热力学与统计物理汇总.
- 格式:ppt
- 大小:1.77 MB
- 文档页数:59
热力学统计物理1、请给出熵、焓、自由能和吉布斯函数的定义和物理意义解:熵的定义:S B−S A=∫dQT ⟹B A dS=dQT沿可逆过程的热温比的积分,只取决于始、末状态,而与过程无关,与保守力作功类似。
因而可认为存在一个态函数,定义为熵。
焓的定义:H=U+pV焓的变化是系统在等压可逆过程中所吸收的热量的度量。
自由能的定义:F=U−TS自由能的减小是在等温过程中从系统所获得的最大功。
吉布斯函数的定义:G =F+pV= U – TS + pV在等温等压过程中,系统的吉布斯函数永不增加。
也就是说,在等温等压条件下,系统中发生的不可逆过程总是朝着吉布斯函数减少的方向进行的。
2、请给出热力学第零、第一、第二、第三定律的完整表述解:热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
热力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。
热力学第二定律:克氏表述:不可能把热量从低温物体传到高温物体而不引起其他变化;开氏表述:不可能从单一热源吸热使之完全变成有用的功而不引起其他变化。
热力学第三定律:能氏定理:凝聚系的熵在等温过程中的改变随热力学温度趋于零,即limT→0(∆S)T=0绝对零度不能达到原理:不肯能通过有限的步骤使一个物体冷却到热力学温度的零度。
通常认为,能氏定理和绝对零度不能达到原理是热力学第三定律的两种表述。
3、请给出定压热容与定容热容的定义,并推导出理想气体的定压热容与定容热容关系式:C p−C V=nR解:定容热容: C V=(ðUðT )V表示在体积不变的条件下内能随温度的变化率;定压热容:C p=(ðUðT )p−p(ðVðT)P=(ðHðT)P表示在压强不变的情况下的熵增;对于理想气体,定容热容C V的偏导数可以写为导数,即C V=dUdT(1)定压热容C p的偏导数可以写为导数,即C P=dHdT(2)理想气体的熵为 H=U+pV=U+nRT(3)由(1)(2)(3)式可得理想气体的定压热容与定容热容关系式:C p−C V=nR4、分别给出体涨系数α,压强系数β和等温压缩系数κT的定义,并证明三者之间的关系:α=κTβp解:体涨系数:α=1V (ðVðT)P,α 给出在压强不变的条件下,温度升高1 K所引起的物体的体积的相对变化;压强系数:β=1p (ðp ðT )v ,β 给出在体积不变的条件下,温度升高1 K 所引起的物体的体积的相对变化;等温压缩系数:κT =−1V (ðV ðp )T ,κT 给出在温度不变的条件下,增加单位压强所引起的物体的体积的相对变化;由于p 、V 、T 三个变量之间存在函数关系f (p ,T ,V )=0,其偏导数存在以下关系:(ðV ðp )T (ðp ðT )v (ðT ðV )P =−1 因此α, β, κT 满足α=κT βp5、分别给出内能,焓,自由能,吉布斯函数四个热力学基本方程及其对应的麦克斯韦关系式解:内能的热力学基本方程:dU =TdS −pdV对应的麦克斯韦关系式:(ðT ðV )S =−(ðp ðS )V 焓的热力学基本方程:dH =TdS +Vdp对应的麦克斯韦关系式:(ðT ðp )s =(ðV ðS )p 自由能的热力学基本方程:dF =−SdT +Vdp对应的麦克斯韦关系式:(ðS ðV )T =(ðp ðT )V 吉布斯函数的热力学基本方程:dG =−SdT −pdV对应的麦克斯韦关系式: (ðS ðp )T =−(ðV ðT )p 6、选择T ,V 为独立变量,证明:C V =T (ðS ðT )V ,(ðU ðV )T = T (ðp ðT )V −p 证明:选择T ,V 为独立变量,内能U 的全微分为dU =(ðU ðT )V dT +(ðU ðV )T dV (1) 又已知内能的热力学基本方程 dU =TdS −pdV (2)以T ,V 为自变量时,熵S 的全微分为dS =(ðS ðT )V dT +(ðS ðV )T dV (3) 将(3)式代入(2)式可得dU =T (ðS ðT )V dT +[T (ðS ðV )T −P]dV (4) 将(4)式与(1)式比较可得C V =(ðU ðT )V =T (ðS ðT )V (5) (ðU ðV )T = T (ðp ðT )V −p (6) 7、简述节流过程制冷,气体绝热膨胀制冷,磁致冷却法的原理和优缺点解:节流过程制冷:原理:让被压缩的气体通过一绝热管,管子的中间放置一多孔塞或颈缩管。
热力学和统计物理的理论与应用热力学和统计物理是两个相互关联的分支,用于描述和解释物质(尤其是热量和能量)的行为和性质。
热力学和统计物理的理论适用于许多不同的领域,如化学、物理、生物、工程和天文学。
本文将探讨热力学和统计物理的基本理论和其在现实世界中的应用。
一、热力学的基本原理热力学是研究物质热现象和其与其他形式的能量转换的关系的一门学科,其主要关注物体的热力学性质,例如温度、热量和热功。
热力学的基本原理是宏观的,即它不关注物质的微观结构,而是关注物质的宏观行为。
热力学的三个基本定律是:第一定律:能量守恒定律。
能量不会被创造或破坏,只能从一种形式转换为另一种形式。
第二定律:热量不可能自行从低温物体流向高温物体。
即熵增定律。
第三定律:温度可达到零度(即绝对零度),此时瑞利-金斯公式表明,任何热容趋近于零。
二、统计物理的基本原理统计物理是研究物体的微观性质和相互作用,以及它们如何导致宏观现象的一门学科。
统计物理主要关注微观粒子的行为和统计规律,并从微观水平讨论物质的热力学性质。
统计物理的基本原理包括:玻尔兹曼分布定律:在恒温下,处于平衡状态的一个复杂的系统处于每一种可能的状态的概率与该状态的熵成正比。
统计力学定义了一些重要的物理量,如熵、温度和自由能,这些量在许多科学领域中都有重要的应用。
三、热力学和统计物理的应用1. 热力学在工业生产中的应用热力学的基本原理用于设计和优化许多工业过程,如柴油发动机的工作原理、与化学反应有关的热力学反应和化学反应动力学。
掌握热力学原理有助于优化生产成本,提高工业过程的效率和减少工艺废物。
2. 统计物理在材料科学中的应用统计物理理论可用于研究材料的结构和力学性质,并帮助设计新材料。
从分子动力学和蒙特卡罗模拟中提取的信息可用于预测材料的性质、表面重构、相变和微观结构演化等。
3. 热力学和统计物理在生物领域中的应用热力学和统计物理的理论在生物学中发挥着重要的作用。
例如,在研究蛋白质受体和配体之间的相互作用方面,理论模型将蛋白质折叠和舒展的机制与温度和化学势联系起来。
