热力学统计物理课后11
- 格式:doc
- 大小:929.00 KB
- 文档页数:17
第一章测试1【多选题】(1分)杨振宁认为中国大学生的学习方法有利有弊,最大的弊端是:A.讲课循序渐进B.他不能对整个物理学,有更高超的看法C.课外活动较少D.它把一个年轻人维持在小孩子的状态,老师要他怎么学,他就怎么学2【多选题】(1分)杨振宁认为“我一生中最重要的一年,不是在美国做研究,而是当时和黄昆同住一舍的时光。
”原因是:A.黄昆会做饭并经常和杨振宁共享B.杨振宁和黄昆都喜欢争论物理问题C.黄昆经常把听课笔记借给杨振宁参考D.黄昆对物理学的理解常常有独到之处,对杨振宁有启发3【多选题】(1分)杨振宁说:“我们学校里有过好几个非常年轻、聪明的学生,其中有一位到我们这儿来请求进研究院,那时他才15岁的样子,后来他到Princeton去了。
我跟他谈话以后,对于他前途的发展觉得不是那么最乐观。
”原因是这位学生:A.学到一些知识,学到一些技术上面的特别的方法,而没有对它的意义有深入的了解和欣赏B.只是学了很多可以考试得该高分的知识,不是真正做学问的精神C.对量子力学知识茫茫一片,不知道哪里更加好玩D.尽管吸收了很多东西,可是没有发展成一个taste4【多选题】(1分)梁启超的“智慧日浚则日出,脑筋日运则日灵”说明如下道理:A.人的智慧需要挖掘才会涌现出来B.大学生一开始接受教育的时候,就要弄清楚事物的本质C.人脑越用会越聪明D.认为初学之人不能穷凡物之理,而这种观点是不对的5【判断题】(1分)因为1=0.999…,所以对任何函数f(x),总有f(1)=f(0.999…)。
A.错B.对6【判断题】(1分)液态的水从100°C下降到0°C的过程中,密度单调下降。
A.对B.错7【判断题】(1分)温度和热是一个概念。
A.对B.错8【判断题】(1分)在冰箱中放一瓶纯净水,这瓶水在零下10°时依然不能结冰。
A.错B.对9【判断题】(1分)理想气体就是满足方程pV=nRT的气体。
A.错B.对10【判断题】(1分)所有相变都类似气液相变或者固液相变,总会有伴随相变潜热。
第一章热力学的基本规律1.1 试求理想气体的体胀系数, 压强系数和等温压缩系数。
解:已知理想气体的物态方程为pV nRT ,(1)由此易得T1 VV T1 pp T1 V V pTpVnR 1 ,pV TnR 1 ,pV T1nRT1 .Vp2p(2)(3)(4)1.2 证明任何一种具有两个独立参量T , p的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得:ln V =αdTκdpT如果1, T1,试求物态方程。
T p解:以 T , p 为自变量,物质的物态方程为V V T , p ,其全微分为V Vdp.(1)dV dTT p p T全式除以 V ,有dV1VdT 1Vdp.V V T V pp T根据体胀系数和等温压缩系数T 的定义,可将上式改写为dVT dp.(2)dTV上式是以 T ,p 为自变量的完整微分,沿一任意的积分路线积分,有ln VdT T dp .(3)若1 ,T1 ,式( 3)可表为 TplnV1 1 (4)dTdp .Tp选择图示的积分路线,从 (T 0 , p 0 ) 积分到 T , p 0 ,再积分到( T , p ),相应地体积由 V 0 最终变到 V ,有ln V =ln Tln p,V 0 T 0p 0即pV p 0V 0 C (常量),TT 0或p VC. T(5)式(5)就是由所给1 , T1求得的物态方程。
确定常量 C 需要进一步的Tp实验数据。
1.8 满足pV n C 的过程称为多方过程,其中常数n 名为多方指数。
试证明:理想气体在多方过程中的热容量C n为C n nC V n 1解:根据式( 1.6.1 ),多方过程中的热容量C n lim QT nT 0U V.(1)pTT n n对于理想气体,内能U 只是温度 T 的函数,UC V ,T n所以C n C VV(2)p.T n将多方过程的过程方程式 pV n C 与理想气体的物态方程联立,消去压强p 可得TV n 1C1(常量)。
第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。
解:由得:nRT PV = V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=αT PV RnT P P V /1)(1==∂∂=βP PnRT V P V V T T /111)(12=--=∂∂-=κ习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα=1T p κ= ,试求物态方程。
解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此, dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以, dp dT VdVdp V dT V dV T T κακα-=-=,所以, ⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。
问(1压强要增加多少n p 才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少 解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p x n习题 1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。
