人教A版高中数学必修五福建省长乐第一正弦定理和余弦定理教案新
- 格式:doc
- 大小:68.08 KB
- 文档页数:2
1.1.1 正弦定理(教案)一、教学目标:认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
能力目标:1)引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力。
2)在探究学习的过程中,认识到正弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
为了更有效地突出重点,突破难点,本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。
另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。
三、学习方法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。
让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力. 四、教学过程(一)创设情境,布疑激趣:展示辽阳白塔、千山、太子河图片,引导学生发现问题:如何能够实现不登山而知山高,不过河而知河宽;提出问题:某人站在太子河岸边点B 位置,发现对岸A 处有 一个宣传板,请你设计一个方案能够求出A 、B 两点间的距离?(备用工具:测角仪和皮尺)(二)探寻特例,提出猜想 回顾直角三角形中的边角关系:B CA我们知道。
1.1.1 《正弦定理》教学设计教材分析本节课内容选自《普通高中课程标准实验教科书数学·必修五(人教A版)》第一章1.1.1正弦定理,是本章的第一节,也是这一节的第一课时。
课程安排在三角函数和平面向量之后,是三角函数知识在三角形中的具体运用,更是初中解直角三角形和三角形定性边角关系的延续和拓展,同时也是解决和三角形有关的其它数学问题及生产生活实际问题的重要工具。
正弦定理定量的刻画了任意三角形的边角关系。
学情分析本节课是对高一第二学期的学生讲授,学生刚学习完必修四的三角函数,并且能够较熟练地解直角三角形,也具有初中平面几何的相关知识,在本章节的理解上不会有太大的问题。
不过,即使学生具有一定的观察分析和解决问题的能力,但是在前后知识的串联上会有一定的难度,因此,教师在推进学生学习过程时,要逐步实现,环环相扣,循序渐进,要特别注重知识生成的过程,同时也要注重激发学生学习的主动性和积极性。
教学目标《数学课程标准》中,本节课的课程目标要求是:在本章中,学生将在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长和角度之间的数量关系,并认识运用它们可以解决一些与测量和几何计算有关的实际问题。
于是,根据课程目标、教材内容和学生的实际情况,我确定本节课的学习目标为:1. 通过观察、实验、验证、猜想、证明,从特殊到一般得到正弦定理。
2. 证明正弦定理,掌握正弦定理的内容和证明方法。
3. 会初步运用正弦定理解决任意三角形的两类基本问题。
4. 利用已有的几何知识,让学生通过观察直角三角形边与角之间的关系,猜想并推导任意三角形的边角关系,归纳出正弦定理,体会从特殊到一般的探索发现过程。
教学重点正弦定理的探索、证明与基本应用。
教学难点正弦定理的应用。
学法在教师的启发引导下,以“正弦定理的发现”为基本探究内容,引导学生从直角三角形中得出边角关系Cc B b A a sin sin sin ==,然后猜想这种关系在任意三角形中是否成立?教师借助几何画板的动态展示,让学生直观感受到该关系确实仍然成立,激发了学生探究的兴趣。
高一数学必修5《正弦定理》教学设计一、教学目标:1知识与能力:1)让学生从已有的几何知识出发, 通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,并学会运用正弦定理解决解斜三角形的两类基本问题。
2情感、态度与价值观:1)通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。
2)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。
3)培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
二、教学重点:正弦定理的发现与证明及正弦定理的简单应用。
三、教学难点:正弦定理的猜想提出过程。
四、教学过程:1、生活引入,激发兴趣师:(1)在我国古代就有嫦娥奔月的神话故事.明月高悬,我们仰望夜空,会有无限遐想,不禁会问,月亮离我们地球有多远呢?科学家们是怎样测出来的呢?学生不知道。
激起学生兴趣!师:(2)设A,B两点在河的两岸, 只给你米尺和量角设备,不过河你可以测出它们之间的距离吗?师:你有什么想法?生:思考片刻,教师引导。
师:根据我们目前的知识是无法解决这个问题,我们这一节所学习的内容就是解决这些问题的有力工具。
请同学们回顾一下:三角形中(1)三条边有怎样的关系?(2)三个角有什么关系?(3)边与角有什么关系?2、课堂探究,引入定理师:探究一般三角形中的边角关系,我们应从我们最熟悉的特殊三角形入手!生1:直角三角形。
师:直角三角形的边与角之间存在怎样的关系?生2:思考交流得出,如图1,在Rt∆ABC中,设BC=a,AC=b,AB=c,则有=sin aAc ,=sinbBc,又sin1cCc==,BaACcb(如图1)则sin sin sin a b c c A B C=== 从而在直角三角形ABC 中,sin sin sin a b c A B C==师生活动:教师:那么,在斜三角形中也成立吗?用多媒体的手段对结论加以验证!但特殊不能代替一般,具体不能代替抽象,这个结果还需要严格的证明才能成立,如何证明哪?前面探索过程对我们有没有启发?学生分组讨论,并派一个代表板书。
