2020届高考物理二轮复习 专题四 电路与电磁感应 提升训练15 电磁感应的综合问题
- 格式:doc
- 大小:984.37 KB
- 文档页数:12
专题四 电磁感应与电路一、考点回顾“电磁感应”是电磁学的核心内容之一,同时又是与电学、力学知识紧密联系的知识点,是高考试题考查综合运用知识能力的很好落脚点,所以它向来高考关注的一个重点和热点,本专题涉及三个方面的知识:一、电磁感应,电磁感应研究是其它形式有能量转化为电能的特点和规律,其核心内容是法拉第电磁感应定律和楞次定律;二、与电路知识的综合,主要讨论电能在电路中传输、分配,并通过用电器转化为其它形式的能量的特点及规律;三、与力学知识的综合,主要讨论产生电磁感应的导体受力、运动特点规律以及电磁感应过程中的能量关系。
由于本专题所涉及的知识较为综合,能力要求较高,所以往往会在高考中现身。
从近三年的高考试题来看,无论哪一套试卷,都有这一部分内容的考题,题量稳定在1~2道,题型可能为选择、实验和计算题三种,并且以计算题形式出现的较多。
考查的知识:以本部分内容为主线与力和运动、动量、能量、电场、磁场、电路等知识的综合,感应电流(电动势)图象问题也经常出现。
二、典例题剖析根据本专题所涉及内容的特点及高考试题中出的特点,本专题的复习我们分这样几个小专题来进行:1.感应电流的产生及方向判断。
2.电磁感应与电路知识的综合。
3.电磁感应中的动力学问题。
4.电磁感应中动量定理、动能定理的应用。
5.电磁感应中的单金属棒的运动及能量分析。
6.电磁感应中的双金属棒运动及能量分析。
7.多种原因引起的电磁感应现象。
(一)感应电流的产生及方向判断1.(2007理综II 卷)如图所示,在PQ 、QR 区域是在在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面,bc 边与磁场的边界P 重合。
导线框与磁场区域的尺寸如图所示。
从t =0时刻开始线框匀速横穿两个磁场区域。
以a →b →c →d →e →f 为线框中有电动势的正方向。
以下四个ε-t 关系示意图中正确的是【 】解析:楞次定律或左手定则可判定线框刚开始进入磁场时,电流方向,即感应电动势的方向为顺时针方向,故D 选项错误;1-2s 内,磁通量不变化,感应电动势为0,A 选项错误;2-3s 内,产生感应电动势E =2Blv +Blv =3Blv ,感应电动势的方向为逆时针方向(正方向),故C 选项正确。
专题四电路与电磁感应专题综合训练(四)1.如图所示,开关S闭合,电流表、电压表均为理想电表,若电阻R1断路,则下列说法中正确的是()A.电流表示数变小B.电压表示数变小C.电源内电路消耗的功率变大D.R3消耗的功率变大2.如图所示为一种常见的身高体重测量仪。
测量仪顶部向下发射波速为v的超声波,超声波经反射后返回,被测量仪接收,测量仪记录发射和接收的时间间隔。
质量为M0的测重台置于压力传感器上,传感器输出电压与作用在其上的压力成正比。
当测重台没有站人时,测量仪记录的时间间隔为t0,输出电压为U0,某同学站上测重台,测量仪记录的时间间隔为t,输出电压为U。
该同学的身高和质量分别为()A.v(t0-t),UB.UC.v(t0-t),(U-U0)D.(U-U0)3.如图所示,平行板电容器充电后与电源断开,正极板接地,两极板间有一个带负电的试探电荷固定在P点。
静电计的金属球与电容器的负极板连接,外壳接地。
以E表示两板间的电场强度,φ表示P点的电势,E p表示该试探电荷在P点的电势能,θ表示静电计指针的偏角。
若保持负极板不动,将正极板缓慢向右平移一小段距离(静电计带电量可忽略不计),各物理量变化情况描述正确的是()A.E增大,φ降低,E p减小,θ增大B.E不变,φ降低,E p增大,θ减小C.E不变,φ升高,E p减小,θ减小D.E减小,φ升高,E p减小,θ减小4.如图所示,A为电解槽,M为电动机,N为电炉子,恒定电压U=12 V,电解槽内阻r A=2 Ω,当S1闭合,S2、S3断开时,电流表A示数为6 A;当S2闭合,S1、S3断开时,A示数为5 A,且电动机输出功率为35 W;当S3闭合,S1、S2断开时,A示数为4 A。
