高考试题理科数学
- 格式:docx
- 大小:149.56 KB
- 文档页数:5
高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32 B .155 C .105D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得: 1,0,1,2A B ,则 U 2,3A B ð.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.2.若α为第四象限角,则()A.cos2α>0 B.cos2α<0C.sin2α>0D.sin2α<0【答案】D 【解析】【分析】由题意结合二倍角公式确定所给的选项是否正确即可.【详解】当6时,cos 2cos 03,选项B 错误;当3时,2cos 2cos 03,选项A 错误;由 在第四象限可得:sin 0,cos 0 ,则sin 22sin cos 0 ,选项C 错误,选项D 正确;故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900 ,故需要志愿者9001850名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C 【解析】【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S ,解方程即可得到n ,进一步得到3n S .【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n ,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S ,因为下层比中层多729块,所以322729n n n n S S S S ,即3(927)2(918)2(918)(99)7292222n n n n n n n n 即29729n ,解得9n ,所以32727(9927)34022n S S .故选:C【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题.5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y 的距离为()A.55B.255C.355D.455【答案】B 【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为 ,,0a a a ,可得圆的半径为a ,写出圆的标准方程,利用点 2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y 的距离.【详解】由于圆上的点 2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必第一象限,设圆心的坐标为,a a ,则圆的半径为a ,圆的标准方程为 222x a y a a .由题意可得 22221a a a ,可得2650a a ,解得1a 或5a ,所以圆心的坐标为 1,1或 5,5,圆心到直线230x y 距离均为22555d;所以,圆心到直线230x y 的距离为255.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.6.数列{}n a 中,12a ,m n m n a a a ,若155121022k k k a a a ,则k ()A.2B.3C.4D.5【答案】C 【解析】分析】取1m ,可得出数列 n a 是等比数列,求得数列 n a 的通项公式,利用等比数列求和公式可得出关于k 的等式,由k N 可求得k 的值.【详解】在等式m n m n a a a 中,令1m ,可得112n n n a a a a ,12n na a,所以,数列 n a 是以2为首项,以2为公比的等比数列,则1222n n n a ,1011011105101210122122212211212k k k k k k a a a a,1522k ,则15k ,解得4k .故选:C.【点睛】本题考查利用等比数列求和求参数的值,解答的关键就是求出数列的通项公式,考查计算能力,属于中等题.7.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【答案】A 【解析】【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E 故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.设O 为坐标原点,直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B 【解析】【分析】因为2222:1(0,0)x y C a b a b ,可得双曲线的渐近线方程是b y x a,与直线x a 联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b ,结合均值不等式,即可求得答案.【详解】∵2222:1(0,0)x y C a b a b双曲线的渐近线方程是by x a∵直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a,解得x a y b故(,)D a b 联立x ab y x a,解得x a y b故(,)E a b ||2ED bODE 面积为:1282ODE S a b ab△∵双曲线2222:1(0,0)x y C a b a b其焦距为2222222168c a b ab 当且仅当22a b 取等号C 的焦距的最小值:8故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.9.设函数()ln |21|ln |21|f x x x ,则f (x )()A.是偶函数,且在1(,)2 单调递增B.是奇函数,且在11(,)22单调递减C.是偶函数,且在1(,)2单调递增D.是奇函数,且在1(,)2单调递减【答案】D 【解析】【分析】根据奇偶性的定义可判断出 f x 为奇函数,排除AC ;当11,22x时,利用函数单调性的性质可判断出 f x 单调递增,排除B ;当1,2x时,利用复合函数单调性可判断出 f x 单调递减,从而得到结果.【详解】由 ln 21ln 21f x x x 得 f x 定义域为12x x,关于坐标原点对称,又 ln 12ln 21ln 21ln 21f x x x x x f x ,f x 为定义域上的奇函数,可排除AC ;当11,22x时, ln 21ln 12f x x x , ln 21y x Q 在11,22 上单调递增, ln 12y x 在11,22上单调递减,f x 在11,22上单调递增,排除B ;当1,2x时, 212ln 21ln 12ln ln 12121x f x x x x x,2121x∵在1,2上单调递减, ln f 在定义域内单调递增,根据复合函数单调性可知: f x 在1,2上单调递减,D 正确.故选:D.【点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据 f x 与 f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.10.已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.3B.32C.1D.32【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离22d R r.【详解】设球O 的半径为R ,则2416R ,解得:2R .设ABC 外接圆半径为r ,边长为a ,ABC ∵ 是面积为934的等边三角形,21393224a ,解得:3a ,22229933434a r a ,球心O 到平面ABC 的距离22431d R r .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.11.