专题22正弦定理和余弦定理1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理内容a sin A =b sin B =csin C=2R a 2=b 2+c 22bc cos__A ;b 2=c 2+a 22ca cos__B ; c 2=a 2+b 2-2ab cos__C常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin_C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .高频考点一 利用正弦定理、余弦定理解三角形例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个D .无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b .解得b =1.【感悟提升】(1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2D .2<x <2 3(2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1解析 (1)若三角形有两解,则必有a >b ,∴x >2,又由sin A =a b sin B =x 2×22<1,可得x <22,∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB cos A ,化简得x 2-2x +1=0, ∴x =1,即AB =1.高频考点二 利用正弦、余弦定理判定三角形的形状例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a2=12c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=12c 2及正弦定理得(2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010,由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3. 【感悟提升】(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【变式探究】四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,BD =7,因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin60° =2 3.高频考点三 正弦、余弦定理的简单应用例3、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B【感悟提升】(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin∠BAC =223,AB =32,AD =3,则BD 的长为______.答案 (1)D (2) 3∴△ABC 为等腰或直角三角形.(2)sin∠BAC =sin(π2+∠BAD )=cos∠BAD ,∴cos∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.高频考点三 和三角形面积有关的问题【例3】 (2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sinC ,故2sin C cos C =sin C . 由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13, 从而(a +b )2=25.所以△ABC 的周长为5+7. 【方法规律】三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cos C -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.1.【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( ) (A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD=.由余弦定理,知22222210cos 210225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C . 2.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】21133.【2016高考天津理数】在△ABC 中,若AB ,120C ∠=o ,则AC = ( ) (A )1(B )2(C )3(D )4【答案】A【解析】由余弦定理得213931AC AC AC =++⇒=,选A.4.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8. 【解析】sin sin()2sin sin tan tan 2tan tan A B+C B C B C B C==⇒+=,又tan tan tan tan tan 1B+CA=B C -,因tan tan tan tan tan tan tan 2tan tan tan tan tan 8,A B C A B C A B C A B C =++=+≥≥即最小值为8.5.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sinA ),则A =( )A.3π4 B.π3 C.π4 D.π6解析 在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b 2,又a 2=2b 2(1-sin A ),所以cos A =sin A ,即tan A =1,又知A ∈(0,π),所以A =π4,故选C.答案 C【2015高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 . 【答案】【解析】因为0A π<<,所以sin 4A ==,又1sin 242ABC S bc A bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】(62-,6+2)AB 的取值范围为(62-,6+2).