求:(1)电炉子的电阻及发热功率各多大?(2)电动机的内阻是多少?(3)在电解槽工作时,电能转化为化学能的功率为多少?5.汽车电动机启动时车灯会瞬时变暗,如图所示,在打开车灯的情况下,电动机未启动时电流表读数为10 A,电动机启动时电流表读数为58 A,若电源电动势为12.5 V,内阻为0.05 Ω。
第2讲电磁感应规律及综合应用网络构建备考策略1.看到“磁感应强度B随时间t均匀变化”,想到“错误!=k为定值”。
2.应用楞次定律时的“三看”和“三想”(1)看到“线圈(回路)中磁通量变化"时,想到“增反减同”。
(2)看到“导体与磁体间有相对运动”时,想到“来拒去留".(3)看到“回路面积可以变化”时,想到“增缩减扩”。
3。
抓住“两个定律"、运用“两种观点”、分析“一种电路”“两个定律”是指楞次定律和法拉第电磁感应定律;“两种观点"是指动力学观点和能量观点;“一种电路”是指电磁感应电路.楞次定律和法拉第电磁感应定律的应用楞次定律的应用【典例1】(2019·浙江绍兴选考模拟)大小不等的两导电圆环P、Q均固定于水平桌面,Q 环位于P环内。
在两环间的范围内存在方向竖直向下、大小随时间均匀增强的匀强磁场B,则()图1A。
Q环内有顺时针方向的感应电流B。
Q环内有逆时针方向的感应电流C。
P环内有顺时针方向的感应电流D.P环内有逆时针方向的感应电流解析由楞次定律可知P环内有逆时针方向的感应电流,Q环内没有感应电流产生,故A、B、C错误,D正确。
答案D【典例2】(2019·浙江海宁选考模拟)(多选)如图2所示,闭合导体环水平固定.条形磁铁S极向下以初速度v0沿过导体环圆心的竖直轴线下落,穿过导体环的过程中,关于导体环中的感应电流及条形磁铁的加速度,下列说法正确的是( )图2A.从上向下看,导体环中的感应电流的方向先顺时针后逆时针B.从上向下看,导体环中的感应电流的方向先逆时针后顺时针C.条形磁铁的加速度一直小于重力加速度D。
条形磁铁的加速度开始小于重力加速度,后大于重力加速度解析当条形磁铁的中心恰好位于导体环所在的水平面时,条形磁铁内部向上的磁感线都穿过了导体环,而条形磁铁外部向下穿过导体环的磁通量最少,所以此时刻穿过导体环的磁通量最大,因此全过程导体环中磁通量方向向上,先增大后减小,从上向下看,感应电流方向先顺时针后逆时针,A正确,B错误;导体环中的感应电流产生的磁场始终阻碍条形磁铁运动,所以条形磁铁的加速度一直小于重力加速度,C正确,D错误。
阶段训练(四)电路和电磁感应(时间:45分钟满分:100分)一、选择题(本题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,1~6题只有一个选项符合题目要求,7~10题有多个选项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分)1.如图所示,电路中的A、B是两个完全相同的灯泡,L是一个自感系数很大、电阻可忽略的自感线圈,C是电容很大的电容器。
在开关S闭合与断开时,A、B灯泡发光情况是()A.S刚闭合后,A灯亮一下又逐渐变暗,B灯逐渐变亮B.S刚闭合后,B灯亮一下又逐渐变暗,A灯逐渐变亮C.S闭合足够长时间后,A灯泡和B灯泡一样亮D.S闭合足够长时间后再断开,B灯立即熄灭,A灯逐渐熄灭答案:A解析:S刚闭合后,电流变化快,自感线圈的感抗大,电流通过A灯向电容器充电,随着电流趋于稳定,自感线圈相当于短路,电容器相当于断路,所以是A灯亮一下又逐渐变暗,B灯逐渐变亮,选项A正确,B错误;S闭合足够长时间后,A灯熄灭,B灯亮,S再断开,电容器C通过灯泡B放电,B灯逐渐熄灭,由于自感线圈产生自感电动势,与A灯构成闭合电路,A灯逐渐熄灭,选项C、D错误。