若2233x y x y ,则()A.ln(1)0y x B.ln(1)0y x C.ln ||0x y D.ln ||0x y 【答案】A 【解析】【分析】将不等式变为2323x x y y ,根据 23t tf t 的单调性知x y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y 得:2323x x y y ,令 23ttf t ,2x y ∵为R 上的增函数,3x y 为R 上的减函数, f t 为R 上的增函数,x y ,0y x Q ,11y x , ln 10y x ,则A 正确,B 错误;x y Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.12.0-1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ,且存在正整数m ,使得(1,2,)i m i a a i 成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m 是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k 的序列是()A 11010 B.11011C.10001D.11001【答案】C 【解析】【详解】由i m i a a 知,序列i a 的周期为m ,由已知,5m ,511(),1,2,3,45i i k i C k a a k 对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a ,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a ,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a ,不满足;故选:C【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.二、填空题目:本题共4小题,每小题5分,共20分.13.已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】22【解析】【分析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k 的值.【详解】由题意可得:211cos 452a b ,由向量垂直的充分必要条件可得:0k a b a,即:2202k a a b k ,解得:22k .故答案为:22.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】【分析】根据题意,采用捆绑法,先取2名同学看作一组,现在可看成是3组同学分配到3个小区,即可求得答案.【详解】∵4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学先取2名同学看作一组,选法有:246C 现在可看成是3组同学分配到3个小区,分法有:336A根据分步乘法原理,可得不同的安排方法6636 种故答案为:36.【点睛】本题主要考查了计数原理的实际应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题.15.设复数1z ,2z 满足12||=||=2z z ,123i z z ,则12||z z =__________.【答案】23【解析】【分析】令12cos 2sin z i ,22cos 2sin z i ,根据复数的相等可求得1cos cos sin sin 2,代入复数模长的公式中即可得到结果.【详解】122z z ∵,可设12cos 2sin z i ,22cos 2sin z i , 122cos cos 2sin sin 3z z i i ,2cos cos 32sin sin 1,两式平方作和得: 422cos cos 2sin sin 4 ,化简得:1cos cos sin sin 2122cos cos 2sin sin z z i224cos cos 4sin sin 88cos cos sin sin 8423 故答案为:23.【点睛】本题考查复数模长的求解,涉及到复数相等的应用;关键是能够采用假设的方式,将问题转化为三角函数的运算问题.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ②12p p ③23p p ④34p p 【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为 ;若3l 与1l 相交,则交点A 在平面 内,同理,3l 与2l 的交点B 也在平面 内,所以,AB ,即3l ,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m 平面 ,则m 垂直于平面 内所有直线,∵直线l 平面 , 直线m 直线l ,命题4p 为真命题.综上可知,14p p 为真命题,12p p 为假命题,23p p 为真命题,34p p 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23;(2)323 .【解析】【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到 29AC AB AC AB ,利用基本不等式可求得AC AB 的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB ,2221cos 22AC AB BC A AC AB , 0,A ∵,23A .(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB ,即 29AC AB AC AB .22AC AB AC AB∵(当且仅当AC AB 时取等号), 22223924AC AB AC AB AC AB AC AB AC AB ,解得:23AC AB (当且仅当AC AB 时取等号),ABC 周长323L AC AB BC ,ABC 周长的最大值为323 .【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ,2011200i i y,2021)80i i x x (,2021)9000i i y y (,201))800i i i x y x y ((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni i i i i n n i i x y x x y y y x((((,2=1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20120202211()()()()ii i i i i i x x y y r x x y y 计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020i i y ,地块数为200,该地区这种野生动物的估计值为2006012000(2)样本(,)i i x y 的相关系数为20120202211()()800220.943809000()()i i i i i i i x x y y r x x y y (3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19.已知椭圆C 1:22221x y a b(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C ,22:12C y x .【解析】【分析】(1)求出AB 、CD ,利用43CD AB可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF 可求得c 的值,进而可得出1C 与2C 的标准方程.