径为2cm ,高为42cm ,则圆锥的侧面展开图中圆心角的度数为( )A .80︒B .100︒C .120︒D .150︒11.(4分)如图,在Rt ABC ∆中,90C ∠=︒,2AC BC ==;若将ABC ∆绕点B 逆时针旋转60︒到△A BC ''的位置,连接C A ',则C A '的长为( )A .62-B .62-C .22-D .22-12.(4分)如图,2y ax bx c =++的图象经过点(1,0)-,(,0)m ;有如下判断:①0abc <;②3b c >;③11b m c=-;④2||4am a b ac +=-. 其中正确的判断有( )A .1个B .2个C .3个D .4个二.填空题(本大题共6个小题,每题4分,共24分)13.(4分)抛物线2(1)2y x =+-的对称轴x = .14.(43,则这个正六边形的边长为 .15.(4分)已知O e 的半径是一元二次方程26160x x +-=的解,且点O 到直线AB 的距离是2,则直线AB 与O e 的位置关系是 .16.(4分)已知一个口袋中有5个只有颜色不同的球,其中红球2个,黄球3个,若在口袋中再放入x 个红球、y 个黄球,从口袋中随机摸出一个黄球的概率是13.则y 与x 的函数关系式为y = .17.(4分)若二次函数21y ax =-的图象经过(2,0),则关于x 的方程2(2)10a x +-=的实数根是= .18.(4分)如图,AB 是O e 的直径,C 为圆上一点,且120AOC ∠=︒,O e 的半径为2,P 为圆上一动点,Q 为AP 的中点,则CQ 的长的最值是 .三、解答题(共8个题,.共78分)19.(8分)如图,抛物线2y x bx c =++与x 轴交于(1,0)A -,(3,0)B 两点.求该抛物线的解析式.20.(8分)如图,点E 是ABC ∆的内心,AE 的延长线和ABC ∆的外接圆相交于点D .求证:DE DB =.21.(8分)已知关于x 的一元二次方程210ax bx ++=中,1b a m m a m =-+-++;(1)若4a =,求b 的值;(2)若方程210ax bx ++=有两个相等的实数根,求方程的根.22.(8分)如图为一个封闭的圆形装置,整个装置内部为A 、B 、C 三个区域(A 、B 两区域为圆环,C 区域为小圆),具体数据如图.(1)求出A 、B 、C 三个区域三个区域的面积:A S = ,B S = ,C S = ;(2)随机往装置内扔一粒豆子,多次重复试验,豆子落在B 区域的概率B P 为多少?(3)随机往装置内扔180粒豆子,请问大约有多少粒豆子落在A 区域?23.(10分)用配方法解关于x 的一元二次方程20ax bx c ++=.24.(10分)已知O e 是ABC ∆的外接圆,AB 是O e 的直径,D 是AB 延长线上的一点,AE CD ⊥交DC 的延长线于E ,交O e 于G ,CF AB ⊥于F ,点C 是弧BG 的中点.(1)求证:DE 是O e 的切线;(2)若AF ,()BF AF BF >是一元二次方程28120x x -+=的两根,求CE 和AG 的长.25.(12分)某校学生准备购买标价为50元的《现代汉语词典》,现有甲、乙两书店出售此书,甲店按如下方法促销:若只购1本,则按原价销售;若一次性购买多于1本,但不多于30本时,每多购一本,售价在标价的基础上优惠2%(例如买2本,每本售价优惠2%;买三本,每本售价优惠4%,以此类推);若多于30本,每本售价20元.乙书店一律按标价。
四川省自贡市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)一元二次方程x2+3x-4=0的解是().A . x1=1,x2=-4B . x1=-1,x2=4C . x1=-1,x2=-4D . x1=1,x2=42. (2分)(2017·诸城模拟) 如图:二次函数y=ax2+bx+c的图像所示,下列结论中:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 ,且x1≠x2 ,则x1+x2=2,正确的个数为()A . 1个B . 2个C . 3个D . 4个3. (2分)(2017·海陵模拟) 已知x=2是方程x2+bx﹣2=0的一个根,则b的值是()A . ﹣1B . 1C . ﹣2D . 24. (2分)如图,是半圆,O为AB中点,C、D两点在上,且AD∥OC,连接BC、BD.若=62°,则的度数为何?()A .B .C .D .5. (2分)把二次函数y=-2x2+1的图象向上平移2个单位,再向右平移1个单位后,得到新的图象的二次函数表达式是()A . y=-2(x-1)2+3B . y=-2(x-1)2-3C . y=-2(x+1)2+3D . y=-2(x+1)2-36. (2分)正三角形的边心距、半径和高的比是()A . 