2.如图所示,电源电动势为E,内阻为r。
当滑动变阻器的滑片P从左端滑到右端时,理想电压表V1、V2示数变化的绝对值分别为ΔU1和ΔU2,干路电流为I,下列说法正确的是(灯泡电阻不变)()A.小灯泡L1、L3变暗,L2变亮B.ΔU1与ΔI的比值不变C.ΔU1<ΔU2D.ΔU1=ΔU2答案:B解析:滑动变阻器的滑片P从左端滑到右端,总电阻变大,总电流减小,路端电压增大,L2中电流减小,变暗,L3中电压增大,变亮,U1增大,选项A错误;U2减小,而路端电压U=U1+U2增大,所以U1的变化量大于U2的变化量,选项C、D错误;ΔU1与ΔI的比值不变,为电源内阻和L2电阻之和,选项B正确。
3.(2019·河南濮阳模拟)如图甲所示,光滑“∠”形金属支架ABC固定在水平面上,支架处在垂直于水平面向下的匀强磁场中,一金属导体棒EF放在支架上,用一轻杆将导体棒与墙固定连接,磁感应强度随时间变化的规律如图乙所示,取垂直于纸面向里为正方向,则下列说法正确的是()A.t1时刻轻杆对导体棒的作用力最大B.t2时刻轻杆对导体棒的作用力最大C.t2到t3时间内,轻杆对导体棒的作用力先增大后减小D.t2到t4时间内,轻杆对导体棒的作用力方向不变答案:C可知,t1时刻感应电动势为0,感应电流为0,安培力为0,轻杆对导体棒的作用力为0,解析:由E=nΔΦΔΦ选项A错误;t2时刻感应电动势最大,感应电流最大,但磁感应强度为0,安培力为0,轻杆对导体棒的作用力为0,选项B错误;t2到t3时间内,安培力先增大后减小,所以轻杆对导体棒的作用力先增大后减小,选项C正确;t2到t4时间内,感应电流方向改变,安培力方向改变,则轻杆对导体棒的作用力方向改变,选项D错误。
高考物理二轮复习专题:专题四电路电磁感应规律及其应用一、单项选择题1.(2018江苏南京、盐城一模)下列图中,A图是真空冶炼炉,可以冶炼高质量的合金;B图是充电器,工作时绕制线圈的铁芯中会发热;C图是安检门,可以探测人身是否携带金属物品;D图是工人穿上金属丝织成的衣服,可以高压带电作业。
不属于涡流现象的是( )答案 D 线圈接有交变电流,在线圈中会产生变化的磁场,变化的磁场在冶炼炉中产生电场,使自由电荷在电场力的作用下定向移动形成涡流,故A中属于涡流现象;充电器工作时有交变电流通过,交变电流产生的交变磁场穿过铁芯,在铁芯中产生电场,使自由电荷在电场力的作用下定向移动形成涡流,故B中属于涡流现象;线圈中的交变电流产生交变的磁场,会在金属物品中产生交变的感应电流,而金属物品中感应电流产生的交变磁场会在线圈中产生感应电流(涡流),引起线圈中交变电流发生变化,从而被探测到,故C中属于涡流现象;工作服用包含金属丝的织物制成,形成一个导体壳,壳外有电场,壳内场强保持为零,高压外电场不会对内部产生影响,故D中属于静电屏蔽。
2.(2019江苏宿迁月考)驱动中国2018年6月19日消息,京东的智慧物流有20余台配送机器人上阵,开启了全球首次全场景常态化配送运营。
该配送机器人能够识别红绿灯信号、规避道路障碍和来往车辆、主动礼让行人。
机器人主动礼让行人,是利用了( )A.力传感器B.光传感器C.温度传感器D.声传感器答案 C 人体是有温度的,机器人主动礼让行人利用了温度传感器的工作原理,故C正确,A、B、D错误。
3.(2019江苏单科,3,3分)如图所示的电路中,电阻R=2 Ω。
断开S后,电压表的读数为3 V;闭合S后,电压表的读数为2 V,则电源的内阻r为( )A.1 ΩB.2 ΩC.3 ΩD.4 Ω答案 A 若断开S,则电压表的示数等于电源电动势E,则E=3 V。
若闭合S,据串联电路电压分配关系可得UU =UU+U,且U=2 V,R=2 Ω,得出r=1 Ω,故选项A正确。