【2015江苏高考,15】(本小题满分14分) 在ABC ∆中,已知ο60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值 【答案】(17(243【2015高考湖南,理17】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围. 【答案】(1)详见解析;(2)29,]28. 【解析】(1)由tan a b A =及正弦定理,得sin sin cos sin A a AA bB ==,∴sin cos B A =,即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈,故2B A π=+,即2B A π-=; (2)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈,于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+,∵04A π<<,∴20sin A <<221992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是29]28.(2014·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?即sin ⎝⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.(2014·江西卷)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R,θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.【解析】(1)f (x )=sin ⎝ ⎛⎭⎪⎫x +π4+2cos ⎝⎛⎭⎪⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝ ⎛⎭⎪⎫π4-x .因为x ∈[0,π],所以π4-x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,故f (x )在区间[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 又θ∈⎝ ⎛⎭⎪⎫-π2,π2,知cos θ≠0, 所以⎩⎪⎨⎪⎧1-2a sin θ=0,(2a sin θ-1)sin θ-a =1,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.(2014·四川卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.当sin α+cos α=0时,由α是第二象限角,得α=3π4+2k π,k ∈Z,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. (2013·北京卷)在△ABC 中,a =3,b =2 6,∠B=2∠A. (1)求cos A 的值; (2)求c 的值.【解析】(1)因为a =3,b =2 6,∠B=2∠A, 所以在△ABC 中,由正弦定理得3sin A =2 6sin 2A .所以2sin Acos A sin A =2 63.故cos A =63. (2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B=2∠A,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =2 23.在△ABC 中,sin C =sin(A +B) =sin AcosB +cos Asin B =5 39. 所以c =a sin Csin A=5.(2013·全国卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c)(a -b +c)=ac. (1)求B ; (2)若sin Asin C =3-14,求C.=32, 故A -C =30°或A -C =-30°,因此C =15°或C =45°. (2013·浙江卷)已知α∈R,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34 D .-43 【答案】C【解析】由(sin α+2cos α)2=1022'得sin 2α+4sin αcos α+4cos 2α=104=52,4sin αcos α+1+3cos 2α=52,2sin 2α+1+3×1+cos 2α2=52,故2sin 2α=-3cos 2α2,所以tan2α=-34,选择C.(2013·重庆卷)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .2 2-1 【答案】C1.在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A.30° B.45°C.60°D.75°解析 法一 ∵S △ABC =12·AB ·AC ·sin A =32,即12×3×1×sin A =32,∴sin A =1, 由A ∈(0°,180°),∴A =90°,∴C =60°.故选C. 法二 由正弦定理,得sin B AC =sin C AB ,即12=sin C 3,sin C =32,又C ∈(0°,180°),∴C =60°或C =120°. 当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°, S △ABC =32,符合条件,故C =60°.故选C. 答案 C2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( )A.π3B.5π6C.π6或5π6D.π6解析∵A=2π3,a=2,b=233,∴由正弦定理asin A=bsin B可得,sin B=basin A=2332×32=12.∵A=2π3,∴B=π6.答案 D3.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ) A.