《热力学统计物理》期末复习一、简答题1、写出焓、自由能、吉布斯函数的定义式及微分表达式(只考虑体积变化功)答:焓的定义H=U+PV,焓的全微分dH=TdS+VdP;自由能的定义F=U-TS,自由能的全微分dF=-SdT-PdV;吉布斯函数的定义G=U-TS+PV,吉布斯函数的全微分dG=-SdT+VdP。
2、什么是近独立粒子和全同粒子?描写近独立子系统平衡态分布有哪几种?答:近独立子系统指的是粒子之间的相互作用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而可以忽略粒子之间的相互作用。
全同粒子组成的系统就是由具有完全相同的属性(相同的质量、电荷、自旋等)的同类粒子组成的系统。
描写近独立子系统平衡态分布有费米-狄拉克分布、玻色-爱因斯坦分布、玻耳兹曼分布。
3、简述平衡态统计物理的基本假设。
答:平衡态统计物理的基本假设是等概率原理。
等概率原理认为,对于处于平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的。
它是统计物理的基本假设,它的正确性由它的种种推论都与客观实际相符而得到肯定。
4、什么叫特性函数?请写出简单系统的特性函数。
答:马休在1869年证明,如果适当选择独立变量(称为自然变量),只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。
这个热力学函数称为特性函数。
简单系统的特性函数有内能U=U (S 、V ),焓H=H (S 、P ),自由能F=F(T 、V ),吉布斯函数G=G (T 、P )。
5、什么是μ空间?并简单介绍粒子运动状态的经典描述。
答:为了形象的描述粒子的运动状态,用r r p p q q ,,,,11 ;共2r个变量为直角坐标,构成一个2r 维空间,称为μ空间。
粒子在某一时刻的力学运动状态()r r p p q q ,,,,11 ;可用μ空间的一个点表示。
6、试说明应用经典能量均分定理求得的理想气体的内能和热容量中哪些结论与实验不符(至少例举三项)。
热力学与统计物理期末习题一、简答题1.什么是孤立系?什么是热力学平衡态?2.请写出熵增加原理?并写出熵增加原理的数学表达式?3.说明在S ,V 不变的情形下,平衡态的U 最小。
4.试解释关系式 ∑∑+=l l l l l l da d a dU εε 的物理意义?5.什么是玻色-爱因斯坦凝聚,理想玻色气体出现凝聚体的条件是什么?6.什么是热力学系统的强度量?什么是广延量?7.什么是热动平衡的熵判据?什么是等概率原理?请写出单元复相系的平衡条件。
8.写出吉布斯相律,并判断盐的水溶液的最大自由度数。
9.写出玻耳兹曼关系,并说明熵的统计意义。
10.请分别写出正则分布的量子表达式和经典表达式?11.简述卡诺定理及其推论。
12.什么是特性函数?若自由能F为特性函数,其自然变量是什么?13.说明一般情况下,不考虑电子对气体热容量贡献的原因。
14.写出热力学第二定律的数学表述,并简述其物理意义。
15.试讨论分布与微观状态之间的关系?16.请写出麦克斯韦关系。
17.什么是统计系综?18.利用能量均分定理,写出N个CO分子理想气体的内能与热容量(不考虑振动),并简要说明在常温范围,振动自由度对热容量贡献接近于零的原因。
19.简述经典统计理论在理想气体中遇到的困难。
20.理想玻色气体出现凝聚体的条件是什么?凝聚体有哪些性质?21.试给出热力学第一定律的语言描述和数学描述。
22.试给出热力学第二定律的语言描述和数学描述。
二、填空题1.均匀系统中与系统的质量或物质的量成正比的热力学量,称为 。
2.在等温等容过程中,系统的自由能永不 。
(填增加、减少或不变)3.体在节流过程前后,气体的 不变;理想气体经一节流过程,其焦汤系数=⎪⎪⎭⎫ ⎝⎛∂∂Hp T 。
4.一级相变的特点是 。
5.在满足经典极限条件1>>αe 时,玻色系统、费米系统以及玻耳兹曼系统的微观状态数满足关系 。
6.玻尔兹曼分布的热力学系统的内能U 的统计表达式是 。
热力学和统计物理的基本原理热力学和统计物理是研究物质宏观性质和微观行为的重要分支学科。
它们的基本原理被广泛应用于物理、化学、生物、材料科学等领域。
本文将介绍热力学和统计物理的基本原理,并探讨它们在科学研究和实际应用中的重要性。
一、热力学的基本原理热力学是研究能量转化和能量传递规律的科学。
它的基本原理可以总结为以下几点:1. 系统和环境:热力学研究的对象是系统和环境。
系统指要研究的物体或者物质,而环境是系统外部与系统相互作用的部分。
系统和环境通过物质和能量的交换发生相互影响。
2. 状态变量:在热力学中,通过一些宏观可测量的物理量来描述系统的状态,例如温度、压力、体积等。
这些量被称为状态变量,它们的变化可以用来描述系统的性质。
3. 热力学过程:热力学过程是系统从一个状态变化到另一个状态的过程。
热力学过程可以分为等温过程、等容过程、等压过程等。
热力学第一定律表明能量守恒,而热力学第二定律则指出了熵的增加原理。
4. 热力学定律:热力学建立了一系列定律来描述能量转化和能量传递的规律。
其中最基本的定律是热力学第一定律,也称为能量守恒定律。
它表明能量在系统和环境之间可以相互转化,但总能量的和保持不变。
二、统计物理的基本原理统计物理是研究物质微观粒子的统计行为和宏观性质的科学。
它的基本原理可以总结为以下几点:1. 粒子的统计行为:统计物理研究的对象是物质微观粒子,如原子、分子等。
这些粒子遵循统计规律,即在大量粒子组成的系统中,出现各种微观状态的概率与该状态的能量有关。
2. 状态密度:为了描述大量粒子组成的系统的微观状态,统计物理引入了状态密度的概念。
状态密度可以用来计算系统在某个能量范围内的可能微观状态的数量。
3. 热力学量的统计表达:通过计算系统状态密度的微观表达式,可以推导出各种热力学量的统计表达式。
例如,通过计算系统状态密度的微观表达式,可以推导出熵的统计表达式。
4. 统计力学模型:为了研究物质微观粒子的统计行为,统计物理建立了一系列统计力学模型。
热力学和统计物理热力学和统计物理是物理学的两个重要分支。
这两者虽然研究目标相同,即研究自然现象中的热现象和粒子统计规律,但它们的出发点和研究方法具有显著的差异。
热力学是从宏观角度剖析物质的热现象,而统计物理则依据微观的粒子行为来研究这些现象。
二者间密切相关,互相补充,共同揭示了物质世界的奇妙本质。
一、热力学:宏观理论的力量热力学一词源自希腊语的"therme"(热)和"dynamis"(力)。
常见的热力学问题涵盖汽车发动机的效率、液体沸腾时的热传播,甚至生物体内的能量转化过程。