1:2:3B . 1: :C . 1: :3D . 1:2:7. (2分)已知函数y=x2-2x-2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是()A . -1≤x≤3B . -3≤x≤1C . x≥-3D . x≤-1或x≥38. (2分)如图,在▱ABCD中,AB=6,AD=9,AF平分∠BAD交BC于点E,交DC的延长线于点F,BG⊥AF于点G,BG=4 ,EF= AE,则△CEF的周长为().A . 8B . 10C . 14D . 16二、填空题 (共6题;共6分)9. (1分)(2019·莲湖模拟) 初2018级某班文娱委员,对该班“肆月”学习小组同学购买不同单价的毕业照(单位:元)情况进行了统计,绘制了如图所示的条形统计图,则所购毕业照平均每张的单价是________元.10. (1分)如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它的解析式为________11. (1分)(2019·银川模拟) 若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则m的取值范围是________.12. (1分)(2017·老河口模拟) 如图,在△ABC中,AC=3cm,∠ACB=90°,∠ABC=60°,将△ABC绕点B 顺时针旋转至△A′BC′,点C′在直线AB上,则边AC扫过区域(图中阴影部分)的面积为________ cm2 .13. (1分)十二边形的内角和是________ 度;cos35°≈________(结果保留四个有效数字).14. (1分) (2016八上·宜兴期中) 如图,在△ABC中,AB=AC=10,BC=12,若点P在边AC上移动,则BP的最小值是________.三、解答题 (共10题;共96分)15. (5分)(2013·徐州)(1)计算:|﹣2|﹣ +(﹣2013)0;(2)计算:(1+ )÷ .16. (5分)一个不透明的口袋中装有4张卡片,卡片上分別标有数字1、﹣2、3、﹣4,这些卡片除数字外都相同.王兴从口袋中随机抽取一张卡片,钟华从剩余的三张卡片中随机抽取一张,求两张卡片上数字之积.(1)请你用画树状图或列表的方法,列出两人抽到的数字之积所有可能的结果.(2)求两人抽到的数字之积为正数的概率.17. (5分)某商厦今年一月份销售额为60万元,二月份由于经营不善,销售额下降10%,以后改进管理,大大激发全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)18. (11分)(2017·新疆) 现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.19. (2分)(2012·无锡) 如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以 cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts.(1)当P异于A、C时,请说明PQ∥BC;(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?20. (11分)已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.21. (11分) (2019七上·荔湾期末) 列方程解应用题:为了参加2019年广州马拉松比赛,爸爸与小明在足球场进行耐力训练,他们在400米的环形跑道上同一起点沿同一方向同时出发进行绕圈跑,爸爸跑完一圈时,小明才跑完半圈,4分钟时爸爸第一次追上小明,请问:(1)小明与爸爸的速度各是多少?(2)再过多少分钟后,爸爸在第二次追上小明前两人相距50米?22. (15分) (2019八上·海安期中) 如图,在平面直角坐标系中,,点在第一象限,为等边三角形,,垂足为点 . ,垂足为 .(1)求OF的长;(2)作点关于轴的对称点,连交于E,求OE的长.23. (11分)(2017·响水模拟) 如图,在平面直角坐标系中,二次函数y=x2+bx+c的对称轴为经过点(1,0)的直线,其图象与x轴交于点A、B,且过点C(0,﹣3),其顶点为D.(1)求这个二次函数的解析式及顶点坐标;(2)在y轴上找一点P(点P与点C不重合),使得∠APD=90°,求点P的坐标;(3)在(2)的条件下,将△APD沿直线AD翻折得到△AQD,求点Q的坐标.24. (20分) (2017八上·深圳月考) 在直角坐标系中,如图有△ABC,现另有一点D满足以A、B、D为顶点的三角形与△ABC全等,则D点坐标为________参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12、答案:略13-1、14-1、三、解答题 (共10题;共96分)15-1、15-2、16-1、16-2、17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23、答案:略24-1、。