【详解】(1) ,0F c ∵,AB x 轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c ,联立22222221x c x y a b a b c,解得2x c b y a ,则22b AB a,抛物线2C 的方程为24y cx ,联立24x c y cx,解得2x c y c ,4CD c ,43CD AB ∵,即2843b c a,223b ac ,即222320c ac a ,即22320e e ,01e Q ,解得12e ,因此,椭圆1C 的离心率为12;(2)由(1)知2a c ,3b c ,椭圆1C 的方程为2222143x y c c,联立222224143y cx x y c c,消去y 并整理得22316120x cx c ,解得23x c 或6x c (舍去),由抛物线的定义可得25533c MF c c ,解得3c .因此,曲线1C 的标准方程为2213627x y ,曲线2C 的标准方程为212y x .【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.20.如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;(2)1010.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F 平面1A AMN ,只需证明EF 平面1A AMN 即可;(2)连接NP ,先求证四边形ONPA 是平行四边形,根据几何关系求得EP ,在11B C 截取1B Q EP ,由(1)BC ⊥平面1A AMN ,可得QPN 为1B E 与平面1A AMN 所成角,即可求得答案.【详解】(1)∵,M N 分别为BC ,11B C 的中点,1//MN BB 又11//AA BB 1//MN AA 在ABC 中,M 为BC 中点,则BC AM又∵侧面11BB C C 为矩形,1BC BB 1//MN BB ∵MN BC由MN AM M ,,MN AM 平面1A AMNBC ⊥平面1A AMN又∵11//B C BC ,且11B C 平面ABC ,BC 平面ABC ,11//B C 平面ABC又∵11B C 平面11EB C F ,且平面11EB C F 平面ABC EF 11//B C EF//EF BC又BC ∵平面1A AMNEF 平面1A AMNEF ∵平面11EB C F平面11EB C F 平面1A AMN(2)连接NP∵//AO 平面11EB C F ,平面AONP 平面11EB C F NP //AO NP根据三棱柱上下底面平行,其面1A NMA 平面ABC AM ,面1A NMA 平面1111A B C A N //ON AP故:四边形ONPA 是平行四边形设ABC 边长是6m (0m )可得:ON AP ,6NP AO AB m∵O 为111A B C △的中心,且111A B C △边长为6m 16sin 6033ON m 故:3ON AP m∵//EF BC AP EP AM BM3333EP 解得:EP m在11B C 截取1B Q EP m ,故2QN m∵1B Q EP 且1//B Q EP四边形1B QPE 是平行四边形,1//B E PQ由(1)11B C 平面1A AMN故QPN 为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得: 222226210PQ QN PN m m m 210sin 10210QN m QPN PQ m 直线1B E 与平面1A AMN 所成角的正弦值:1010.【点睛】本题主要考查了证明线线平行和面面垂直,及其线面角,解题关键是掌握面面垂直转为求证线面垂直的证法和线面角的定义,考查了分析能力和空间想象能力,属于难题.21.已知函数f (x )=sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性;(2)证明:33()8f x ;(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤34nn .【答案】(1)当0,3x时, '0,f x f x 单调递增,当2,33x 时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)证明见解析;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后由导函数的零点确定其在各个区间上的符号,最后确定原函数的单调性即可;(2)首先确定函数的周期性,然后结合(1)中的结论确定函数在一个周期内的最大值和最小值即可证得题中的不等式;(3)对所给的不等式左侧进行恒等变形可得2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n f x x x x x x x x x ,然后结合(2)的结论和三角函数的有界性进行放缩即可证得题中的不等式.【详解】(1)由函数的解析式可得: 32sin cos f x x x ,则: 224'23sin cos sin f x x x x2222sin 3cos sin x x x 222sin 4cos 1x x 22sin 2cos 12cos 1x x x ,'0f x 在 0,x 上的根为:122,33x x,当0,3x时, '0,f x f x 单调递增,当2,33x时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)注意到 22sinsin 2sin sin 2f x x x x x f x ,故函数 f x 是周期为 的函数,结合(1)的结论,计算可得: 00f f ,233333228f ,2233333228f ,据此可得: max 338f x, min 338f x ,即 338f x .(3)结合(2)的结论有:2222sin sin 2sin 4sin 2n x x x x 233333sin sin 2sin 4sin 2n x x x x2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n x x x x x x x x 232333333sin sin 2888n x x 23338n 34n .【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y ,(θ为参数),C 2:1,1x t t y t t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y ;222:4C x y ;(2)17cos 5.【解析】【分析】(1)分别消去参数 和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1 得1C 的普通方程为:4x y ;由11x t t y t t 得:2222221212x t t y t t,两式作差可得2C 的普通方程为:224x y .(2)由2244x y x y 得:5232x y ,即53,22P ;设所求圆圆心的直角坐标为 ,0a ,其中0a ,则22253022a a,解得:1710a , 所求圆的半径1710r , 所求圆的直角坐标方程为:22217171010x y ,即22175x y x , 所求圆的极坐标方程为17cos 5.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x或112x;(2) ,13, .【解析】【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x或112x .(2) 22222121211f x x a x a x ax a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.祝福语祝你马到成功,万事顺意!。