等边三角形 B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 B4.△ABC的内角A,B,C的对边分别为a,b,c,则“a>b”是“cos 2A<cos 2B”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析因为在△ABC中,a>b⇔sin A>sin B⇔sin2A>sin2B⇔2sin2A>2sin2B⇔1-2sin2A<1-2sin2B⇔cos 2A<cos 2B.所以“a>b”是“cos 2A<cos 2B”的充分必要条件.答案 C5.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B等于( ) A.π6B.π4C.π3D.3π4答案 C解析 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________. 答案π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac=cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 7.在△ABC 中,若b =5,B =π4,tan A =2,则a =______.答案 2108.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 答案3解析 由正弦定理,可得(2+b )(a -b )=(c -b )·c . ∵a =2,∴a 2-b 2=c 2-bc ,即b 2+c 2-a 2=bc .由余弦定理,得cos A =b 2+c 2-a 22bc =12.∴sin A =32. 由b 2+c 2-bc =4,得b 2+c 2=4+bc . ∵b 2+c 2≥2bc ,即4+bc ≥2bc ,∴bc ≤4. ∴S △ABC =12bc ·sin A ≤3,即(S △ABC )max = 3.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C=4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.10.如图,在△ABC 中,B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC =17.(1)求sin∠BAD ; (2)求BD 、AC 的长.在△ABD 中,由正弦定理得 BD =AB ·sin∠BADsin∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+(2+3)2-2×8×5×12=49.所以AC =7.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,∴cos A =b 2+c 2-a 22bc =32,(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+(a2)2-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b=2,故S △ABC =12ab sin C =12×2×2×32= 3.12.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;精品文档. (2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝ ⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z ); 单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12, 由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.。
《正弦定理和余弦定理》复习课〔四〕典例导航、知识拓展[例1]△ABC的三个内角A、B、C的对边分别是a、b、c,如果a2=b〔b+c〕,求证:A=2B.剖析:研究三角形问题一般有两种思路.一是边化角,二是角化边.证明:用正弦定理,a=2R sin A,b=2R sin B,c=2R sin C,代入a2=b〔b+c〕中,得sin2A=sin B〔sin B+sin C〕sin2A-sin2B=sin B sin C因为A、B、C为三角形的三内角,所以sin〔A+B〕≠0.所以sin〔A-B〕=sin B.所以只能有A-B=B,即A=2B.评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解.思考讨论:该题假设用余弦定理如何解决?[例2]a、b、c分别是△ABC的三个内角A、B、C所对的边,〔1〕假设△ABC的面积为,c=2,A=600,求边a,b的值;〔2〕假设a=ccosB,且b=csinA,试判断△ABC的形状。
〔五〕变式训练、归纳整理[例3]a、b、c分别是△ABC的三个内角A、B、C所对的边,假设b cosC=(2a-c)cosB(1) 求角B(2) 设,求a+c的值。
剖析:同样知道三角形中边角关系,利用正余弦定理边化角或角化边,从而解决问题,此题所变化的是与向量相结合,利用向量的模与数量积反映三角形的边角关系,把本质看清了,问题与例2类似解决。
此题分析后由学生自己作答,利用实物投影集体评价,再做归纳整理。
〔解答略〕课时小结〔由学生归纳总结,教师补充〕1. 解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理2. 根据所给条件确定三角形的形状,主要有两种途径:①化边为角;②化角为边.并常用正余弦定理实施边角转化。
3. 用正余弦定理解三角形问题可适当应用向量的数量积求三角形内角与应用向量的模求三角形的边长。
sin ACB ∠45ACB ∠=︒,18060ABC ACB ACB ∴∠=-∠-∠=在Rt ABD ∆中,sin AD ABC AB∠=3002sin AD AB ∴=角形的问题,题后,对特殊问题一般化,得出一个猜测性的23,23,23,引导学生考察A a sin ,B bsin ,Ccsin 的关系。