线胀系数定义为ηα)(1TL L ∂∂=等杨氏摸量定义为T L A L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。
第七章 玻耳兹曼统计7.1试根据公式Va P Lll∂∂-=∑ε证明,对于非相对论粒子 ()222222212z y x n n n L m m P ++⎪⎭⎫ ⎝⎛== πε,( ,2,1,0,,±±=zy x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为()22222,,2212z y x n n nn n n L m m P zy x ++⎪⎭⎫ ⎝⎛== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为32-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()22222)2(z y x n n n ma ++=π,并以单一指标l 代表n x ,n y ,n z 三个量子数。
由(2)式可得VaV V l L εε323235-=-=∂∂----------------------(3) 代入压强公式,有VUa VV a P l ll L ll3232==∂∂-=∑∑εε----------------------(4) 式中 l ll a U ε∑= 是系统的内能。
上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
注:(4)式只适用于粒子仅有平移运动的情形。
如果粒子还有其他的自由度,式(4)中的U 仅指平动内能。
7.2根据公式Va P Lll∂∂-=∑ε证明,对于极端相对论粒子 ()212222z y x n n n Lccp ++== πε, ,2,1,0,,±±=z y x n n n 有VUP 31=上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为()21222,,2z y x n nn n n n Lc zy x++= πε, ,2,1,0,,±±=z y x n n n -------(1)为书写简便,我们将上式简记为31-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()212222zyxn n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。
热力学与统计物理课后习题答案第一章1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα=== ?(2) 11,V p nR p T pV Tβ=== ?(3) 2111.T T V nRT V p V p pκ=-=--= ? ? ???????? (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -?如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p=+ ? ?(1)全式除以V ,有11.p TdV V V dT dp V V T V p =+ ? ?根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2)上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-? (3)若11,T T pακ==,式(3)可表为 11ln .V dT dp Tp ??=- (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T p V T p - 即00p V pV C T T ==(常量),或.p V C T=(5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=?=?T 和T ακ和可近似看作常量,今使铜块加热至10C 。
第六章近独立粒子的最概然分布6.1试根据式()证明:在体积V内,在到E+d£的能量范围内,三维自由粒子的量子态数为解:式()给出,在体积V L3内,在P x到P x dP x, P y到P y dP y,P x 到P xdP x的动量范围内,自由粒子可能的量子态数为V /八3 dP x dP y dP z. (h用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,可得在体积V内,动量大小在P到P dP范围内三维自由粒子可能的量子态数为4 n 2^ -P dp. h(2)上式可以理解为将空间体积元4 Vp2dp (体积V,动量球壳4nP2dp )除以相格大小h3而得到的状态数.自由粒子的能量动量关系为因此将上式代入式(2),即得在体积V内,在到d的能量范围内,三维自由粒子的量子态数为D()d - 2m 2 'd . (3)h6.2试证明,对于一维自由粒子,在长度L内,在到d的能量范围内,量子态数为解:根据式(),一维自由粒子在空间体积元dxdp x内可能的量子态数为在长度L内,动量大小在P到P dp范围内(注意动量可以有正负两个可能的方向)的量子态数为2Ldp.(1)h将能量动量关系代入,即得1D d 21卫為.(2)h 26.3试证明,对于二维的自由粒子,在面积L2内,在到d的D d 年 ch2d . (2)能量范围内,量子态数为解:根据式(),二维自由粒子在 空间体积元dxdydp x dp y 内的量 子态数为对d 积分,从0积分到2 n ,有可得在面积L 2内,动量大小在p 到p dp 范围内(动量方向任意) 维自由粒子可能的状态数为誓 pdp.h将能量动量关系 代入,即有D d M^md .h 26.4 在极端相对论情形下,粒子的能量动量关系为试求在体积V 内,在 到的能量范围内三维粒子的量子态数.