2023年青海省理科数学真题及参考答案一、选择题1.设5212ii iz +++=,则=z ()A .i 21-B .i21+C .i -2D .i+22.设集合R U =,集合{}1<=x x M ,{}21<<-=x x N ,则{}=≥2x x ()A .()N M C U ⋃B .MC N U ⋃C .()N M C U ⋂D .NC M U ⋃3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B .26C .28D .304.已知()1-=ax xe xe xf 是偶函数,则=a ()A .2-B .1-C .1D .25.设O 为平面坐标系的坐标原点,在区域(){}41,22≤+≤y x y x 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于4π的概率为()A .81B .61C .41D .216.已知函数()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,直线6π=x 和32π=x 为函数()x f y =的图象的两条对称轴,则=⎪⎭⎫⎝⎛-125πf ()A .23-B .21-C .21D .237.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A .30种B .60种C .120种D .240种8.已知圆锥PO 的底面半径为3,O 为底面圆心,PB P A ,为圆锥的母线,︒=∠120AOB ,若P AB ∆的面积等于439,则该圆锥的体积为()A .πB .π6C .π3D .π639.已知ABC ∆为等腰直角三角形,AB 为斜边,ABD ∆为等边三角形,若二面角D AB C --为150°,则直线CD 与平面ABC 所成角的正切值为()A .51B .52C .53D .5210.已知等差数列{}n a 的公差为32π,集合{}*∈=N n a S n cos ,若{}b a S ,=,则=ab ()A .1-B .21-C .0D .2111.已知B A ,是双曲线1922=-y x 上两点,则可以作为B A ,中点的是()A .()1,1B .()2,1-C .()3,1D .()4,1-12.已知圆122=+y x O :,2=OP ,过点P 作直线1l 与圆O 相切于点A ,作直线2l 交圆O 于C B ,两点,BC 中点为D ,则PD P A ⋅的最大值为()A .221+B .2221+C .21+D .22+二、填空题13.已知点()51,A 在抛物线px y C 22=:上,则A 到C 的准线的距离为.14.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则y x z -=2的最大值为.15.已知{}n a 为等比数列,63542a a a a a =,8109-=a a ,则=7a .16.已知()()xxa a x f ++=1,()1,0∈a ,若()x f 在()∞+,0为增函数,则实数a 的取值范围为.三、解答题(一)必做题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i i y x ,()10,2,1 =i ,试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记i i i y x z -=()10,2,1 =i ,记1021,z z z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果1022s z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.在ABC ∆中,︒=∠120BAC ,2=AB ,1=AC .(1)求ABC ∠sin ;(2)若D 为BC 上一点,且︒=∠90BAD ,求ADC ∆的面积.19.如图,在三棱锥ABC P -中,BC AB ⊥,2=AB ,22=BC ,6==PC PB ,BC AP BP ,,的中点分别为O E D ,,,DO AD 5=,点F 在AC 上,AO BF ⊥.(1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角C AO D --的正弦值.20.已知椭圆C :()012222>>=+b a bx a y 的离心率为35,点()02,-A 在C 上.(1)求C 的方程;(2)过点()3,2-的直线交曲线C 于Q P ,两点,直线AQ AP ,交y 轴于N M ,两点,求证:线段MN 中点为定点.21.已知函数()()1ln 1+⎪⎭⎫⎝⎛+=x a x x f .(1)当1-=a 时,求曲线()x f 在()()1,1f 的切线方程;(2)是否存在实数b a ,使得曲线⎪⎭⎫⎝⎛=x f y 1关于直线b x =对称,若存在,求出b a ,的值;如果不存在,请说明理由;(3)若()x f 在()∞+,0存在极值,求a 的取值范围.(二)选做题【选修4-4】22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤=24sin 2πθπθρ,曲线2C :⎩⎨⎧==ααsin 2cos 2y x (α为参数,παπ<<2).(1)写出1C 的直角坐标方程;(2)若直线m x y +=既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】23.已知()22-+=x x x f .(1)求不等式()x x f -≤6的解集;(2)在直角坐标系xOy 中,求不等式组()⎩⎨⎧≤-+≤06y x yx f 所确定的平面区域的面积.参考答案一、选择题123456789101112BADDCDCBCBDA1.解:()i i ii i i i i i i z 21112211212252-=--=+=+-+=+++=,则i z 21+=2.解:由题意可得{}2<=⋃x x N M ,则()=⋃N M C U {}2≥x x .3.解:如图所示,在长方体1111D C B A ABCD -中,2==BC AB ,31=AA ,点K J I H ,,,为所在棱上靠近点1111,,,A D C B 的三等分点,N M L O ,,,为所在棱的中点,则三视图所对应的几何体为长方体1111D C B A ABCD -去掉长方体11LMHB ONIC -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方体.4.解:∵()1-=ax xe xe xf 是偶函数,则()()=--x f x f ()()[]01111=--=-------axx a x ax x axx e e e x e e x e xe ,又∵x 不恒为0,可得()01=--xa xee ,则()x a x 1-=,∴2=a .5.解:∵区域(){}41,22≤+≤y x y x 表示以()00,O 为圆心,外圆半径2=R ,内圆半径1=r 的圆环,则直线OA 的倾斜角不大于4π的部分如阴影所示,在第一象限对应的圆心角4π=∠MON ,结合对称性可得所求概率为41242=⨯=ππp .6.解:∵()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,∴26322πππ=-=T ,且0>ω,则π=T ,22==Tπω.当6π=x 时,()x f 取得最小值,则Z k k ∈-=+⋅,2262ππϕπ,则Z k k ∈-=,652ππϕ,不妨取0=k 则()⎪⎭⎫ ⎝⎛-=652sin πx x f ,则2335sin 125=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππf .7.解:有1本相同的读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分布乘法公式则共有⋅16C 12025=A 种.8.解:在AOB ∆中,︒=∠120AOB ,而3==OB OA ,取AC 中点C ,连接PC OC ,,有AB OC ⊥,AB PC ⊥,如图,︒=∠30ABO ,23=OC ,32==BC AB ,由P AB ∆的面积为439得439321=⨯⨯PC ,解得233=PC ,于是6232332222=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-=OC PC PO ,∴圆锥的体积()πππ663313122=⨯⨯=⨯⨯=PO OA V .9.