秘密★启用前〖考试时间:2019年1月5日上午9:00-11:00 共120分钟〗2018-2019学年九年级上学期期末考试数 学 试 卷重新制版:赵化中学 郑宗平本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷,第Ⅱ卷,满分150分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时.须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.考试结束后,本试题卷学生自己保留,只将将答题卡交回.第Ⅰ卷 选择题 (共48分)注意事项:必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上,如需改动用橡皮擦擦干净,再选涂答案标号.一.选择题(每小题4分,共48分)1.一元二次方程2x x 20--=的解是 ( ) A.,12x 1x 2== B.,12x 1x 2==- C.,12x 1x 2=-=- D.,12x 1x 2=-=2.一元二次方程()2ax bx c 0a 0++=≠无实数根,则2b 4ac -满足的条件是( )A.2b 4ac 0-=B.2b 4ac 0->C.2b 4ac 0-<D.2b 4ac 0-≥ 3.下列图形中,既是轴对称图形又是中心对称图形的是 ( )4.二次函数()2y x 14=--的顶点坐标和对称轴分别是 ( )A.()1,4,x 1-=B.()1,4,x 1=C.()1,4,x 1-=-D.()1,4,x 1--=-5.下列说法中,正确的是 ( )A.随机事件发生的概率为13 B.必然事件发生的概率为1 C.概率很大的事件一定能发生 D.投掷一枚质地均匀的硬币10次,正面朝上的次数一定为5次6.⊙O 是△ABC 的外接圆,OCB 40∠=,则A ∠的度数是( )A.40°B.50°C.60°D. 100°7. 将抛物线2y x =平移得到抛物线()2y x 2=+,则这个平移过程正确的是( )A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位8.如图,△ABC 内接于⊙O , AB BC,ABC 120=∠=,AD 为⊙O的直径, AD 6=,那么AB 的值为 ( )A.B.3 D.29.某商场四月份的利润为28万元,预计六月份的利润将达到40万元,设利润每月平均增长率为x ,那么根据题意所列方程正确的是 ( )A.()2281x 40+=B.()2281x 4028+=- C.()2812x 40+= D.()2281x 40+= 10.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45°后得到正方形111AB C D ,边11B C 与CD 交于点O ,则四边形1AB OD 的面积是)A.34B.121 D.1+11. 若我们把十位数字比个位和百位上的数字都大的三位数称为凸数,如:786,465,.则由1,2,3这三个数字构成的,数字不重复的三位数是“凸数”的概率是 ( )A.56 B.23 C.12 D.13 12. 已知二次函数()2y ax bx c 0a 0=++=≠①.abc 0<;②.2b 4ac 0->;③.3a c 0+>;④.()22a cb +<.其中正确的结论有 ( )A. 1个B. 2个C. 3个D. 4个第Ⅱ卷 非选择题 (共102分)注意事项:必须使用0.5毫米黑色墨水铅签字笔在答题卡上题目所指示区域内作答,作图题可先用铅笔绘出,确认后用0.5毫米黑色墨水铅签字笔描清楚,答在试题卷上无效.二.填空题(本大题共6个小题,每题4分,共24分)13. 已知关于x 的方程2x 2x k 0++=的一个根为1-,则k = .14. 已知圆锥底面半径为6cm ,高为8cm ,则它的侧面展开图的面积为 2cm .B C D A D x15.如图,在△ABC 中,CAB 75∠=.在同一个平面内,将 △ABC 绕点A 旋转到△AB'C'的位置,使得CC'∥AB ,则 BAB'∠ = .16.同时掷两枚标有数字1~6的正方体骰子,面朝上的数字之 和为8的概率为 .17.