它使用一组精简的基本定理——热力学定律,并且不关注引发变化的具体机制。
实际上,热力学具有非常强大的预测能力,仅有有限的信息即可推测出系统的可能行为。
热力学定律,尤其是第二定律,告诉我们,在多数情况下,物质系统会自然趋向于一种更为混乱、低能的状态,这被称为熵增原理,是我们理解自然界的关键原则。
二、统计物理:微观视角的洞见与热力学不同,统计物理试图将热现象与微观粒子的行为联系起来。
统计物理学家们使用概率论来解释和计算系统中的粒子行为,例如分子在气体中的运动。
它将微观粒子的平均行为推广到整个系统,创造了一种全新的理解和预测复杂现象的方法。
商品最核心的理念是Boltzmann假设,它认为所有的微观状态(也就是所有可能的粒子配置)都是等可能的。
这个基本认识,配合粒子数和能量的守恒条件,可以推导出大部分的物质性质,比如压强、温度和熵等概念。
三、热力学与统计物理:相互补充的对话综合来看,热力学和统计物理相辅相成,互为照应。
热力学定律为统计物理提供了宏观约束,而统计物理则使得我们可以从微观角度理解热力学定律。
比如熵增准则的揭露,不仅来源于热力学的推理,还借助于统计物理的洞见。
将熵视为可能状态的度量,我们可以发现自然现象中普遍存在的无序性并非必然,而是因为无序状态远多于有序状态。
这就为我们理解和操作复杂系统提供了新的视角和工具。
01热力学与统计物理大总结热力学与统计物理总复习一、填空题1、理想气体满足的条件:①玻意耳定律?温度不变时,PV?C? ②焦耳定律?理想气体温标的定义P?T? ?在相同的温度和压强下③阿伏伽德罗定律,相等体积所含各种气体的物质的量相等,即n?V11等于kT ,即:axi2?kT22? 2、能量均分定理:对于处在温度为T的平衡状态的经典系统,粒子能量中每一个平方项的平均值???????kT。
广义能量均分定理:xi???x?ij?j?。
3、吉布斯相律:f?k?2??其中k是组元数量,?是相的数量。
4、相空间是2Nr 维空间,研究的是:一个系统里的N个粒子;?空间是2r 维空间,研究的是:1个粒子。
二、简答题1、特性函数的定义。
答:适当选择独立变量,只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。
这个热力学函数即称为特性函数。
2、相空间的概念。
答:为了形象地描述粒子的力学运动状态,用q1,?,qr;p1,?,pr 共2r个变量为直角坐标,构成一个2r 维空间,称为?空间。
根据经典力学,系统在任一时刻的微观运动状态f 个广义坐标q1,q2,?,qf及与其共轭的f个广义动量p1,p2,?,pf在该时刻的数值确定。
以q1,?,qf;p1,?,pf共2f个变量为直角坐标构成一个2f维空间,称为相空间或?空间。
3、写出热力学三大定律的表达和公式,分别引出了什么概念?答:热力学第零定律:如果物体A和物体B各自与处在同一状态的物体C达到热平衡,若令A与B- 1 - 进行热接触,它们也将处在热平衡,这个经验事实称为热平衡定律。
即gA(PA,V A)?gB(PB,VB),并引出了“温度T”这概念。
热力学第一定律:自然界一切物质都具有能量,能量有各种不同形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量不变。
即dU?dQ?dW,并引出了“内能U”的概念。
第一章 热力学的基本规律1.热力学的平衡状态⑴热力学的研究对象是由大量微观粒子组成的有限宏观系统.与系统发生相互作用的其他物体称为外界.按照系统与外界的相互作用状态,可将系统分为以下三种: ①孤立系:与外界既不发生质量交换,也不发生能量交换的系统; ②闭系:可与外界发生能量交换,而不发生质量交换的系统; ③开系:可与外界发生能量、质量交换的系统.⑵热力学平衡态:当一个孤立系经过足够长的时间,将会达到这样一种状态,在这种状态下,系统的各种宏观性质在长时间内部发生变化,称之为热力学平衡态.⑶状态参量:在热力学平衡态下,系统的各种宏观性质不再变化而拥有固定值,用这些固定值就可以确定系统的宏观状态.一般情况下,描述一个系统的状态参量有:热学参量温度T 、几何参量体积V 、力学参量压强p 和电磁参量D 、H .2.物态方程⑴描述系统的状态参量之间关系的方程称为物态方程,以简单的固液气系统为例,其物态方程可表示为:另外,定义几个与物态方程有关的物理量: ①等压膨胀系数:pT V V ⎪⎭⎫ ⎝⎛∂∂=1α; ②等容压力系数:VT p p ⎪⎭⎫ ⎝⎛∂∂=1β; ③等温压缩系数:Tp V V k ⎪⎪⎭⎫ ⎝⎛∂∂-=1τ. 根据物态方程,可得关系式:1-=⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂p V T V T T p p V ;故可得三个系数之间的关系为:p k βατ=.⑵气体的物态方程①理想气体状态方程:T Nk pV B =. ②实际气体的范德瓦尔斯方程:()nRT nb V V an p =-⎪⎪⎭⎫ ⎝⎛+22, 其中22Van 为压强修正项,nb 是体积修正项;⑶简单固体与液体的物态方程对于简单固体和液体,可通过实验测得体胀系数α和等温压缩系数τk ,它们的特点如下: ①固体和液体的膨胀系数是温度的函数,与压强近似无关;②α和τk 的数值都很小,在一定的温度范围内可以近似看成常量; 由此可得,物态方程为: ()()()()[]000001,,p p k T T p T V p T V ---+=τα;⑷顺磁性固体将顺磁性固体置于磁场中,顺磁性固体会被磁化;磁化强度M ,磁场强度H 与温度T 的关系: ()0,,=T H M f ;①实验测得一些顺磁性固体的磁物态方程为:H TCM =; ②另一些顺磁性固体的磁物态方程为:H T CMθ-=, 其中,C 和θ是常量,其数值因不同的物质而异; 3.功⑴气体准静态过程的体积功:pdV W -=δ;⑵液体表面张力做功:dA W σδ=,σ为单位长度的表面张力;⑶电介质准静态过程中电位移改变dD 时外界所作的功为:VEdD W =δ; 磁介质准静态过程中磁感应强度改变dB 时外界所作的功:VHdB W =δ; 4.热力学第一定律若系统经历一个无穷小的过程,则系统内能的增量与外界做功和外界传热的关系为:W Q dU δδ+=; 热力学第一定律表明,做功与热量传递在改变系统内能上是等效的; 5.