解:取AB 的中点E ,连接DE CE ,,∵ABC ∆为等腰直角三角形,AB 为斜边,则有AB CE ⊥,又ABD ∆为等边三角形,则AB DE ⊥,从而CED ∠为二面角DAB C --的平面角,即︒=∠150CED ,显然E DE CE =⋂,⊂DE CE ,平面CDE ,又⊂AB 平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面CE ABC =,直线⊂CD 平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而DCE ∠为直线CD 与平面ABC 所成的角,令2=AB ,则1=CE ,3=DE,在CDE ∆中,由余弦定理得:72331231cos 222=⎪⎪⎭⎫⎝⎛-⨯⨯⨯-+=∠⋅-+=CED DE CE DE CE CD ,由正弦定理得CEDCDDCE DE ∠=∠sin sin ,即7237150sin 3sin =︒=∠DCE ,显然DCE ∠是锐角,7257231sin 1cos 22=⎪⎪⎭⎫ ⎝⎛-=∠-=∠DCE DCE ,∴直线CD 与平面ABC 所成角的正切值为53.10.解:依题意,等差数列{}n a 中,()⎪⎭⎫⎝⎛-+=⋅-+=323232111πππa n n a a n ,显然函数==n a y cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+3232cos 1ππa n 的周期为3,而*∈N n ,即n a cos 最多有3个不同取值,又{}{}b a Nn a n ,cos =∈*,而在321cos ,cos ,cos a a a 中,321cos cos cos a a a ≠=或321cos cos cos a a a =≠,于是有⎪⎭⎫ ⎝⎛+=32cos cos πθθ,即有Z k k ∈=⎪⎭⎫ ⎝⎛++,232ππθθ,解得Z k k ∈-=,3ππθ213cos cos cos 3cos 343cos 3cos 2-=-=⎪⎭⎫ ⎝⎛--=⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=ππππππππππk k k k k ab 11.解:由对称性只需考虑()1,1,()2,1,()3,1,()4,1即可,注意到()3,1在渐近线上,()1,1,()2,1在渐近线一侧,()4,1在渐近线的另一侧.下证明()4,1点可以作为AB 的中点.设直线AB 的斜率为k ,显然k 存在.设()41+-=x k y l AB :,直线与双曲线联立()⎪⎩⎪⎨⎧=-+-=194122y x x k y ,整理得()()()094429222=------k x k k xk ,只需满足⎩⎨⎧>∆=+0221x x ,∴()29422=--k k k ,解得49=k ,此时满足0>∆.12.解:如图所示,1=OA ,2=OP ,则由题意可知:︒=∠45APO ,由勾股定理可得122=-=OA OP P A ,当点D A ,位于直线PO 异侧时,设40παα≤≤=∠,OPC ,则:⎪⎭⎫ ⎝⎛+⨯=⎪⎭⎫ ⎝⎛+⋅=⋅4cos cos 214cos πααπαPD P A αααααααα2sin 2122cos 1cos sin cos sin 22cos 22cos 22-+=-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=42sin 2221πα∵40πα≤≤,则4424ππαπ≤-≤-,∴当442ππα-=-时,PD P A ⋅有最大值1.当点D A ,位于直线PO 同侧时,设40παα≤≤=∠,OPC ,则:⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-⋅=⋅4cos cos 214cos πααπαPD P A αααααααα2sin 2122cos 1cos sin cos sin 22cos 22cos 22++=+=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++=42sin 2221πα∵40πα≤≤,则2424ππαπ≤+≤,∴当242ππα=+时,PD P A ⋅有最大值为221+.二、填空题13.49;14.8;15.2-;16.⎪⎪⎭⎫⎢⎣⎡-1,21513.解:由题意可得:()1252⨯=p ,则52=p ,∴抛物线的方程为x y 52=,准线方程为45-=x ,点A 到C 的准线的距离为49451=⎪⎭⎫ ⎝⎛--.14.作出可行域如下图所示,∵y x z -=2,∴z x y -=2,联立有⎩⎨⎧=+-=-9213y x y x ,解得⎩⎨⎧==25y x 设()2,5A ,显然平移直线x y 2=使其经过点A 此时截距z -最小,则z 最大,代入得8=z .15.解:设{}n a 的公比为()0≠q q ,则q a q a a a a a a 5263542⋅==,显然0≠n a ,则24q a =,即231q q a =,则11=q a ,∵8109-=a a ,则89181-=⋅q a q a ,则()()3351528-=-==q q,则23-=q ,则25517-==⋅=q q q a a .16.⎪⎪⎭⎫⎢⎣⎡-1,215解析:()()()a a a a x f xx+++='1ln 1ln ,由()x f 在()∞+,0为增函数可知()∞+∈,0x 时,()0≥'x f 恒成立,只需()0min ≥'x f ,而()()()01ln 1ln 22>+++=''a a a a x f xx,∴()()()01ln ln 0≥++='>'a a f x f ,又∵()1,0∈a ,∴⎪⎪⎭⎫⎢⎣⎡-∈1,215a .三、解答题(一)必做题17.解:(1)∵i i i y x z -=()10,2,1 =i ,∴9536545111=-=-=y x z ;62=z ;83=z ;84-=z ;155=z ;116=z ;197=z ;188=z ;209=z ;1210=z .()()[]1112201819111588691011011021=++++++-+++⨯=++=z z z z ∵()∑=-=1012101i i z z s ,将各对应值代入计算可得612=s (2)由(1)知:11=z ,612=s,∴5122106121061210222=⨯==s ,121112==z ,∴1022s z ≥∴甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高18.解:(1)根据题意,由余弦定理可得:72112212cos 222222=⎪⎭⎫ ⎝⎛-⨯⨯⨯-+=∠⋅-+=BAC AC AB AC AB BC ∴7=BC 由正弦定理ABC AC A BC ∠=∠sin sin ,即ABC∠=sin 1237,解得1421sin =∠ABC .(2)由三角形面积公式可得430sin 2190sin 21=︒⨯⨯⨯︒⨯⨯⨯=∆∆AD AC AD AB S S ACDABD ,则103120sin 12215151=⎪⎭⎫⎝⎛︒⨯⨯⨯⨯==∆∆ABC ACD S S .19.解:(1)连接OF OE ,,设tAC AF =,则()BC t BA t AF BA BF +-=+=1,BC BA AO 21+-=,AO BF ⊥,则()[]()()0414********=+-=+-=⎪⎭⎫⎝⎛+-⋅+-=⋅t t BC t BA t BC BA BC t BA t AO BF 解得21=t ,则F 为AC 的中点,由F O E D ,,,分别为AC BC P A PB ,,,的中点,于是AB OF AB DE AB DE 2121∥,,∥=,即OF DE OF DE =,∥,则四边形ODEF 为平行四边形,DO EF DO EF =,∥,又⊄EF 平面ADO ,⊂DO 平面ADO ,∴EF ∥平面ADO .