如图,⊙O 的半径OD AB ⊥于点C ,连接AO 并延长 交⊙O 于点E ,连接EC .若AB 4,CD 1==,则EC 的长 为 .18.如图,一段抛物线()()y x x 10x 1=--≤≤记为1m ,它与x 轴的交点为1O,A ,顶点为1P ; 将1m 绕点1A 旋转180°得到2m ,交x 轴于点为2A ,顶点为2P ;将2m 绕点2A 旋转180°得 到3m ,交x 轴于点为3A ,顶点为3P ;……,如此进行下去,直至到m ,顶点为P ,则顶点10P 的坐标为 .三、解答题(共8个题,.共78分)19.(本题满分8分)用配方法解方程:2x 4x 20++=20.(本题满分8分)如图,已知A B C D 、、、是⊙O 上的四点,延长DC AB、相交于点E ,若BC BE =. 求证:⊿ADE 是等腰三角形.21.(本题满分8分)如图,方格纸中的每个小正方形的边长都是1个单位长度,Rt ⊿ABC 的三个顶点()()(),,,A 22B 05C 02、、-.⑴.平移⊿ABC ,使点A 的对应点1A 的坐标为()22,,请画出平移后对应的⊿111A B C 的图形. ⑵. ⊿111A B C 关于x 轴对称的三角形为⊿222A B C .22.(本题满分8分)有三面小旗,分别为红、黄、蓝三种颜色.⑴.把三面小旗从左到右排列,红色小旗在最左端的概率是多少? ⑵.黄色小旗排在蓝色小旗前的概率是多少?23.(本题满分10分)如图,AB 是⊙O 的直径,AB 是⊙O 的切线,A 是切点, BP 与⊙O 交于点C . ⑴.若AB 4,ABP 60=∠=,求PB 的长;⑵. 若CD 是⊙O 的切线.求证:D 是AP 的中点.C Bx24.(本题满分10分)体育场上,老师用绳子围成一个周长为30m 的游戏场地,围成的场地是如图所示的矩形ABCD ,设AB 的长为xm (x 取整数),矩形ABCD 的面积为()2S m . ⑴.写出S 与x 之间的函数关系式,求出S 的最值和相应的x 的值; ⑵.若矩形ABCD 的面积为250m 且AB AD <,请求出此时AB 的长.25.(本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=(k 是整数).⑴.求证:方程有两个不相等的实数根;⑵.若方程的两个实数根分别为12x ,x (其中12x x <),设21y x x 2=--,判断y 是否为变量k 的函数?如果是,请写出函数表达式;若不是,请说明理由.26.(本题满分14分)设函数()2y kx 2k 1x 1=+++(k 为实数)⑴.写出其中的两个特殊函数,使它们的图象不全是抛物线,并且在同一坐标系中,用描点法画出它们的图像;⑵.根据所画图像,猜想出:对任意实数k ,函数的图像都具有的特征,并给予证明; ⑶.对于任意实数k ,当x m <时,y 随x 的增大而增大,试求m 的取值范围.D BC A。
自贡市九年级上学期期末考试数 学 试 卷第Ⅰ卷 选择题 (共48分)一.选择题(每小题4分,共48分)1.下列交通标志中,不是中心对称图形的是( )2.方程()100x x -=的解是( )A.0x =B.10x =C.0x =或10x =D.0x =或-10x = 3.正六边形的半径为6cm ,则该正六边形的内切圆面积为( ) A.482cm π B.362cm πC.242cm π D.272cm π 4.关于x 的方程222x x 0++=的根的情况是( )A.有两个不相等实数根B.无实数根C.有两个相等的实数根D.只有一个实数根 5.如图,已知圆周角∠A CB=130°,则圆心角∠AOB=( ) A.130° B.115° C.100° D.50°6.一个不透明的布袋里装有3个红球,2个黑球,若干个白球;从布袋中随机摸出一个球,摸出的球是红球的概率是37,袋中白球共有( ) A.1个 B.2个 C.3个 D.4个7.如图,⊙O 与正方形ABCD 的两边AB 、AD 相切,且DE 与⊙O 相切于点E.若DE=6,AB=11,则⊙0的半径为( )A.5B.6C.30D.1128.下列事件中,是不可能事件的是( )A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°9.若函数232y x x m =-+的图象上有两点()(),,,1122A x y B x y ,若<<-12x x 2 ,则( )A.>12y yB.<12y yC.=12y yD.,12y y 的大小不确定DC A B10.如图,将∆ABC 绕点C 旋转60°得到正方形∆A′B′C′,已知 AC=6,BC=4,则线段AB 扫过的图形的面积为 ( ) A.23π B.103π C.6π D.83π11. 