《正弦定理》(第一课时)教学设计一、教学内容分析本节课《正弦定理》第一课时,出自新人教A 版必修5第一章第一节《正弦定理和余弦定理》。
课程安排在“三角、向量”知识之后,是三角函数知识在三角形中的具体运用,更是初中“三角形边角关系”和“解直角三角形”内容的直接延续和拓展,同时更是处理可转化为三角形计算的其他数学问题及生产生活实际问题的重要工具。
本节课的内容共分为三个层次:第一,从实际问题导入,在解直角三角形的边角关系的基础上,触碰解斜三角形的思维困惑点,形成疑问,激发学生探究欲望,提出斜三角形的边角关系的猜想;第二,带着疑问,对猜想进行验证,首先对特殊的斜三角形边角关系进行验证和实验探究验证,其次是严密的数学推导证明;第三,得到正弦定理,解决引例,首尾呼应,并学以致用,简单应用。
正弦定理其实是把“大边对大角、小边对小角”这一几何关系的解析化,从三角学的历史发展来看,三角函数其实就是有关三角形、圆的性质的解析表达。
这样在悄无声息中,渗透了学科发展中研究观点和研究方法的嬗变。
这其实是一个推陈出新的过程。
通过这三个层次,探索——发现——证明,从实际中来,到实际中去。
通过课堂,体会直观感知、大胆猜想、实验探究、理论验证、实际应用的学习过程。
二、学情分析本节课内容基本上安排在高一下学期或高二上学期讲授。
(1)学生在初中已学过有关直角三角形的一些知识:①勾股定理:222a b c += ②三角函数式,如:sin a A c =,cos b A c= (2)学生在初中已学过有关任意三角形的一些知识:① ②大边对大角,小边对小角 ③两边之和大于第三边,两边之差小于第三边(3)学生在高中已学过必修4(包括三角函数与平面向量)(4)学生已具备初步的数学建模能力,会从简单的实际问题中抽象出数学模型 三、教学策略与学法指导教学策略:本节课采用“发现学习”的模式,即由“结合实例提出问题——观察特例提出猜想——实验探究验证猜想——证明猜想得出定理——运用定理解决问题”五个环节组成的“发现学习”模式,在教学中贯彻“启发性”原则,通过提问不断启发学生,引导学生自主探索与思考;并贯彻“以学定教”原则,即根据教学中的实际情况及时地调整教学方案。
课 题:1.1正弦定理和余弦定理(一)教学目标:知识:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
能力:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点:正弦定理的探索和证明及其基本应用教学难点:已知两边和其中一边的对角解三角形时判断解的个数 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程: 一.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B 二.讲授新课(图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c ==, A 则sin sin sin a b c c A B C=== b c 从而在直角三角形ABC 中,sin sin sin a b cA B C==C a B (图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:(证法一)如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=,C同理可得sin sin cbC B =,b a从而sin sin abAB=sin cC=A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
《正弦定理和余弦定理》教案教学目标1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用.2.通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.3.通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学重点难点1.重点:在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用;2.难点:正、余弦定理与三角形的有关性质的综合运用.教法与学法1.教法选择:启发引导,讲练结合,归纳总结;2.学法指导:通过一些典型的例题来拓展关于解三角形的各种题型及其解决方法.教学过程一、设置情境,激发学生探索的兴趣三、思维拓展,课堂交流四、归纳小结,课堂延展1.教材地位分析“正余弦定理”是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值.本节课是“正弦定理、正余弦定理”教学的第三节课,其主要任务是在课型上属于“习题教学课”.布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者.因此,做好“正余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.2.学生现实状况分析学生已经了解正余弦定理,但是应用不熟练,容易出现的误区:(1)在已知两边及其中一边对角的条件下,求其它边角问题,对于这类问题利用正弦定理和余弦定理都可解决.解题时,一定要根据问题的具体情况,恰当的选用定理运用好的方法解题.同时,使用正弦定理求角时,要特别小心,不能出现漏解或是增解的情况.(2)在利用正、余弦定理解与三角形有关的问题时,必须注意“三角形内角和为0180”、“在一个三角形中,大边对大角”等三角形中的边角等量关系、边角的不等关系及内角和关系对角范围的制约,以免产生错解.。
