平行四边形的存在性问题微课件
- 格式:ppt
- 大小:339.00 KB
- 文档页数:18
专题课平行四边形的存在性问题
在运动变化过程中,四点构成平行四边形求点的坐标或者求运动的时间是平行四边形存在性问题的主要类型。
数形结合
例1 如图,直线y=x+2分别与x轴交于点A(-2,0),C(4,0),B(0,5),点P是直线y=x+2上的一个动点.
(1). 在平面内存在一点D,使得以A,B,C,D为顶点的平行四边形,求出此时点D的坐标;
(2). 点P是直线y=x+2上一个动点,在x轴上是否存在点E,使得
B,C,P,E为顶点的四边形是平行四边形,若存在求出点E的坐标,若不存在,说明理由.
【解析】:(1)属于“三定一动”的问题,对于这种类型的题目则需分类讨论,分别以AB,AC,AD为对角线,画出符合题意的示意图.
【解析】:(2)属于“两定两动”的问题,对于这种类型的题目则需分类讨论,①以AB为边,②以AB为对角线。
定点所连线段为分类标准。
例2 如图,在平面直角坐标系内,A(0,4),B(3,0).
(1). 点Q在平面直角坐标系内,则在x轴上是否存在点P,使得A,B,P,Q为顶点的四边形是菱形,若存在求出点P的坐标,若不存在,说明理由.
【解析】:题目属于“两定两动”的菱形的存在性问题,对于这种类型的题目(四点构成菱形)则需分类讨论,①以AB为边,②以AB为对角线。
定点所连线段为分类标准。
例3 如图,▱ABCD中,AD=20cm,点F在AD上,且AF=8cm,点E是BC的中点.若点P以1cm/s的速度由点A向点F运动,点Q以2cm/s 的速度由点C向点B运动,点P运动到点F时停止运动,点Q也停止运动.点P,Q分别从点A,C同时出发,当P运动到多少秒时,以点P,Q,E,F为顶点的四边形是平行四边形.。
平行四边形存在性问题【知识概括】确定平行四边形:对于A 、B 、C 三点固定,若存在点D 使得四边形ABCD 是平行四边形,则点D 只有一种情况,如图①;若存在点D 使得以A 、B 、C 、D 为顶点的四边形是平行四边形,则点D 有三种情况,如图②。
图 ① 图 ②【方法思路分析】一、必须明确以下情况:①、四边形ABCD 是平行四边形,AC 、BD 一定是对角线,即明确字母顺序,那么对角线就确定了;②、以A 、B 、C 、D 四个点为顶点的四边形是平行四边形,对角线不确定,则需要分类讨论。
二、有关解析法的知识:①两点之间的距离公式:若A ) ,(11y x ,B ) ,(22y x ,则|AB|=特别地,若AB ∥x 轴,则||AB = ,若AB ∥y 轴,则||AB = ②中点坐标公式:若A ) ,(11y x ,B ) ,(22y x ,则A 、B 的中点M 为 ③①ABCD①,设四个顶点坐标分别是) (A A y x A ,,) (B B y x B ,,) (C C y x C ,,) (D D y x D ,,则满足:【方法运用】一、三定一动,探究平行四边形存在性1、已知)3 ,1(A ,)4 ,6(B ,)6 ,4(C ,在坐标系内确定点D 使得以A 、B 、C 、D 四个点为顶点的四边形是平行四边形。
二、两定两动,探究平行四边形存在性2、已知)1 ,1(A 、)2 ,3(B ,点C 在x 轴上,点D 在y 轴上,且以A 、B 、C 、D 四个点为顶点的四边形是平行四边形,求D C 、的坐标。
【解题步骤要点总结】先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标). 再画出以三点为顶点的平行四边形,根据性质写出第四个顶点的坐标.最后根据题目的要求(动点在什么曲线上),判断平行四边形的存在性.三、拓展延伸已知A 为(0,3),B 为(4,2),点C 在x 轴上,D 是平面直角坐标系内一点,(1)若以A 、B 、C 、D 四点为顶点的四边形是矩形,求点D 的坐标。