热容与焓⑴热容:一个系统温度升高K 1所吸收的热量,即TQC T ∆∆=→∆0lim,热容是一个广延量,用m c 表示mol 1物质的热容,成为摩尔热容;⑵系统在等容过程的热容用符号V C 表示:VV T V T U T U C ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∆∆=→∆0lim ;⑵系统在等压过程中的热容用符号p C 表示:pp p T p T p p T U T pdV U C ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∆+∆=→∆0lim ;引入状态函数焓:pV U H +=,则有pp T H C ⎪⎭⎫ ⎝⎛∂∂=;6.气体的内能⑴从微观角度看,在没有外场的情形下,气体无规则运动的能量包括分子的动能、分子之间相互作用的势能以及分子内部运动的能量;⑵根据焦耳的自由膨胀实验,理想气体的内能只是温度的函数,与体积无关,即从微观上看,理想气体的内能只是分子的动能;于是可得:①dT dU C V=;dTdHC p =; ②⎰+=dT C U U V 0;⎰+=dT C H H p 0;根据焓的定义:nRT U pV U H +=+=,可得nR C C V p +=,再设V p C =γ,得:1-=γnR C V ,nR C p 1-=γγ迈耶公式; 7.理想气体的准静态过程 ⑴等温过程:const pV =; ⑵等容过程:const Tp=;⑶等压过程:const T V=; ⑷绝热过程:const pV =γ;注:系数γ可通过测定空气中的声速获得;声音在空间中传播时,介质空间会发生周期性的压缩与膨胀,自然导致压强的变化;由于气体的导热系数很小,因此在声音传播过程中,热量传导很难发生,故可认为是绝热过程,因此根据牛顿的声速公式ρd dpa =可得 其中ρ为气体密度,ρυ1=为单位质量气体的体积;8.热力学第二定律⑴克劳修斯表述:不可能把热量从低温物体传到高温物体而不引起其它变化;⑵开尔文表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其它变化;热力学第二定律的开尔文表述表明,第二类永动机不可能造成;所谓第二类永动机是指能够从单一热源吸热,使之完全变成有用功而不引起其它影响的机器; 9.卡诺循环与卡诺定理 ⑴卡诺循环:卡诺循环过程以理想气体为研究对象研究热功转化的效率问题,由两个等温过程和两个绝热过程组成;在整个循环中,气体从高温热源吸收热量,对外做功,其效率为:1212111T T Q Q Q W -=-==η; ⑵卡诺定理:所有工作于两个一定温度之间的热机,以可逆机的效率为最高;推论:所有工作于两个一定温度之间的可逆热机的效率相等;⑶根据卡诺定理,工作于两个一定温度之间的热机的效率不可能大于可逆热机的效率,即由此可得克劳修斯不等式:02211≤+T Q T Q ,等号只适用于可逆循环过程 其中1Q 为热机从高温热源吸收的热量,2Q 也定义为热机从低温热源吸收的热量数值为负数; 将克劳修斯不等式推广到n 个热源的情形,可得:0≤∑i iiT Q , 对于更普遍的循环过程,应将求和号换成积分号,即0≤⎰TQδ;10.熵与热力学基本方程⑴根据克劳修斯不等式,考虑系统从初态A 经可逆过程R 到达终态B ,又从状态B 经另一可逆过程'R 回到状态A ;在上述循环过程中,有 可见,在可逆循环过程中,⎰T dQ与路径无关,由此定义状态函数熵S ,从状态A 到状态B 的熵变定义为:注:仅对可逆过程,⎰T dQ才与路径无关;对不可逆过程,B 和A 两态的熵变仍沿从A 态到B 态的可逆过程的积分来定义;在这种情形下,可逆过程与不可逆过程所引起的系统状态变化相同,但外界的变化是不同的;对前面熵变等式取微分:TQdSδ=,表示无穷小的可逆过程中的熵变;⑵根据热力学第二定律,可得可逆过程中TdS Q =δ,结合热力学第一定律可得热力学的基本微分方程:若系统与外界之间除了体积功,还有其他形式的功,可将上式表示为 ⑶热力学第二定律的数学表示:pdV TdS dU -≤,注:根据克劳修斯不等式和熵的定义,可知在任意无穷小过程中,Q TdS δ≥;⑷熵增加原理:系统在绝热条件下,熵永不减少,即0≥-A B S S 等号只适用于可逆过程;11.自由能与吉布斯函数⑴约束在等温条件下的系统,定义状态函数:TS U F -=;根据热力学第二定律可得,等温条件下pdV dF -≤,表明在等温条件下,系统自由能的增加量不大于外界对系统做的功;在等温等容过程中可得:0≤dF ,即等温等容条件下,系统的自由能永不增加,或者表述为在等温等容条件下的不可逆过程朝着使系统自由能减少的方向进行;⑵约束在等压条件下的系统,定义状态函数:pV TS U G +-=;同理可得:等温等压条件下,0≤dG ,即等温等压条件下,系统的吉布斯函数永不增加,或者表述为等温等压条件下的不可逆过程朝着使系统吉布斯函数减少的方向进行;第二章 均匀物质的热力学性质1.内能、焓、自由能和吉布斯函数的全微分⑴热力学基本方程即为内能的全微分形式:pdV TdS dU -=, 根据偏导数关系可得:VS S p V T ⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂①; 内能的确定:dV p T p T dT C dUV V ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛∂∂+=;注:熵的确定:dV T p dT T C dS VV ⎪⎭⎫⎝⎛∂∂+=;⑵焓的全微分形式为:Vdp TdS dH +=,同理可得:p S S V p T ⎪⎭⎫⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂②;焓的确定:dp T V T V dT C dH p p ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂++=; 注:熵的确定:dp T V dT T C dS pp ⎪⎭⎫⎝⎛∂∂-=;⑶自由能的全微分形式为:pdV SdT dF --=,同理可得:VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂③;⑷吉布斯函数的全微分形式为:Vdp SdT dG +-=,同理可得:p TT V p S ⎪⎭⎫⎝⎛∂∂-=⎪⎪⎭⎫⎝⎛∂∂④; 其中,式①②③④称为麦克斯韦关系;2.