(2)由(1)可知EF ∥OD ,则266==DO AO ,,得2305==DO AD ,因此215222==+AD AO OD ,则AO OD ⊥,有AO EF ⊥,又BF AO ⊥,F EF BF =⋂,⊂EF BF ,平面BEF ,则有AO ⊥平面BEF ,又⊂AO 平面ADO ,∴平面ADO ⊥平面BEF .(3)过点O 作BF OH ∥交AC 于点H ,设G BE AD =⋂,由BF AO ⊥得AO HO ⊥,且AH FH 31=,又由(2)知,AO OD ⊥,则DOH ∠为二面角C AO D --平面角,∵E D ,分别为P A PB ,的中点,因此G 为P AB ∆的重心,即有,31,31BE GE AD DG ==又AH FH 31=,即有GF DH 23=,622642622215234cos 2⨯⨯-+=⨯⨯-+=∠P A ABD ,解得14=P A ,同理得26=BE ,于是3222==+BF EF BE ,即有EF BE ⊥,则35262631222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⨯=GF ,从而315=GF ,21531523=⨯=DH ,在DOH ∆中,215,262321====DH OD BF OH ,于是22221sin ,22232624154346cos 2=⎪⎪⎭⎫ ⎝⎛--=∠-=⨯⨯-+=∠DOH DOH .∴二面角C AO D --的正弦值为22.20.解:(1)由题意可得⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==352222a c e c b a b ,解得⎪⎩⎪⎨⎧===523c b a ,∴椭圆的方程为14922=+x y。
2021年普通高等学校招生全国统一考试数学(全国新课标卷II)第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.(2021课标全国Ⅱ,理1)集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},那么M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2021课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,那么z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2021课标全国Ⅱ,理3)等比数列{a n }的前n 项与为S n .S 3=a 2+10a 1,a 5=9,那么a 1=( ).A .13B .13-C .19D .19-4.(2021课标全国Ⅱ,理4)m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,那么( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2021课标全国Ⅱ,理5)(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =( ).A .-4B .-3C .-2D .-16.(2021课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++ D .1111+2!3!11!+++7.(2021课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,那么得到的正视图可以为( ).8.(2021课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,那么( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c 9.(2021课标全国Ⅱ,理9)a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩假设z =2x+y 的最小值为1,那么a =( ).A .14B .12 C .1 D .210.(2021课标全国Ⅱ,理10)函数f (x )=x 3+ax 2+bx +c ,以下结论中错误的选项是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .假设x0是f(x)的极小值点,那么f(x)在区间(-∞,x0)单调递减D .假设x0是f(x)的极值点,那么f′(x0)=011.(2021课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,假设以MF 为直径的圆过点(0,2),那么C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2021课标全国Ⅱ,理12)点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两局部,那么b 的取值范围是( ).A .(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭ C.113⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 第二卷本卷包括必考题与选考题两局部,第13题~第21题为必考题,每个试题考生都必须做答。
绝密(juémì)★启封(qǐ fēnɡ)并使用完毕前试题(shìtí)类型:A 2021年普通高等学校招生全国(quán ɡuó)统一考试理科(lǐkē)数学考前须知:1.本试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷1至3页,第二卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第一卷一.选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设集合,,那么〔A〕〔B〕〔C〕〔D〕〔2〕设,其中x,y是实数,那么〔A〕1〔B〕〔C〕〔D〕2〔3〕等差数列前9项的和为27,,那么〔A〕100〔B〕99〔C〕98〔D〕97〔4〕某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,那么他等车时间不超过10分钟的概率是〔A〕〔B〕〔C〕〔D〕〔5〕方程–=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是〔A〕(–1,3) 〔B〕(–1,3) 〔C〕(0,3) 〔D〕(0,3)〔6〕如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.假设该几何体的体积是,那么它的外表积是〔A〕17π〔B〕18π〔C〕20π〔D〕28π〔7〕函数y=2x2–e|x|在[–2,2]的图像大致为〔A〕〔B〕〔C〕〔D〕〔8〕假设(jiǎshè),那么(nà me)〔A〕〔B〕〔C〕〔D〕〔9〕执行右面(yòumiàn)的程序图,如果输入的,那么(nà me)输出x,y的值满足(mǎnzú)〔A〕〔B〕〔C〕〔D〕(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.|AB|=,|DE|=,那么C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a过正方体ABCD-A1B1C1D1的顶点A,a//平面CB1D1,平面ABCD=m,a 平面ABA1B1=n,那么m、n所成角的正弦值为(A)(B) (C) (D)12.函数(hánshù)为的零点(línɡ diǎn),为图像(tú xiànɡ)的对称轴,且()f x在单调(dāndiào),那么的最大值为〔A〕11 〔B〕9 〔C〕7 〔D〕5第II卷本卷包括必考题(kǎo tí)和选考题两局部.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每题5分(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,那么m=.(14)的展开式中,x3的系数是.〔用数字填写答案〕〔15〕设等比数列满足a1+a3=10,a2+a4=5,那么a1a2…a n的最大值为。