解:式()已给出在体积V 内,动量大小在p 到P dp 范围内三维 自由粒子可能的状态数为4 V 2^ 有 pdp.将极端相对论粒子的能量动量关系 代入,可得在体积V 内,在到d 的量子态数为12 dxdydp x dp y . h用二维动量空间的极坐标 p,描述粒子的动量,为用极坐标描述时,二维动量空间的体积元为在面积L 2内,动量大小在p 到p dp 范围内,动量方向在 到 d 范 围内,二维自由粒子可能的状态数为L 2pdpd(1)P ,P , 与P x ,P y 的关系(2)(3)(4)(1)的能量范围内,极端相对论粒子a i i ei(4)a ii ei6.5 设系统含有两种粒子,其粒子数分别为 N 和N .粒子间的相互作用很弱,可以看作是近独立的.假设粒子可以分辨,处在一个 个体量子态的粒子数不受限制.试证明,在平衡状态下两种粒子的最 概然分布分别为 和其中i 和i 是两种粒子的能级,i 和i 是能级的简并度.解:当系统含有两种粒子,其粒子数分别为 N 和N ,总能量为 和a 必须满足条件 N ,(1)i a i系统的微观状态数Q 0为Q.( 3)平衡状态下系统的最概然分布是在满足式(1)的条件下使Q 0或In Q 0为极大的分布.利用斯特令公式,由式(3)可得 为求使in Q 0为极大的分布,令a i 和a 各有a i 和a i 的变化,I n Q 0将 因而有亦Q 0的变化.使i n Q为极大的分布a i 和 即 但这些色和迥不完全是独立的,它们必须满足条件 用拉氏乘子,和 分别乘这三个式子并从 餉Q 0中减去,得 根据拉氏乘子法原理,每个 即拉氏乘子,和 由条件(1)确定.式(4)表明,两种粒子各自遵 从玻耳兹曼分布.两个分布的 和 可E ,体积为V 时,两种粒子的分布 a N ,a ii a i才有可能实现.在粒子可以分辨,且处在一个个体量子态的粒子数不受限制的情 形下,两种粒子分别处在分布 aN! a! i IN ! a !和a 时各自的微观状态数为aii ,aii(2)a 和a i 必使 E 和迥的系数都等于零,所以得以不同,但有共同的.原因在于我们开始就假设两种粒子的粒子数N,N 和能量E具有确定值,这意味着在相互作用中两种粒子可以交换能量,但不会相互转化.从上述结果还可以看出,由两个弱相互作用的子系统构成的系统达到平衡时,两个子系统有相同的.6.6同上题,如果粒子是玻色子或费米子,结果如何?解:当系统含有N个玻色子,N个费米子,总能量为E,体积为V时,粒子的分布a i和a i必须满足条件Qi | Q E(1)l l才有可能实现.玻色子处在分布a i,费米子处在分布a i时,其微观状态数分别为系统的微观状态数Q 0为Q0Q Q.(3)平衡状态下系统的最概然分布是在满足式(1)条件下使Q 0或in Q0为极大的分布.将式(2)和式(3)取对数,利用斯特令公式可得令各a i和a i有词和込的变化,in Q 0将因而有3ln Q 0的变化,使用权in Q 0为极大的分布a i和Q必使即但这此致色和阳不完全是独立的,它们必须满足条件用拉氏乘子,和分别乘这三个式子并从餉Q 0中减去,得根据拉氏乘子法原理,每个色和迥的系数都等于零,所以得即iai ---- ,i e i1(4)ia i --------e i1拉氏乘子,和由条件(1)确定.式(4)表明,两种粒子分别遵从玻色分布和费米分布,其中和不同,但相等.。
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT =(1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即00p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.8 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。
第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。
解:由得:nRT PV= V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=α T PV Rn T P P V /1)(1==∂∂=β P P nRT V P V V T T /111)(12=--=∂∂-=κ 习题 1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT VT κα如果1Tα=1Tpκ=,试求物态方程。
解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p p V V T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dV T T κακα-=-=,所以,⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。
问(1压强要增加多少np才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p xn习题1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方 程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。
线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。