气体的节流过程和绝热膨胀过程⑴气体从高压处通过多孔塞不断地流到低压处,并达到定常状态,这个过程叫做节流过程;在节流过程中,多孔塞两边的温度发生了明显变化,这个效应称为焦耳-汤姆孙效应; 经分析得,在节流过程中,气体的焓值不断,定义Hp T ⎪⎪⎭⎫⎝⎛∂∂=μ表示焓不变条件下,温度随压强的变化率,则根据1-=⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫⎝⎛∂∂T p H H p T H p T 可得: 上式给出了焦汤系数与物态方程和热容的关系;①对理想气体,T1=α,故0=μ,说明理想气体在节流过程前后温度不变; ②对实际气体,若1>T α,则气体在节流过程前后温度降低,称为制冷区;若1<T α,则气体在节流过程前后温度升高,称为制温区;利用节流过程的降温作用可使气体降温液化节流膨胀制冷效应; ⑵气体的绝热膨胀过程,熵保持不变,则定义Sp T ⎪⎪⎭⎫⎝⎛∂∂表示绝热过程中温度随压强的变化率,同上可得,上式表明,在绝热条件下,随着气体体积膨胀和压强降低,气体的温度必然下降;气体的绝热膨胀过程可用来使气体降温并液化绝热膨胀制冷效应; 3.热辐射的热力学理论⑴受热的固体会辐射电磁波,称为热辐射;一般情形下,热辐射的强度和强度随频率的分布于辐射体的温度和性质都有关;当辐射体对电磁波的吸收和辐射达到平衡,热辐射的特性将只取决于温度,与辐射体的其他特性无关,称为平衡辐射;⑵考虑一个封闭的空窖,窖壁保持一定的温度T ;窖壁将不断向空窖发射并吸收电磁波,当窖内辐射场与窖壁达到平衡后,二者具有相同的温度,显然空窖内的辐射就是平衡辐射;窖内的平衡辐射包含各种频率和沿着各个方向的电磁波,这些电磁波的振幅和相位是无规的;窖内平衡辐射是空间均匀和各项同性的,它的内能密度和内能密度按频率的分布只取决于温度; ⑶电磁理论中,关于辐射压强与辐射能量密度的关系为:u p 31=;由此根据热力学公式可得窖内平衡辐射的热力学函数为:4aT u =.⑷根据热力学基本方程,可得空窖辐射的熵为:V aT S 334=, 由上式可知,可逆绝热过程中辐射场的熵不变,此时有const V T =3.⑸若在窖壁上开一小孔,定义单位时间通过小孔的单位面积辐射出的能量,称为辐射能量密度u J .描述辐射能量密度u J 与辐射内能密度u 的关系称为斯特藩—玻尔兹曼定律,即444141T caT cu J u σ===,其中σ称为斯特藩常量. ⑹基尔霍夫定律:()ωωαωωωd T u cd e ,4=,其中,ωe 称为物体对频率在ω附近的电磁波的面辐射强度;ωα为物体对频率在ω附近的辐射能量的吸收系数.注:吸收系数为1的物体称为绝对黑体,此时有()ωωωωd T u cd e ,4=.4.磁介质的热力学⑴磁介质中磁场强度和磁化强度发生改变时,外界所做的功为:VHdMH Vd W 02021μμδ+⎪⎭⎫ ⎝⎛=,当热力学系统只包括介质而不包括磁场时,功的表达式只取第二项,即Hdm W 0μδ=, 其中,MV m =是介质的总磁矩.忽略磁介质的体积变化,可得热力学基本方程为,Hdm TdS dU 0μ+=,类比于理想气体,即H p 0μ→-,m V →.⑵绝热去磁制冷:根据吉布斯函数mdH SdT dG 0μ--=,可得:H T C CV H T HS 0μ=⎪⎭⎫⎝⎛∂∂, 上式说明,在绝热条件下减小磁场,磁介质的温度降低,称为绝热去磁制冷效应.第三章 单元系的相变 1.热动平衡判据⑴孤立系统的熵判据:0<∆S或0,02<=S S δδ熵增加原理;⑵等温等容系统的自由能判据:0>∆F 或0,02>=F F δδ等温等容系统自由能永不增加;⑶等温等压系统的吉布斯函数判据:0>∆G 或0,02>=G G δδ等温等压系统的吉布斯函数永不增加.⑷均匀系统的热动平衡条件:00,p p T T ==,即整个系统的温度和压强均匀. ⑸平衡的稳定性条件:0,0<⎪⎭⎫⎝⎛∂∂>TV V p C , 注:考虑系统与子系统简的变化,若子系统的温度由于涨落或外界影响而升高,则子系统通过向系统其他部分传热使温度降低;同样,若子系统的体积增大,则子系统与系统其他部分的压强差会使子系统的体积减小,从而使系统的平衡处于稳定. 2.开系的热力学基本方程⑴单元系是指化学上纯的物质系统,只含有一种化学组分.如果系统不是均匀的,可以分为若干个均匀的部分,该系统称为复相系.例如,冰、水和水蒸气共存构成一个单元三相系. ⑵物质的量发生变化的系统,其吉布斯函数的全微分可表示为:dn Vdp SdT dG μ++-=, 其中右方第三项代表由于物质的量改变dn 引起的吉布斯函数的变化. 定义pT n G ,⎪⎭⎫ ⎝⎛∂∂=μ,表示在温度、压强不变的条件下,增加mol 1物质时引起的吉布斯函数的改变,成为化学势.由于吉布斯函数是广延量,可得化学式与摩尔吉布斯函数的关系为:()p T G m ,=μ; 对单位物质的量系统的吉布斯函数可以写为:dp V dT S d m m +-=μ.⑶物质的量发生变化的系统的其他特性函数:①关于()n V S ,,的特性函数为内能,其全微分形式为:dn pdV TdS dU μ+-=; ②关于()n p S ,,的特性函数为焓,其全微分形式为:dn Vdp TdS dH μ++=; ③关于()n V T ,,的特性函数是自由能,其全微分形式为:dn pdV SdT dFμ+--=;④关于()μ,,V T 的特性函数是巨热力势,其全微分形式为:μnd pdV SdT dJ ---=.3.单元复相系的平衡热力学条件考虑一个单元两相系,这个单元两相系构成一个孤立系统.用α和β分别表示这两个相,用αααn V U ,,和βββn V U ,,分别表示两个相的内能,体积和物质的量.孤立系的总内能,总体积和总物质的量是恒定的,即 设想系统发生一个虚变动,引起两相的熵变为:⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=ββαααββαααβααβαμμδδδT T dn T p T p dV T TdU S S S 11, ⑴若复相系处于平衡条件下,则熵为极大值,即0=S δ.由此可得复相系的平衡热力学条件为:βαT T =热平衡条件 ββααTp T p =力学平衡条件ββααμμT T =相变平衡条件⑵若复相系平衡条件未能满足,则系统朝着熵增大的方向转变,即0>S δ.4.单元复相系的平衡性质第六章 近独立粒子的最概然分布1.粒子运动状态的经典描述设粒子的自由度为r ,则粒子的运动状态可用广义坐标和广义动量来描述,粒子的能量是广义坐标和广义动量的函数,即()r r p p q q ,,;,,11 εε=. 为了描述粒子的运动状态,用()r r p p q q ,,;,,11 这r 2变量构成一个r 2维的空间,称为μ空间,粒子在某一时刻的运动状态就表示为μ空间中的一个点.⑴自由粒子自由粒子不受力的作用而在三维空间中做自由运动,自由度为3,它的能量就是它的动能,即()22221zy x p p p m++=ε. ⑵线性谐振子粒子在线性回复力kx F-=的作用下做简谐运动,振动的圆频率为mk =ω.