范文2020届高考物理二轮专题训练试题:电磁感应练习1/ 950题电磁感应练习 50 题(含答案) 1、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为 L=0.2m,长为 2d,d=0.5m,上半段 d 导轨光滑,下半段 d 导轨的动摩擦因素为μ= ,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为 m=0.2kg 的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取 g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻 R 上的电量 q;(3)整个运动过程中,电阻 R 产生的焦耳热Q.答案分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Qf=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热 Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由 mgsin θ=μmgcos θ+BIL 得:I=0.5A 由 BLv=I(R+r)代入数据得:v=2m/s (2)进入粗糙导轨前,导体棒中的平均电动势为: = = 导体棒中的平均电流为: = =3/ 9所以,通过导体棒的电量为:q=△t= =0.125C (3)由能量守恒定律得:2mgdsin θ=Q 电+μmgdcos θ+mv2 得回路中产生的焦耳热为:Q 电 =0.35J 所以,电阻 R 上产生的焦耳热为:Q= Q 电 =0.2625J 答:(1)导体棒到达轨道底端时的速度大小是 2m/s;(2)导体棒进入粗糙轨道前,通过电阻 R 上的电量 q 是 0.35C;(3)整个运动过程中,电阻 R 产生的焦耳热 Q 是 0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的. 2、如图所示,两平行金属导轨间的距离L=0.40m,金属导轨所在的平面与水平面夹角θ=37?,在导轨所在平面内,分布着磁感应强度 B=0.50T、方向垂直于导轨所在平面的匀强磁场。
2020届高考物理题:电路与电磁感应、近代物理二轮练习附答案专题:电路与电磁感应、近代物理一、选择题1、(2020湖南省长沙模拟)如图所示,灯泡L1、L2原来都正常发光,由于故障两灯突然熄灭,(假设电路中仅有一处故障)下列说法正确的是()A.将多用表的电压挡并联在ac两端,示数0,说明ac间断路B.将多用表的电压挡并联在cd两端,有示数,说明cd间完好C.将多用表的电压挡并联在ad两端,有示数;并联在ac两端,示数0,说明cd间断路D.断开S,将L1拆下,使用多用电表欧姆挡,调零后将红黑表笔连接在L1两端,如果指针不偏转,说明L1完好2、教学用发电机能够产生正弦式交变电流.利用该发电机(内阻可忽略)通过理想变压器向定值电阻R供电,电路如图所示,理想交流电流表A、理想交流电压表V的读数分别为I、U,R消耗的功率为P.若发电机线圈的转速变为原来的12,则()A.R消耗的功率变为1 2PB.电压表V的读数变为1 2UC.电流表A的读数变为2ID.通过R的交变电流频率不变3、(2019·云南模拟)如图所示,两光滑水平放置的平行金属导轨间距为L,直导线MN垂直跨在导轨上,且与导轨接触良好,整个装置处于垂直于纸面向里的匀强磁场中,磁感应强度为B。
电容器的电容为C,除电阻R外,导轨和导线的电阻均不计。