若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。
问:(a )压强要增加多少才能使铜块的体积维持不变?(b )若压强增加100,铜块的体积改变多少?解:(a )根据1.2题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。
如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得11,T T pακ==11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰00(,)T p ()0,T p ,T pV V000ln=ln ln ,V T pV T p -000p V pV C T T ==.pV CT =11,T T pακ==0Cnp 51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和10Cnp np .T dVdT dp Vακ=-dVdTdpdpdT.Tdp dT ακ=αTκ(1)(2)(3)根据1.13题式(6),对于§1.9中的准静态绝热过程(二)和(四),有(4) (5)从这两个方程消去和,得(6)故(7)所以在是温度的函数的情形下,理想气体卡诺循环的效率仍为(8)1.14试根据热力学第二定律证明两条绝热线不能相交。
解:假设在图中两条绝热线交于点,如图所示。
设想一等温线与两条绝热线分别交于点和点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在2111ln ,V Q RT V =3224ln,V Q RT V =32121214lnln .V V W Q Q RT RT V V =-=-1223()(),F T V F T V =2411()(),F T V F T V =1()F T 2()F T 3214,V V V V =2121()ln,V W R T T V =-γ2111.T WQ T η==-p V-CAB故电阻器的熵变可参照§1.17例二的方法求出,为1.19 均匀杆的温度一端为,另一端为,试计算达到均匀温度后的熵增。
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.8 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。
试证明:理想气体在多方过程中的热容量n C 为1n V n C C n γ-=- 解:根据式(1.6.1),多方过程中的热容量0lim .n T n nnQ U V C p T T T ∆→∆∂∂⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪∆∂∂⎝⎭⎝⎭⎝⎭ (1) 对于理想气体,内能U 只是温度T 的函数,,V nU C T ∂⎛⎫= ⎪∂⎝⎭ 所以.n V nV C C p T ∂⎛⎫=+ ⎪∂⎝⎭ (2) 将多方过程的过程方程式n pV C =与理想气体的物态方程联立,消去压强p 可得11n TV C -=(常量)。
(3)将上式微分,有12(1)0,n n V dT n V TdV --+-=所以.(1)nV V T n T ∂⎛⎫=- ⎪∂-⎝⎭ (4) 代入式(2),即得,(1)1n V V pV n C C C T n n γ-=-=-- (5) 其中用了式(1.7.8)和(1.7.9)。
1.9 试证明:理想气体在某一过程中的热容量n C 如果是常数,该过程一定是多方过程,多方指数n p n VC C n C C -=-。
假设气体的定压热容量和定容热容量是常量。
解:根据热力学第一定律,有đđ.dU Q W =+ (1)对于准静态过程有đ,W pdV =-对理想气体有,V dU C dT =气体在过程中吸收的热量为đ,n Q C dT =因此式(1)可表为().n V C C dT pdV -= (2)用理想气体的物态方程pV vRT =除上式,并注意,p V C C vR -=可得()().n V p V dT dVC C C C T V-=- (3) 将理想气体的物态方程全式求微分,有.dp dV dT p V T+= (4) 式(3)与式(4)联立,消去dTT,有 ()()0.n V n p dp dV C C C C p V-+-= (5) 令n p n VC C n C C -=-,可将式(5)表为0.dp dV n p V+= (6) 如果,p V C C 和n C 都是常量,将上式积分即得n pV C =(常量)。
(7)式(7)表明,过程是多方过程。
1.12 假设理想气体的p V C C γ和之比是温度的函数,试求在准静态绝热过程中T V 和的关系,该关系式中要用到一个函数()F T ,其表达式为()ln ()1dTF T Tγ=⎰-解:根据式(1.8.1),理想气体在准静态绝热过程中满足0.V C dT pdV += (1)用物态方程pV nRT =除上式,第一项用nRT 除,第二项用pV 除,可得0.V C dT dVnRT V+= (2) 利用式(1.7.8)和(1.7.9),,,p V p VC C nR C C γ-==可将式(2)改定为10.1dT dVT Vγ+=- (3)将上式积分,如果γ是温度的函数,定义1ln (),1dTF T Tγ=-⎰(4) 可得1ln ()ln F T V C +=(常量), (5)或()F T V C =(常量)。
(6) 式(6)给出当γ是温度的函数时,理想气体在准静态绝热过程中T 和V 的关系。