对自由度为1的线性谐振子,任意时刻的能量与粒子的位置和动量有关,即222212x m m p ωε+=.⑶转子粒子绕原点O 做转动,它的能量就是它的动能,可用球坐标表示,即()222222sin 21ϕθθε r r rm ++=. ①若考虑到粒子到原点的距离不变0=r ,则能量表示为: ()22222sin 21ϕθθε r r m +=; ②引入与ϕθ,共轭的动量:ϕθθϕθ 222sin ,mr p mr p ==,可将转子的能量写为: 其中,2mr I =是转子相对于原点的转动惯量.2.粒子运动的量子描述量子力学的观点中,微观粒子满足波粒二象性,有kp ==ωε;波粒二象性的粒子满足不确定关系,即不能同时具有确定的坐标与动量,分别用q ∆和p ∆表示坐标和动量的不确定度,则有h p q ≈∆⋅∆.在量子力学中,微观粒子的运动状态称为量子态,量子态由一组量子数表征,这组量子数的数目等于粒子的自由度数. ⑴线性谐振子圆频率为ω的线性谐振子,能量的可能值为:ωε ⎪⎭⎫ ⎝⎛+=21n n , ,1,0=n ;线性谐振子的自由度为1,n 是表征谐振子运动状态和能量的量子数. ⑵转子量子理论中,转子的能量为:(),1,0212=+=l Il l ,ε量子理论中,转子的角动量是分立的,()221 +=l l L ,对一定的l ,角动量在本征方向的投影z L 只能取分立值:l m m L z ±==,,0, ,转子的运动状态由m l ,两个量子数表征,能量只取决于量子数l ,因此转子的自由度为12+l .⑶自旋角动量基本粒子具有内禀的角动量,称为自旋角动量S,其平方的数值等于()221 +=S S S ,其中S 称为自旋量子数,可以是整数或半整数.自旋角动量的状态由自旋角动量的大小自旋量子数S 及自旋角动量在本征方向的投影确定,其中投影的大小表示为:S m m S S S z ±==,,0, , 因此,自旋角动量的自由度为12+S . ①电子的自旋角动量和自旋磁矩电子的自旋磁矩μ与自旋角动量S 之比为:me S-=μ; 电子在外磁场中的能量为:B me B H 2±=⋅-=μ.⑷自由粒子根据“箱归一化”条件,设自由粒子处于边长为L 的正方体容器中,则自由粒子的三个动量分量z y x p p p ,,的可能值为:,1,0,2,1,0,2,1,0,2±==±==±==z z z y y y x x x n n L p n n L p n n L p πππ;其中,z y x n n n ,,为表征自由粒子运动状态的量子数. 自由粒子能量的可能值为:()222222222221Ln n n m p p p m z y x z y x ++=++= πε, 自由粒子的运动状态由量子数z y x n n n ,,表征,能量只取决于222z y x n n n ++.①若粒子处于宏观大小的容器中运动,这时要考虑在体积3L V =内,在动量区间x x dp p +,y y dp p +和z z dp p +内的自由粒子量子态数:()dp p h V dp dp dp V dn dn dn z y x z y x 2332==π, 再根据m p22=ε,可得处于能量区间εεd +中的粒子状态数为:()()εεπεεd m hV d D 2123322=.3.系统微观运动状态的描述系统的微观运动状态就是它的力学运动状态.①全同粒子组成的系统就是由具有完全相同内禀属性相同的质量、电荷、自旋等的同类粒子组成的系统;②近独立粒子组成的系统是指系统中粒子之间相互作用很弱,系统的总能量等于各个粒子的能量之和,即∑==Ni i E 1ε.⑴系统微观运动状态的经典描述设粒子的自由度为r .第i 个粒子的力学运动状态由()r r p p q q ,,;,,11 这r 2个变量表示,考虑由N 个粒子组成的系统,则系统微观运动状态的确定需要Nr 2个变量,即()N i p p q q ir i ir i ,,2,1,,;,,11 =.单个粒子的运动状态可用μ空间中的一个点表示,则对于整个系统在某一时刻的运动状态可用μ空间中N 点表示.如果交换两个代表点在μ空间中的位置,相应的系统的运动状态是不同的. ⑵系统微观运动状态的量子描述①微观粒子的全同性原理:全同粒子是不可分辨的,在含有多个全同粒子的系统中,将任何两个全同粒子加以交换都不改变整个系统的微观运动状态.②假设全同粒子可以分辨,确定由全同近独立粒子组成的系统的微观运动状态归结为确定每个粒子的个体量子态;若全同粒子不可分辨,则归结为确定每个量子态上的粒子数.③自然界中的粒子分为两类:玻色子和费米子,其中自旋量子数是半整数的属于费米子,自旋量子数是整数的属于玻色子.a.由费米子组成的系统称为费米系统,遵从泡利不相容原理,即在含有多个全同近独立费米子的系统中,一个个体量子态最多可容纳一个费米子;b.由玻色子组成的系统称为玻色系统,粒子是不可分辨的,每个个体量子态可容纳的玻色子个数没有限制.4.分布与微观状态数⑴以() ,2,1=l l ε表示粒子的能级,l ω表示能级l ε的简并度,N 个粒子在各能级的分布如下:能级: ,,,,21l εεε简并度: ,,,,21l ωωω经典粒子表示为: ,,,,21r l r r hh h ωωω∆∆∆ 粒子数: ,,,,21l a a a以符号{}l a 表示系统的一个分布,它给出了系统中每个能级上的粒子数,为了确定系统的微观运动状态,还要清楚l a 个粒子如何占据能级l ε的各个简并态的. 对于具有确定的V E N ,,的系统,分布{}l a 满足约束条件:∑=ll a N ,∑=ll l a E ε⑵对于玻尔兹曼系统,粒子是可分辨的,且每个量子态上可容纳的粒子数没有限制,因此可以得到与分布{}l a 相应的系统的微观状态数为:∏∏=Ωla l ll B M l a N ω!!,, 其中最概然分布为:le a l l βεαω--=,其中βα,由约束条件∑∑----==ll l l ll le E e N βεαβεαεωω,确定.⑶对于玻色系统,粒子是不可分辨的,每个量子态上可容纳的粒子数没有限制,因此可得与分布{}l a 相应的系统微观状态数为:()()∏--+=Ωll l l l E B a a !1!!1,ωω, 其中最概然分布为:1-=+le a ll βεαω.⑷对于费米系统,粒子不可分辨,每个量子态上只能容纳一个粒子,因此可得与分布{}l a 相应的微观运动状态数为:()∏-=Ωll l l l D F a a !!!,ωω,其中最概然分布为:le a llβεαω++=1.注:对于三种系统的最概然分布,若满足条件11<<>>lla e ωα或,则玻色分布和费米分布近似于玻尔兹曼分布,这个条件称为经典极限条件或非简并性条件.