在同一坐标系中,一次函数=-+2y bx a 与二次函数=+2y x b 的图象可能是( )12. 如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A,点C 是弧»EB的中点,则下列结论:①OC ∥AE ;②EC=BC ; ③∠DAE=∠ABE ;④AC ⊥OE.其中正确的有 ( )A. 1个B. 2个C. 3个D. 4个 二.填空题(本大题共6个小题,每题4分,共24分) 13.方程++=2kx x 80的一个根为-1,则k = . 14. 圆的内接四边形ABCD ,已知∠D=95°,∠B = .15.有一人患了流感,经过两轮传染后共有64人患了流感,那么每轮传染中平均一个人传染给 个人. 16.若()---+=2m2m 2x mx 10是一元二次方程,则m 的值为 .17.如图,二次函数=++2y ax bx c 图象的一部分,图象过()A -3,0,对称轴为直线=-x 1,给出四个结论:①.>2b 4ac ;②.+=2a b 0;③.++=a b c 0;④.若点()()-5,,6,12B y C y 为函数图象上的两点,则<12y y . 其中正确结论是 .(写上你认为正确的所有序号)18.在平面直角坐标系中,⊙P 的圆心是()()22a a >,,半径为2,函数=y x 的图象被⊙P 截得的弦AB 的长为23,则a 的值是 .xyODxyOxyOxyOyy = xBAPO18题图y AO17题图三、 解答题(共8个题,.共78分)19.(本题满分8分)解方程:35102x x -+=20.(本题满分8分)如图,在∆ABC 中,AB=AC,以AB 为直径的⊙O 交BC 于点M,MN ⊥AC 于点N. 求证MN 是⊙O 的切线.21.(本题满分8分)如图,点A 的坐标为()3,3,点B 的坐标为()4,0,点C 的坐标为()0,-1. ⑴请在平面直角坐标系中画出∆ABC 向上平移2个单位后的图形∆A 1B 1C 1.⑵请在直角坐标系中画出∆ABC 绕点C 逆时针旋转90°的三角形为∆A′B′C′,直接写 出点A′的坐标(),,点B′的坐标(),.22.(本题满分8分)已知关于x 的一元二次方程()2122m m x mx 0--+=有两个不相等的实数根. ⑴.求m 的取值范围;23.(本题满分10分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现:若每箱以50元的价格出售,平均每天销售80箱,价格每提高1元,平均每天少销售2箱. ⑴.求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式;⑵.求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式; ⑶.当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?24.(本题满分10分),,,,另一个可以自由旋转的圆盘,被一个不透明的口袋中装有4个完全相同的小球,分别标有数字1234,,(如图).小颖和小亮想通过游戏决定谁代表学校参分成面积相等的3个扇形区域,分别标有数字123加歌咏比赛,游戏规则为:一个人口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去,否则小亮去.⑴.用树状图或列表法求出小颖参加比赛的概率;⑵.你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏的规则,使游戏公平.25.(本题满分12分)»AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延如图,AB是⊙O的直径,C是弧长线交切线BD于点F,AF交⊙O于点H,连接BH.⑴求证:AC=CD.⑵若OB=2,求BH的长.26.(本题满分14分)如图,已知一条直线过点()04,,且与抛物线142y x =交于A 、B 两点,其中点A 的横坐标是-2. ⑴求这条直线的函数关系式及点B 的坐标 ;⑵在x 轴上是否存在点C,使得∆ABC 是直角三角形?若存在,求出点C 的坐标,若不存在,请说明理由; ⑶.过线段AB 上一点P,作PM ∥x 轴,交抛物线于点M,点M 在第一象限;点()0,1N ,当点M 的横坐标为何值时,MN+3MP 的长度最大?最大值是多少?九年级(上)期末考试数学参考答案一、选择题(每小题4分,共计48分)1-5 ACDBC 6-10 BADAB 11-12 DC二、填空题 (本大题共6小题,每小题4分,共计24分)13. -7 14. 85° 15.7 6.﹣2 17.①③ 18.2+三、解答题19. 