第一章 解三角形 1.1 正弦定理和余弦定理1.1.1 正弦定理教学目标:1.掌握正弦定理的形成过程和结构特征,会用不同的方法证明正弦定理.2.明确正弦定理的功能作用,会用正弦定理解斜三角形,了解正弦定理与三角形外接圆直径的关系,能进行简单的三角形有解条件分析.3.渗透特殊与一般,数形结合,分类讨论的数学思想,培养探索意识和基本运算、推理能力.教学重点:正弦定理的形成与应用 教学难点:正弦定理的证明 教学课时:二课时 教学过程:第一课时 教学内容:正弦定理A . 问题提出1.在直角三角形中,三边a ,b ,c ,及锐角A ,B 之间有怎样的数量关系?2.三角形是最基本的几何图形,许多与测量有关的实际问题,都要通过解三角形来解决.如船在航行中测量海上两个岛屿之间的距离;飞机在飞行中测量一座山顶的海拔高度;在地面上测量顶部或底部不可到达的建筑物的高度;测量在海上航行的轮船的航速和航向等.3.对于直角三角形,我们可利用上述原理进行有关计算.对于一般三角形中边和角的关系,我们需要建立相关理论进行沟通,这是一个有待探究的课题.B . 知识探究探究(一):正弦定理的形成思考1:在Rt △ABC 中,∠C =90°,BC =a ,AC =b ,AB =c ,则sinA ,sinB ,sinC 分别等于什么?思考2:将上述关系变式,边长c 有哪几种表示形式? 由此可得什么结论?sin sin sin a b cA B C ==思考3:sin sin a bA B=可变形为sin sin a B b A =, 在锐角△ABC 中,该等式是否成立?为什么?思考4:若∠C 为钝角,sin sin a B b A =是否成立?若∠A 为钝角,sin sin a B b A =是否成立? 若∠B 为钝角,sin sin a B b A =是否成立?思考5:在任意三角形中,同理可得sin sin b c B C=, 因此有sin sin sin a b cA B C==,该连等式称为正弦定理.如何用文字语言描述正弦定理?在一个三角形中,各边和它所对角的正弦之比相等.CABa bc CA B abDCA B abD探究(二):正弦定理的向量证明思考1:在△ABC 中,向量A C uuu r ,A B uuu r ,BC uuu r之间有什么关系? 思考2:若∠A 为锐角,过点A 作单位向量i ,使i ⊥A B uuu r, 则向量i 与A C uuu r ,A B uuu r ,BC uuu r的夹角分别是什么? 思考3:由()i A Ci A BBC ??uuu ruuu r uuu r可得什么结论?sin sin a bA B=思考4:若∠A 为钝角,上述推理过程有什么变化?所得结论如何? 思考5:若证明sin sin b cB C=,应如何作单位向量i ? C . 理论迁移例1 在△ABC 中,已知A=32.0°,B=81.8°,a=42.9cm ,解三角形.答案:C =66.2°,b ≈80.1cm ,c ≈74.1 cm .例2 在△ABC 中,已知a=20cm ,b=28cm ,A=40°,解三角形.答案:sinB ≈0.8999,B ≈64°,C =76°,c ≈30 cm ;或B ≈116°,C ≈24°,c ≈13 cm .例3在△ABC 中,已知a=60cm ,b=50cm ,A=38°,解三角形. 答案:sinB ≈0.5131,B ≈31°,C ≈111°,c ≈91 cm .D . 小结作业1.三角形的三个内角及其对边叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形.2.正弦定理的外在形式是公式,它由三个等式组成,即sin sin a b A B =,sin sin a cA C=,sin sin b cB C=,每个等式都表示三角形的两个角和它们的对边的关系. 3.利用正弦定理可以解决两类解三角形的问题:一类是已知两角和一边解三角形;另一类是已知两边和其中一边的对角解三角形.对于第二类问题,要注意确定解的个数.作业:P4练习:1,2.CA Bab iCA Babi。
福建省长乐第一中学高中数学必修五《1.1 正弦定理和余弦定理(练
习)》教案
教学要求:进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.
教学重点:熟练运用定理.
教学难点:应用正、余弦定理进行边角关系的相互转化.
教学过程:
一、复习准备:
1. 写出正弦定理、余弦定理及推论等公式.
2. 讨论各公式所求解的三角形类型.
二、讲授新课:
1. 教学三角形的解的讨论:
① 出示例1:在△ABC 中,已知下列条件,解三角形.
(i ) A =
6π,a =25,b =
; (ii ) A =6
π,a =
,b =
; (iii ) A =6π,a
b =
; (iiii ) A =6π,a =50,b =
. 分两组练习→ 讨论:解的个数情况为何会发生变化?
② 用如下图示分析解的情况. (A 为锐角时)
已知边a,b 和∠A
有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA
a<CH=bsinA
② 练习:在△ABC 中,已知下列条件,判断三角形的解的情况.
(i ) A =
23π,a =25,b =; (ii ) A =23
π,a =25,b = 2. 教学正弦定理与余弦定理的活用:
①出示例2:在△ABC 中,已知sin A ∶sin B ∶sin C =6∶5∶4,求最大角的余弦.
分析:已知条件可以如何转化?→ 引入参数k ,设三边后利用余弦定理求角. ② 出示例3:在ΔABC 中,已知a =7,b =10,c =6,判断三角形的类型.
分析:由三角形的什么知识可以判别? → 求最大角余弦,由符号进行判断
结论:活用余弦定理,得到:=+⇔⇔∆>+⇔⇔∆<+⇔⇔222222222是直角是直角三角形
是钝角是钝角三角形是锐角a b c A ABC a b c A ABC a b c A ∆是锐角三角形
ABC
③ 出示例4:已知△ABC 中,cos cos b C c B =,试判断△ABC 的形状.
分析:如何将边角关系中的边化为角? → 再思考:又如何将角化为边?
3. 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.
三、巩固练习:
1. 已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且sin 2sin 3A B =,求a b b
+的值
2. 在△ABC 中,sin A :sin B :sin C =4:5:6,则cos A :cos B :cos C = .
3. 作业:教材P11 B组1、2题.。