姓名:座位号(在此试卷上答题无效)绝密★启用前2023年普通高等学校招生全国统一考试数学(理科)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{31Z},A x x k k ==+Î,{32Z},B x x k k ==+Î,U 为整数集,则()U C A B =I A .{3Z},x x k k =ÎB .{31Z},x x k k =-ÎB .C .{31Z},x x k k =-ÎD .Æ2-若复数(i)(1i)2a a +-=,则a =A .1-B .0C .1D .23.执行下面的程序框图,输出的B =A .21B .34C .55D .894.向量1a b ==,c 且0a b c ++=,则cos a b b c ,<-->=A .15-B .25-C .25D .455.已知数列{}n a 中,n S 为{}n a 前n 项和,5354S S =-,则4S =A .7B .9C .15D .206.有50人报名足球俱乐部,60人报名乒乓球俱乐部,结束70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球,俱乐部的概率为A .0.8B .0.4C .0.2D .0.17.“22sin sin 1a b +=”是“cos cos 0a b +=”的A .充分条件但不是必要条件B .必要条件但不是充分条件C .充要条件D .既不是充分条件也不是必要条件8.已知双曲线22221(00),x y a b a b+=>>的离心率为,其中一条渐近线与圆22(2)(3)1x y -+-=交于A ,B 两点,则AB =A .15B C D 9.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为A .120B .60C .40D .3010.已知()f x 为函数πcos(2)4y x =+向左平移π6个单位所得函数,则()y f x =与1122y x =-,交点个数为A .1B .2C .3D .411.在四棱锥P ABCD -中,底面ABCD 为正方形,4AB =,3PC PD ==,45PCA Ð=°,则△PBC 的面积为A .B .C .D .12.已知椭圆22196x y +=,F 1、F 2为两个焦点,O 为原点,P 为椭有圆上一点,123cos 5∠F PF =,则|OP =A .25B .302C .35D .352二、填空题:本题共4小题,每小题5分,共20分。
2020年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3} 2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1 B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1 D.x2+(y+1)2=13.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.7.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.8.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+9.(5分)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5 B.a n=3n﹣10 C.S n=2n2﹣8n D.S n=n2﹣2n 10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1 B.+=1C.+=1 D.+=111.(5分)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π二、填空题:本题共4小题,每小题5分,共20分。
2020年全国统一高考数学试卷(理科)(全国新课标Ⅱ)一、选择题1.已知集合{2,1,0,1,2,3}U =--,{1,0,1}A =-,{1,2}B =,则()U C A B ⋃=( ) A.{2,3}- B.{2,2,3}-C.{2,1,0,3}--D.{2,1,0,2,3}--【答案】A 【解析】∵{1,0,1,2}AB =-,∴ (){2,3}UC A B ⋃=-.2.若α为第四象限角,则( ) A.cos20α> B.cos20α<C.sin 20α>D.sin 20α<【答案】D 【解析】∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<.3.在新冠肺炎疫情期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某日积压500份订单未配货,预计第二天新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A.10名 B.18名 C.24名 D.32名 【答案】B【解析】因为公司可以完成配货1200份订单,则至少需要志愿者为160050012001850+-=名.4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)( ) A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设每一层有n 环,由题可知从内到外每环之间构成等差数列,公差9d =,19a =,由等差数列性质知n S ,2n n S S -,32n n S S -成等差数列,且2322()()n n n n S S S S n d ---=,则29729n =,得9n =,则三层共有扇形面石板为3271272627934022n S S a ⨯==+⨯=块. 5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.【答案】B【解析】设圆心为(,)a a ,则半径为a ,圆过点(2,1),则222(2)(1)a a a -+-=,解得1a =或5a =,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是5d =. 6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( )A.2B.3C.4D.5【答案】C【解析】取1m =,则11n n a a a +=,又12a =,所以12n na a +=,所以{}n a 是首项为2,公比为2的等比数列,则2nn a =,所以11011115512102(12)222212k k k k k k a a a ++++++-+++==-=--,得4k =.7.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H【答案】A【解析】该几何体是两个长方体拼接而成,如图所示,显然选A.8.设O 为坐标原点,直线x a =与双曲线2222:1x yC a b-=(0,0)a b >>的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为( ) A.4 B.8 C.16 D.32 【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==号成立,所以min 4c =,焦距min (2)8c =.9.设函数()ln |21|ln |21|f x x x =+--,则()f x ( )A. 