解:由求根公式有52512x ±-=…………4分513=±…………6分 ∴ 15136x +=25136x -=…………8分 20. 证明:连接OM , …………1分∵AB=AC , ∴∠B=∠C , …………2分 ∵OB=OM ,∴∠B=∠OMB , …………3分 ∴∠OMB=∠C , ∴OM ∥AC , …………5分 ∵MN ⊥AC ,∴OM ⊥MN . …………7分 ∵点M 在⊙O 上,∴MN 是⊙O 的切线 …………8分 21.解:(1)如图所示: …画出111A B C ∆ ……2分画出C B A ''∆ ……6分A 1B 1C 1(2) ﹣4,2 ﹣1,3. …………8分22. 解:(1)由题意有:()2220440m m m m m ⎧-≠⎪⎨-->⎪⎩…………2分 解得:01m m >≠且 …………4分(2)∵01m m >≠且 又m 为小于3的整数 ∴2m = …………5分当2m =时,方程为22410x x -+= 即:22410a a -+=…………6分∵22212324a a a +--+22214=24114a aa a +--+-+=1 ∴ 代数式22212324a a a +--+ 的值为1…………8分 23. 解:(1)由题意得:y=80﹣2(﹣50) 化简得:y=﹣2+180; …………3分(2)由题意得:w=(﹣40)y =(﹣40)(﹣2+180)=﹣22+260﹣7200; …………6分 (3)w=﹣22+260﹣7200∵a=﹣2<0,∴抛物线开口向下. 当= 65时,w 有最大值. …………8分 又<65,w 随的增大而增大. ∴当=55元时,w 的最大值为1050元. ∴当每箱苹果的销售价为55元时,可以获得1050元的最大利润. …………10分 24. 解:(1)画树状图:…………4分共有12种等可能性结果,其中数字之和小于4的有3种情况, …………5分 所以P (和小于4)==, 即小颖参加比赛的概率为; …………6分(2)该游戏不公平.理由如下: …………7分 因为P (和不小于4)=,所以P (和小于4)≠P (和不小于4), …………8分 所以游戏不公平,可改为:若数字之和为偶数,则小颖去;若数字之和为奇数,则小亮去. 25. 证明:(1)连接OC……10分∵C 是AB 中点,AB 是O d 的直径 ∴ OC AB ⊥…………1分 ∵BD 是O d 的切线 ∴ BD AB ⊥ ∴ OC BD P ……3分 ∵AO BO = ∴ AC CD =…………5分 (2)连接 ∵E 是OB 的中点 ∴OE BE =在 COE ∆∆与FBE 中 ,CEO FEB ∠=∠OE BE =COE FBE ∠=∠()COE FBE ASA ≅∆V………8分 ∴BF CO =∵2OB = ∴2BF = ∴224225AF =+=………10分∵AB 是直径 ∴ BH AF ⊥ ∴ AB BF AF BH ⋅=⋅ ∴ 4525AB BF BH AF ⋅===…………12分 26. 解:(1)∵点A 是直线与抛物线的交点,且横坐标为﹣2,∴y=×(﹣2)2=1,A 点的坐标为(﹣2,1), …………1分 设直线的函数关系式为y=+b , 将(0,4),(﹣2,1)代入得,解得,∴直线y=+4, …………3分 ∵直线与抛物线相交,∴+4=2,解得:=﹣2或=8,当=8时,y=16, ∴点B 的坐标为(8,16); …………5分(2)如图1,连接AC ,BC ,∵由A (﹣2,1),B (8,16)可求得AB 2=325. 设点C (m ,0),同理可得AC 2=(m+2)2+12=m 2+4m+5,BC 2=(m ﹣8)2+162=m 2﹣16m+320, …………6分①若∠BAC=90°,则AB 2+AC 2=BC 2,即325+m 2+4m+5=m 2﹣16m+320,解得:m=﹣; ……7分 ②若∠ACB=90°,则AB 2=AC 2+BC 2,即325=m 2+4m+5+m 2﹣16m+320, 解得:m=0或m=6; …………8分 ③若∠ABC=90°,则AB 2+BC 2=AC 2,即m 2+4m+5=m 2﹣16m+320+325,解得:m=32; …………9分 ∴点C 的坐标为(﹣ ,0),(0,0),(6,0),(32,0) …………10分OB21(3)设M (a , a 2),设MP 与y 轴交于点Q , 在Rt △MQN 中,由勾股定理得MN== a 2+1 …………11分又∵点P 与点M 纵坐标相同,∴+4= a 2,∴=,∴点P 的横坐标为,∴MP=a ﹣, …………12分∴MN+3PM=+1+3(a ﹣)=﹣a 2+3a+9, …………13分∴当a=﹣=6, 又∵﹣2≤6≤8, ∴取到最大值18,∴当M 的横坐标为6时,MN+3PM 的长度的最大值是18.…………14分4141。