现给导线MN一初速度,使导线MN向右运动,当电路稳定后,MN以速度v向右匀速运动时()A.电容器两端的电压为零B.通过电阻R的电流为BL v RC.电容器所带电荷量为CBL vD.为保持MN匀速运动,需对其施加的拉力大小为B2L2v R4、如图所示,间距为L的光滑平行金属导轨变成“∠”形,底部导轨面水平,倾斜部分与水平面成θ角,导轨与固定电阻相连,整个装置处于竖直向上的磁感应强度为B的匀强磁场中.导体棒ab与cd均垂直于导轨放置,且与导轨间接触良好,两导体棒的电阻均与阻值为R的固定电阻相等,其余部分电阻不计,当导体棒cd沿导轨向右以速度v匀速滑动时,导体棒ab恰好在倾斜导轨上处于静止状态,导体棒ab的重力为mg,则()A.导体棒cd两端的电压为BL vB.t时间内通过导体棒cd横截面的电荷量为2BL v t 3RC.cd棒克服安培力做功的功率为B2L2v2RD.导体棒ab所受安培力为mgsinθ5、用波长为300 nm的光照射锌板,电子逸出锌板表面的最大初动能为1.28×10-19 J.已知普朗克常量为6.63×10-34 J·s,真空中的光速为3.00×108 m·s-1.能使锌产生光电效应的单色光的最低频率约为()A.1×1014 Hz B.8×1014 HzC.2×1015 Hz D.8×1015 Hz6、(双选)如图所示,一矩形线圈置于有理想左边界(图中虚线MN)的匀强磁场中,开始时,线圈平面与磁场垂直。
第二讲电磁感应及综合应用[知识建构][高考调研]1.考查方向:①结合闭合电路的欧姆定律,利用楞次定律或右手定则判断感应电流的方向以及大小计算.②结合牛顿第二定律,对导体棒切割磁感线的运动进行受力分析和运动分析.③结合图象,应用法拉第电磁感应定律、闭合电路的欧姆定律、电功率、功能关系等规律,解决电磁感应的综合问题.2.常用的思想方法:①图象法.②微元法.③排除法.④等效法.楞次定律 右手定则 研究对象 整个闭合导体回路闭合导体回路的一部分适用范围 磁通量变化产生感应电流的各种情况 一段导体在磁场中做切割磁感线运动关系右手定则是楞次定律的特殊情况(2)公式:E =nΔΦΔtn :线圈的匝数,ΔΦ:磁通量的变化量,Δt :对应于ΔΦ所用的时间,ΔΦΔt:磁通量的变化率.(3)解决电路问题的基本思路①找电源:哪部分电路产生了电磁感应现象,则这部分电路就是电源.②由法拉第电磁感应定律求出感应电动势的大小,根据楞次定律或右手定则确定出电源的正负极. a .在外电路,电流从正极流向负极;在内电路,电流从负极流向正极. b .存在双感应电动势的问题中,要求出总的电动势. ③正确分析电路的结构,画出等效电路图.a .内电路:“切割”磁感线的导体和磁通量发生变化的线圈都相当于“电源”,该部分导体的电阻相当于内电阻.b .外电路:除“电源”以外的电路即外电路.④运用闭合电路欧姆定律、串并联电路特点、电功率等列方程求解. (4)动力学问题基本思路:导体受外力运动――→E =Blv感应电动势错误!感应电流错误!导体受安培力―→合外力变化错误!加速度变化―→速度变化.考向一 楞次定律和法拉第电磁感应定律的应用[归纳提炼]1.感应电流方向的判断方法(1)右手定则,即根据导体在磁场中做切割磁感线运动的情况进行判断. (2)楞次定律,即根据穿过闭合回路的磁通量的变化情况进行判断. 2.楞次定律中“阻碍”的主要表现形式 (1)阻碍原磁通量的变化——“增反减同”. (2)阻碍相对运动——“来拒去留”.(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”. (4)阻碍原电流的变化(自感现象)——“增反减同”. 3.感应电动势大小的计算 (1)法拉第电磁感应定律:E =nΔΦΔt,适用于普遍情况. (2)E =Blv ,适用于导体棒切割磁感线的情况. (3)E =12Bl 2ω,适用于导体棒旋转切割磁感线的情况.(多选)(2017·全国卷Ⅱ)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m 、总电阻为0.005 Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd 边于t =0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( )A .