⑸考虑个体量子态问题或者平均粒子数问题,设处在能量s ε的量子态s 上的粒子数为s f ,则各种系统的最概然分布可表示为:玻尔兹曼系统:se f s βεα--=玻色系统:11-=+s e f s βεα;费米系统:sef s βεα++=11. 第七章 玻尔兹曼统计1.热力学量的统计表达式定域系统和满足经典极限条件的玻色系统和费米系统都满足玻尔兹曼分布. 定义配分函数:∑-=ll l e Z βεω1或积分形式()⎰-⋅=r r p p q q rr r e h dp dp dq dq Z ,;,011111βε则系统的热力学量的统计表达式如下: ⑴内能:由玻尔兹曼分布的内能表达式∑--=lll le U βεαεω,可得:1ln Z NU β∂∂-=. ⑵外界对系统的广义作用力Y 为:1ln Z yN a y Y l ll ∂∂-=∂∂=∑βε. ⑶熵的统计表达式:⎪⎪⎭⎫ ⎝⎛∂∂-=11ln ln Z Z Nk S ββ. 2.理想气体的状态方程①利用统计力学求解热力学问题,首先要找到配分函数. 理想气体的配分函数为:②然后,再利用热力学量的统计表达式,得到相关热力学量: 3.麦克斯韦分布律根据玻尔兹曼分布,可以推导出麦克斯韦分布律气体分子的速度分布律.⑴以理想气体为研究对象,气体分子为自由粒子.在体积为V 的容器中,分布在动量区间z y x dp dp dp 内的微观状态数为:z y x dp dp dp h V3; 则分布在z y x dp dp dp 内的分子数为:而气体分子的总数为:因此可得,动量在z y x dp dp dp 范围内的分子数为:以VNn =表示单位体积内的分子数,则在单位体积内,速度在z y x dv dv dv 内的分子数为: ()()z y x v v v kT mz y x z y x dv dv dv ekT m n dv dv dv v v v f z y x 2222232,,++-⎪⎭⎫ ⎝⎛=π, 上式便是麦克斯韦速度分布律,其中()z y x v v v f ,,满足:()n vdv dv v v v f zy xzyx=⎰⎰⎰,,.⑵利用速度空间的球坐标转化,可得速率分布律:()dv v ekT m n dv v f mv kT 22123224-⎪⎭⎫ ⎝⎛=ππ, 分析速率分布律,可得以下特征数: ①最概然速率:mkTv m 2=; ②平均速率:m kTv π8=; ③方均根速率:mkTv v s 32==. ⑶计算单位时间内碰到单位面积器壁上的分子数,称为碰壁数.以dAdt d Γ表示在dt 时间内碰到dA 面积上,速度在z y x dv dv dv 范围内的分子数.这分子数就是位于以dA 为底、以()z y x v v v v ,,为轴线、以dt v x 为高的柱体内,速度在z y x dv dv dv 范围内的分子数.所以有:故可得单位时间内碰到单位面积上的分子数Γ为:mkTndv fv dv dv x x z y π20==Γ⎰⎰⎰∞+∞+∞-∞+∞-, 也可以表示为: 4.能均分定理能均分定理:对于处在温度T 的平衡状态的经典系统,粒子能量中每一个平方项的平均值等于kT 21. ⑴单原子分子只有平动,其能量为()22221zy x p p p m++=ε, 根据能均分定理,温度T 时,单原子分子的平均能量为:kT 23=ε.故单原子分子的内能为:NkT U 23=; 定容热容:Nk C V 23=; 定压热容:Nk Nk C C V p25=+=. ⑵双原子分子的能量为:如果不考虑相对运动,式中有5个平方项,根据能均分定理,双原子分子的平均能量为:kT 25=ε,双原子分子的内能、等容热容和等压热容分别为:⑶固体中的院子可以在平衡位置附近做微振动,假设各原子的振动是简谐运动,每个原子的能量为:只有两个平方项,而由于每个原子有三个自由度,根据能均分定理,每个原子的平均能量为:kT 3=ε,则固体的内能、等容热容分别为:固体热容之间的关系为:⑷平衡辐射问题考虑一个封闭的空窖,电磁辐射与窖壁达到平衡,称为平衡辐射,二者具有共同的温度空窖的辐射场可以分解为无穷多个单色平面波的叠加,分量可以表示为:其中ω是圆频率,k 是波矢.k的三个分量的可能值为:,1,0,2±==αααπn n L k ()z y x ,,=α.具有一定波矢k和一定偏振的单色平面波可以看做辐射场的一个自由度,它以圆频率ω随时间做简谐变化,因此相当于一个振动自由度.在体积V 内,在ωωωd +→的圆频率范围内,辐射场的振动自由度数为:()ωωπωωd cVd D 232=. 根据能均分定理,每一个振动自由度的平均能量为kT =ε.所以在体积V 内,在ωd 范围内平衡辐射的内能为:此式称为瑞利-金斯公式. 5.理想气体的内能与热容经典统计的能均分定理得到的关于理想气体内能和热容的结论与实验结果大体相同,但有几个问题没有得到合理的解释:原子内的电子对气体的热容为什么没有贡献;双原子分子的振动在常温范围内为什么对热容没有贡献;低温下氢的热容所得结果与实验结果不符. 本节以双原子分子为例,讲述理想气体内能和热容的量子统计理论.⑴暂不考虑原子中电子的运动,在一定近似下双原子分子的能量可以表示为平动能tε、振动能νε和转动能rε之和:r t εεεεν++=,以tω、νω和rω分别表示平动能、振动能和转动能的简并度,则配分函数1Z 可表示为: ①考虑平动对内能和热容的贡献:()2222212z y x t p p p mm p ++==ε,()2322312222⎪⎪⎭⎫ ⎝⎛==⎰++-βπβh m V dp dp dp e h V Z z y x p p p mt z y x ,因此,NkT Z NU t t 23ln 1=∂∂-=β, Nk T U C V tV 23=⎪⎭⎫ ⎝⎛∂∂=.②考虑振动对内能和热容的贡献:,2,1,0,21=⎪⎭⎫ ⎝⎛+=n n n ωεν, ()ωβωβωβν--+--==∑ee eZ nn 12211利用等比数列公式, 因此,引入振动特征温度νθ,ωθν =k ,可得。
热力学与统计物理学的关系热力学和统计物理学是物理学中两个重要的分支领域,它们之间存在着密切的关系。
热力学研究物质的宏观性质和相互作用,而统计物理学则是从微观角度去描述物体和分子的运动行为。
本文将探讨热力学与统计物理学之间的关系,并介绍它们各自的基本概念和原理。
一、热力学的基本概念和原理热力学是研究物质在宏观尺度上的热现象和能量转换规律的科学,它关心的是热力学系统的状态变化。
热力学中的基本概念包括系统、状态、过程、热力学函数等。
系统是研究对象,可以是封闭系统、开放系统或孤立系统;状态是系统的一组宏观性质的集合,可用物态方程描述;过程是系统从一个状态到另一个状态的变化;热力学函数是描述系统热力学性质的函数,如内能、焓、熵等。