1.13 利用上题的结果证明:当γ为温度的函数时,理想气体卡诺循环的效率仍为211.T T η=-解:在γ是温度的函数的情形下,§1.9就理想气体卡诺循环得到的式(1.9.4)—(1.9.6)仍然成立,即仍有2111ln ,V Q RT V = (1) 3224ln,V Q RT V = (2)32121214lnln .V V W Q Q RT RT V V =-=- (3) 根据 1.13题式(6),对于§1.9中的准静态绝热过程(二)和(四),有1223()(),F T V F T V = (4) 2411()(),F T V F T V = (5)从这两个方程消去1()F T 和2()F T ,得3214,V V V V = (6) 故2121()ln,V W R T T V =- (7) 所以在γ是温度的函数的情形下,理想气体卡诺循环的效率仍为2111.T WQ T η==- (8)1.14试根据热力学第二定律证明两条绝热线不能相交。
解:假设在p V -图中两条绝热线交于C 点,如图所示。
设想一等温线与两条绝热线分别交于A 点和B 点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在循环过程ABCA 中,系统在等温过程AB 中从外界吸取热量Q ,而在循环过程中对外做功W ,其数值等于三条线所围面积(正值)。
循环过程完成后,系统回到原来的状态。
根据热力学第一定律,有W Q =。
这样一来,系统在上述循环过程中就从单一热源吸热并将之完全转变为功了,这违背了热力学第二定律的开尔文说法,是不可能的。
因此两条绝热线不可能相交。
1.17 温度为0C o 的1kg 水与温度为100C o 的恒温热源接触后,水温达到100C o 。
试分别求水和热源的熵变以及整个系统的总熵变。
欲使参与过程的整个系统的熵保持不变,应如何使水温从0C o 升至100C o ?已知水的比热容为114.18J g K .--⋅⋅解:0C o 的水与温度为100C o 的恒温热源接触后水温升为100C o ,这一过程是不可逆过程。
为求水、热源和整个系统的熵变,可以设想一个可逆过程,它使水和热源分别产生原来不可逆过程中的同样变化,通过设想的可逆过程来求不可逆过程前后的熵变。
为求水的熵变,设想有一系列彼此温差为无穷小的热源,其温度分布在0C o 与100C o 之间。
令水依次从这些热源吸热,使水温由0C o 升至100C o 。
在这可逆过程中,水的熵变为37331273373373ln10 4.18ln 1304.6J k .273273p p mc dT S mc T-∆===⨯⨯=⋅⎰水 (1) 水从0C o 升温至100C o 所吸收的总热量Q 为3510 4.18100 4.1810J.p Q mc T =∆=⨯⨯=⨯为求热源的熵变,可令热源向温度为100C o 的另一热源放出热量Q 。
在这可逆过程中,热源的熵变为514.18101120.6J K .373S -⨯∆=-=-⋅热源(2)由于热源的变化相同,式(2)给出的熵变也就是原来的不可逆过程中热源的熵变。
则整个系统的总熵变为1184J K .S S S -∆=∆+∆=⋅总水热源 (3)为使水温从0C o 升至100C o 而参与过程的整个系统的熵保持不变,应令水与温度分布在0C o 与100C o 之间的一系列热源吸热。
水的熵变S ∆%水仍由式(1)给出。
这一系列热源的熵变之和为37312731304.6J K.p mc dT S T-∆=-=-⋅⎰%热源 (4)参与过程的整个系统的总熵变为0.S S S ∆=∆+∆=%%%总水热源(5)1.19 均匀杆的温度一端为1T ,另一端为2T ,试计算达到均匀温度()1212T T +后的熵增。
解:以L 表示杆的长度。
杆的初始状态是0l =端温度为2T ,l L =端温度为1T ,温度梯度为12T T L-(设12T T >)。
这是一个非平衡状态。
通过均匀杆中的热传导过程,最终达到具有均匀温度()1212T T +的平衡状态。
为求这一过程的熵变,我们将杆分为长度为dl 的许多小段,如图所示。
位于l 到l dl +的小段,初温为122.T T T T l L-=+(1)这小段由初温T 变到终温()1212T T +后的熵增加值为121221222ln ,T T l p p TT T dT dS c dl c dl T T T T l L++==-+⎰(2)其中p c 是均匀杆单位长度的定压热容量。
根据熵的可加性,整个均匀杆的熵增加值为()12122012121212222120121122121212112212ln ln 2ln ln 2ln ln ln 2ln ln ln 12lLp Lp p p p p S dS T T T T c T l dlL c T T T T T T T T c L T l T l T l T T L L L L c L T T c L T T T T T T T T T T T T T T C T T ∆=⎡+-⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦+⎡---⎤⎛⎫⎛⎫⎛⎫=-++-+ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦+=---+-+-=-+-⎰⎰.⎛⎫⎪⎝⎭(3)式中p p C c L =是杆的定压热容量。
1.21 物体的初温1T ,高于热源的温度2T ,有一热机在此物体与热源之间工作,直到将物体的温度降低到2T 为止,若热机从物体吸取的热量为Q ,试根据熵增加原理证明,此热机所能输出的最大功为max 212()W Q T S S =--其中12S S -是物体的熵减少量。