磁感应强度的大小为0.5 TB .导线框运动速度的大小为0.5 m/sC .磁感应强度的方向垂直于纸面向外D .在t =0.4 s 至t =0.6 s 这段时间内,导线框所受的安培力大小为0.1 N[思路点拨] 线框进入磁场,根据右手定则或楞次定律能判断出磁场方向,结合图象分析出线框运动的速度,从图象上感应电动势的大小能计算出磁感应强度与安培力.[解析] 由E -t 图象可知,线框经过0.2 s 全部进入磁场,则速度v =l t =0.10.2 m/s =0.5 m/s ,选项B 正确;E =0.01 V ,根据E =BLv 可知,B =0.2 T ,选项A 错误;根据楞次定律可知,磁感应强度的方向垂直于纸面向外,选项C 正确;在t =0.4 s 至t =0.4 s 这段时间内,导线框中的感应电流I =E R =0.010.005A =2 A ,所受的安培力大小F =BIL =0.04 N ,选项D 错误,故选BC.[答案] BC用法拉第电磁感应定律求解感应电动势常见情况与方法情景图研究对象回路(不一定闭合)一段直导线(或等效成直导线)绕一端转动的一段导体棒绕与B 垂直的轴转动的导线框表达式 E =n ΔΦΔtE =BLv sin θ E =12BL 2ωE =NBSωsin ωt1.(2017·全国卷Ⅲ)如图,在方向垂直于纸面向里的匀强磁场中有一U 形金属导轨,导轨平面与磁场垂直.金属杆PQ 置于导轨上并与导轨形成闭合回路PQRS ,一圆环形金属线框T 位于回路围成的区域内,线框与导轨共面.现让金属杆PQ 突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是( )A .PQRS 中沿顺时针方向,T 中沿逆时针方向B .PQRS 中沿顺时针方向,T 中沿顺时针方向C .PQRS 中沿逆时针方向,T 中沿逆时针方向D .PQRS 中沿逆时针方向,T 中沿顺时针方向[解析] 金属杆PQ 向右切割磁感线,根据右手定则可知PQRS 中感应电流沿逆时针方向;原来T 中的磁场方向垂直于纸面向里,金属杆PQ 中的感应电流产生的磁场方向垂直于纸面向外,使得穿过T 的磁通量减小,根据楞次定律可知T 中产生顺时针方向的感应电流,综上所述,可知A 、B 、C 项错误,D 项正确.[答案] D2.(2017·金丽衢十二校联考)如右图所示,用一条横截面积为S 的硬导线做成一个边长为L 的正方形,把正方形的一半固定在均匀增大的匀强磁场中,磁场方向垂直纸面向里,磁感应强度大小随时间的变化率ΔBΔt=k (k >0),虚线ab 与正方形的一条对角线重合,导线的电阻率为ρ.则下列说法正确的是( )A .线框中产生顺时针方向的感应电流B .线框具有扩张的趋势C .若某时刻的磁感应强度为B ,则线框受到的安培力为2kBL 2S8ρD .线框中ab 两点间的电势差大小为kL 22[解析] 根据楞次定律,线框中产生的感应电流方向沿逆时针方向,故A 错误;B 增大,穿过线框的磁通量增大,根据楞次定律,感应电流的磁场为了阻碍磁通量的增加,线框有收缩的趋势,故B 错误;由法拉第电磁感应定律得:E =ΔΦΔt =ΔB Δt S =ΔB Δt ·12L 2=12kL 2,因线框电阻R =ρ4LS, 那么感应电流大小为I =E R =kSL 8ρ,则线框受到的安培力为:F =BI ×2L =2kBL 2S8ρ,故C 正确;由上分析,可知,ab 两点间的电势差大小U =12E =14kL 2,故D 错误.[答案] C3.(多选)(2016·全国卷Ⅱ)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B 中.圆盘旋转时关于流过电阻R 的电流,下列说法正确的是( )A .若圆盘转动的角速度恒定,则电流大小恒定B .