是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】函数()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,则()f x 为奇函数,故排除A 、C ;当11(,)22x ∈-时,()ln(21)ln(12)f x x x =+--,根据函数单调性的性质可判断()f x 在11(,)22-上单调递增,故排除B ;当1(,)2x ∈-∞-时,212()ln(21)ln(12)lnln(1)2121x f x x x x x +=----==+--,根据复合函数单调性可判断()f x 在1(,)2-∞-上单调递减,故D 正确.10.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为( )B.32C.1【答案】C【解析】设ABC ∆的外接圆圆心为1O ,记1OO d =,圆1O 的半径为r ,球O 半径为R ,等边三角形ABC ∆的边长为a ,则2ABC S ∆==,可得3a =,于是r ==,由题知球O 的表面积为16π,则2R =,由222R r d =+易得1d =,即O 到平面ABC 的距离为1.11.若2233x y x y ---<-,则( ) A.ln(1)0y x -+> B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A【解析】2323x x y y---<-,设()23x x f x -=-,则()2ln 23ln30x xf x -'=+>,所以函数()f x 在R 上单调递增,因为()()f x f y <,所以x y <,则11y x -+>,ln(1)0y x -+>,选A.12.01-周期序列在通信技术中有着重要应用,若序列12......n a a a 满足{}10,1(1,2,...)a i ∈=,且存在正整数m ,使得(1,2,...)i m i a a i +==成立,则称其为01-周期序列,并称满足(1,2,...)i m i a a i +== 的最小正整数m 为这个序列的周期,对于周期为m的01-序列12......n a a a ,11()(1,2,...,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的01-序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A. 11010... B.11011... C. 10001... D.11001... 【答案】C【解析】对于A 选项:511111(1)(10000)555i i i C a a +===++++=∑,5211121(2)(01010)5555i i i C a a +===++++=>∑,不满足,排除;对于B 选项,5111131(1)(10011)5555i i i C a a +===++++=>∑,不满足,排除;对于C 选项,511111(1)(00001)555i i i C a a +===++++=∑,52111(2)(00000)055i i i C a a +===++++=∑,53111(3)(00000)055i i i C a a +===++++=∑,541111(4)(10000)555i i i C a a +===++++=∑,满足;对于D 选项,5111121(1)(10001)5555i i i C a a +===++++=>∑,不满足,排除;故选C 。
绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则A. {|0}A B x x =<B. A B =RC. {|1}A B x x =>D. A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A. 14 B. π8 C. 12 D. π43.设有下面四个命题1:p 若复数z 满足1z∈R ,则z ∈R ; 2:p 若复数z 满足2z ∈R ,则z ∈R ;3:p 若复数12,z z 满足12z z ∈R ,则12z z =;4:p 若复数z ∈R ,则z ∈R .其中的真命题为A.13,p pB.14,p pC.23,p pD.24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,48S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B . [1,1]-C . [0,4]D . [1,3] 6.621(1)(1)x x++展开式中2x 的系数为 A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.168.右面程序框图是为了求出满足3n -2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A.A >1000和n =n +1B.A >1000和n =n +2C.A ≤1000和n =n +1D.A ≤1000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是 A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们退出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是26,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量a ,b 的夹角为60°,|a |=2, | b |=1,则| a +2 b |= .14.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。
若∠MAN =60°,则C 的离心率为________。
16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。
D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形。
沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D 、E 、F 重合,得到三棱锥。
当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______。
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
学科网(一)必考题:60分。
17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;学科&网(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.059.95 经计算得16119.9716i i x x ===∑,0.212s ===,其中x i 为抽取的第i 个零件的尺寸,i =1,2,…,16. 用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ–3σ<Z <μ+3σ)=0.997 4,0.997 416≈0.959 2,0.09≈.20.(12分)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1 ),P 4(1恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.21.(12分)已知函数()f x =ae 2x +(a ﹣2)e x ﹣x.(1) 讨论()f x 的单调性;(2) 若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4-4,坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数). (1)若a=-1,求C 与l 的交点坐标;(2)若C 上的点到l a.23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.。