热力学的基本原理包括能量守恒定律、熵增定律和热力学第零、第一、第二定律等。
能量守恒定律表明在封闭系统中,能量既不能创造也不能消失,只能从一种形式转化为另一种形式。
熵增定律指出在孤立系统中,熵总是趋于增加,且熵增的速率正比于系统所吸收的热量与其温度之比。
热力学的零、一、二定律分别描述了能量平衡、能量传递和能量转化的规律。
二、统计物理学的基本概念和原理统计物理学是研究物质在微观尺度上的运动规律和物理性质的科学,它关注的是分子与原子之间的相互作用。
统计物理学的基本概念包括微观态、宏观态、量子态、概率分布等。
微观态是指系统中每个粒子的具体状态,宏观态是指对大量微观态的统计平均结果。
量子态是描述粒子量子力学性质的函数,如波函数。
概率分布则是描述粒子在各种微观态下出现的概率。
统计物理学的基本原理包括量子统计原理和统计力学原理。
量子统计原理根据粒子的自旋来区分费米子和玻色子,并根据波函数的对称性来描述其统计行为。
费米子遵循费米-狄拉克统计,玻色子遵循玻色-爱因斯坦统计。
统计力学原理根据微观粒子的运动规律,通过概率分布和分配函数等来研究宏观物体的性质。
三、热力学与统计物理学的关系热力学和统计物理学之间的关系可以用统计力学来建立。
01热力学与统计物理大总结范文
热力学与统计物理是研究物质尤其是宏观系统的宏观性质和微观行为
的学科,这个学科不仅是物理学的重要分支,同时也是化学、材料学等学
科的基础。
本文将从热力学的基本概念、熵的概念和统计物理的基本原理
三个方面对热力学与统计物理进行总结。
热力学是描述宏观系统平衡状态的学科。
宏观系统通常包含大量的微
观粒子,根据这些粒子的状态可以知道系统的宏观状态。
热力学的基本概
念包括温度、压强、体积和能量等。
温度是描述物体热平衡状态的量,单
位是开尔文。
压强是单位面积上施加的力的大小,单位是帕斯卡。
体积是
物体所占据的空间大小,单位是立方米。
能量是物体所具有的用于产生物
理和化学变化的属性,单位是焦耳。
热力学中有两个重要的定律,即热力学第一定律和第二定律。
热力学
第一定律是能量守恒定律,它描述了系统的内能变化等于系统吸收的热量
减去对外做功的量。
热力学第二定律是热量的自然流动方向不可逆的定律,它将热力学第一定律推广到更广泛的情况。
根据热力学第二定律可以推出
熵的概念。
统计力学的基本原理包括正则系综和巨正则系综两种。
正则系综适用
于系统与热源接触而保持恒温的情况,它采用了玻尔兹曼分布来描述粒子
的状态。
巨正则系综适用于系统与热源和粒子源接触的情况,它采用了巨
正则分布来描述粒子的状态。
这些分布可以通过统计力学的方法进行推导,并通过与实验结果的比较来验证。
热力学与统计物理知识点,考试必备第一篇:热力学与统计物理知识点,考试必备体胀系数α=1⎛∂V⎫⎪V⎝∂T⎭p压强不变,温度升高1K所引起的物体体积的相对变化。
体积不变,温度升高1K所引起的物体压强的相对变化。
压强系数β1⎛∂P⎫=⎪⎝⎭V等温压缩系数:κT=-1⎛∂V⎫⎪V⎝∂P⎭T温度不变,增加单位压强所引起的物体体积的相对变化。
α=-βκT卡诺定理:所有工作于两个一定温度之间的热机,以可逆机的效率最高。
证明:设有两个热机A和B。
它们的工作物质在各自的循环中,分别从高温热源吸取热量Q1和Q1’,在低温热源放出热量Q2和Q2’,对外做功W和W’。
它们的效率分别为ηa=W/Q1ηb= W’/Q1’假设A为可逆机,我们要证明ηa≥ηb。
证明:假设Q1=Q1’,假设定理不成立,即如果ηa<ηb,则由Q1=Q1’可知W’>W。
A既然是可逆机,而W’又比W大,就可以利用B所作的功的一部分(等于W)推动A反向运行A将接受外界的功,从低温热源吸取热量Q2,在高温热源放出热量Q1。
在两个热机的联合循环终了时,两个热机的工作物质恢复原状,高温热源也没有变化,但却对外界做功W’—W。
这功显然是由低温热源放出的热量转化而来的。
因为根据热力学第一定律有W=和W’=Q1’—Q2’ 而Q1=Q1’,两式相减得W’—W= Q2—Q2’ 这样,两个热机的联合循环终了时,所产生的唯一变化就是从单一热源(低温热源)吸取热量Q2—Q2’而将之完全变成了有用的功。
这与热力学第二定律的开氏表述相违背,因此不能有ηa<ηb而必须有ηa≥ηb。
证毕。
从卡诺定理可得:所有工作于两个一定温度之间的可逆热机,其效率相等。
热了力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变数学表达式UA—UB=W+Q意义:系统在终态B和初态A的内能之差UA—UB等于在过程中外界对系统所作的功与系统从外界吸收的热量之和。
热力学统计物理复习总结首先,我们来回顾一下热力学的基本概念。
热力学是研究能量转化和宏观物质性质的学科,通过引入一些基本宏观物理量,如温度、压强、体积等,建立了一套描述系统性质的定律。
其中,最重要的是热力学第一定律和第二定律。
热力学第一定律表达了能量守恒的原理,即能量既不能被创造也不能被破坏,只能从一个物体传递到另一个物体或在物体内部转化。
热力学第二定律则规定了自然界的一些不可逆过程不能自发地逆转,即熵的增加原理。
熵是描述系统的无序程度的物理量,它的增加是热力学过程不可逆的本质原因。
接下来,我们来看一下统计物理的基本概念。
统计物理是研究微观粒子的统计规律和宏观物质性质的学科。
它基于统计学的方法,通过对大量微观粒子的集体行为进行平均和统计,推导出一些宏观物理量的统计规律。
统计物理中最重要的概念是微观状态、宏观状态和分布函数。
微观状态是指系统中每个粒子的具体状态,包括位置、动量等信息;宏观状态则是指宏观物理量的取值,如温度、压强等;分布函数则是描述系统微观状态的概率分布函数,可以通过对分布函数的积分平均得到宏观物理量。
在统计物理中,最基本的理论是正则系综理论。
正则系综理论通过引入系统的配分函数和Boltzmann分布来描述系统的统计行为。
配分函数是描述系统所有可能微观状态的重要物理量,它的对数称为Helmholtz自由能,与热力学中的自由能概念相对应。
Boltzmann分布则给出了系统处于一些微观状态的概率与该状态的能量有关。
通过对配分函数和Boltzmann分布的计算和分析,我们可以得到系统的各种宏观物理量的表达式,如平均能量、熵、温度等。
除了正则系综理论,还有其他一些重要的统计物理理论,如巨正则系综理论和配分函数的统计定义。
巨正则系综理论是用来描述开放系统的统计行为的理论,其中引入了化学势和粒子数的概念。
配分函数的统计定义是一种基于信息论的方法,通过量子力学的观点重新定义了配分函数和微观状态的概念,对于处理量子系统和非平衡态问题非常有用。