若从上向下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C .若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D .若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2倍[解析] 法拉第圆盘相当于无数根辐条做切割磁感线运动,若圆盘顺时针转动,根据右手定则可知电流在圆盘上流向圆心,在外电路由a 流向b ,B 正确.圆盘转动方向不变,电流方向也不会发生改变,C 错误.产生的感应电动势大小E =12Bl 2ω,可知若ω不变,则E 不变,A 正确.当ω变为原来的2倍时,E 、I 也会变为原来的2倍,根据P =I 2R ,可知热功率变为原来的4倍,D 错误.[答案] AB考向二 电磁感应中的图象问题[归纳提炼]电磁感应图象问题解题“5步曲”第1步:明确图象的种类.是B -t 图、I -t 图、v -t 图、F -t 图或是E -t 图等;第2步:分析电磁感应的具体过程.明确运动分成几个阶段(根据磁通量的变化特征或切割特点分析);第3步:写出函数方程.结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等写出函数方程; 第4步:进行数学分析.根据函数方程进行数学分析,例如分析斜率的变化、截距等; 第5步:得结果.画图象或判断图象.(2017·河北唐山一模)如图所示,在水平光滑的平行金属导轨左端接一定值电阻R ,导体棒ab 垂直导轨放置,整个装置处于竖直向下的匀强磁场中.现给导体棒一向右的初速度,不考虑导体棒和导轨电阻,下列图线中,导体棒速度随时间的变化和通过电阻R 的电荷量q 随导体棒位移的变化描述正确的是( )[解析] 导体棒运动过程中受向左的安培力F =B 2L 2vR ,安培力阻碍棒的运动,速度减小,由牛顿第二定律得棒的加速度大小a =F m =B 2L 2vRm,则a 减小,v -t 图线斜率的绝对值减小,故B 项正确,A 项错误.通过R 的电荷量q =ΔΦR =BLRx ,可知C 、D 项错误. [答案] B图象问题的思路与方法(1)图象选择问题:求解物理图象的选择题可用“排除法”,即排除与题目要求相违背的图象,留下正确图象.也可用“对照法”,即按照要求画出正确的草图,再与选择对照.解决此类问题关键是把握图象特点、分析相关物理量的函数关系、分析物理过程的变化或物理状态的变化.(2)图象分析问题:定性分析物理图象,要明确图象中的横轴与纵轴所代表的物理量,弄清图象的物理意义,借助有关的物理概念、公式、不变量和定律作出相应判断.在有关物理图象的定量计算时,要弄清图象所揭示的物理规律及物理量间的函数关系,善于挖掘图象中的隐含条件,明确有关图象所包围的面积、斜率,以及图象的横轴、纵轴的截距所表示的物理意义.[熟练强化]1.(多选)如图甲所示,光滑平行金属导轨MN 、PQ 所在平面与水平面成θ角,M 、P 之间接一阻值为R 的定值电阻,阻值为r 的金属棒bc 垂直导轨放置,其他电阻不计.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向上.t =0时对棒施加一平行于导轨向上的外力F ,棒由静止开始沿导轨向上运动,通过R 的感应电荷量q 随t 2的变化关系如图乙所示.下列关于金属棒bc 的加速度a 、通过棒的电流I 、金属棒受到的外力F 、穿过回路cbPM 的磁通量Φ随时间t 变化的图象中正确的是( )[解析] 由题意可得q =It =Blv R +r t =Bla R +rt 2,结合图乙可知金属棒的加速度a 恒定,选项A 错误,B 正确;由牛顿第二定律可得F -mg sin θ-BIl =ma ,故有F =B 2l 2R +r at +m (g sin θ+a ),选项C 正确;由Φ=Bl ⎝ ⎛⎭⎪⎫x 0+12at 2可知选项D 错误.[答案] BC2.(2017·江西南昌三校四联)如图所示,有一个矩形边界的匀强磁场区域,磁场方向垂直纸面向里.一个三角形闭合导线框,由位置1(左)沿纸面匀速运动到位置2(右).取线框刚到达磁场边界的时刻为计时起点(t =0),规定逆时针方向为电流的正方向,则图中能正确反映线框中电流与时间关系的是( )[解析] 线框进入磁场的过程,磁通量向里增加,根据楞次定律得知感应电流的磁场向外,由安培定则可知感应电流方向为逆时针,电流方向应为正方向,故B 、C 错误;线框进入磁场的过程,线框有效的切割长度先均匀增大后均匀减小,由E =BLv ,可知感应电动势先均匀增大后均匀减小;线框完全进入磁场后,磁通量不变,没有感应电流产生;线框穿出磁场的过程,磁通量向里减小,根据楞次定律得知感应电流的磁场向里,由安培定则可知感应电流方向为顺时针,电流方向应为负方向,线框有效的切割长度先均匀增大后均匀减小,由E =BLv ,可知感应电动势先均匀增大后均匀减小;故A 正确,D 错误.[答案] A3.(2017·江淮十校三模)宽为L 的两光滑竖直裸导轨间接有固定电阻R ,导轨(电阻忽略不计)间Ⅰ、Ⅱ区域中有垂直纸面向里宽为d 、磁感应强度为B 的匀强磁场,Ⅰ、Ⅱ区域间距为h ,如图,有一质量为m 、长为L 电阻不计的金属杆与竖直导轨紧密接触,从距区域Ⅰ上端H 处杆由静止释放.若杆在Ⅰ、Ⅱ区域中运动情况完全相同,现以杆由静止释放为计时起点,则杆中电流随时间t 变化的图象可能正确的是( )[解析] 杆在Ⅰ、Ⅱ区域中运动情况完全相同,说明产生的感应电流也应完全相同,排除A 和C 选项.因杆在无磁场区域中做a =g 的匀加速运动,又杆在Ⅰ、Ⅱ区域中运动情况完全相同,则杆在Ⅰ、Ⅱ区域应做减速运动,在区域Ⅰ中对杆受力分析知其受竖直向下的重力和竖直向上的安培力,由牛顿第二定律得加速度a =mg -B 2L 2v R m ,方向竖直向上,则知杆做加速度逐渐增大的减速运动,又I =BLvR,由I -t 图线斜率变化情况可知选项B 正确,选项D 错误.[答案] B考向三 电磁感应中的能量转化问题[归纳提炼]能量转化及焦耳热的求法 1.能量转化 其他形式的能量――→克服安培力做功电能――→电流做功焦耳热或其他形式的能量2.求解焦耳热Q 的三种方法 (1)焦耳定律:Q =I 2Rt . (2)功能关系:Q =W 克服安培力. (3)能量转化:Q =ΔE 其他能的减少量.将一斜面固定在水平面上,斜面的倾角为θ=30°,其上表面绝缘且斜面的顶端固定一挡板,在斜面上加一垂直斜面向上的匀强磁场,磁场区域的宽度为H =0.4 m ,如图甲所示,磁场边界与挡板平行,且上边界到斜面顶端的距离为x =0.55 m .将一通电导线围成的矩形导线框abcd 置于斜面的底端,已知导线框的质量为m =0.1 kg 、导线框的电阻为R =0.25 Ω、ab 的长度为L =0.5 m .从t =0时刻开始在导线框上加一恒定的拉力F ,拉力的方向平行于斜面向上,使导线框由静止开始运动,当导线框的下边与磁场的上边界重合时,将恒力F 撤走,最终导线框与斜面顶端的挡板发生碰撞,碰后导线框以等大的速度反弹,导线框沿斜面向下运动.已知导线框向上运动的v -t 图象如图乙所示,导线框与斜面间的动摩擦因数为μ=33,整个运动过程中导线框没有发生转动,且始终没有离开斜面,g =10 m/s 2.(1)求在导线框上施加的恒力F 以及磁感应强度的大小;(2)若导线框沿斜面向下运动通过磁场时,其速度v 与位移s 的关系为v =v 0-B 2L 2mRs ,其中v 0是导线框ab 边刚进入磁场时的速度大小,s 为导线框ab 边进入磁场区域后对磁场上边界的位移大小,求整个过程中导线框中产生的热量Q .[思路路线] (1)(2)[解析] (1)由v -t 图象可知,在0~0.4 s 时间内导线框做匀加速直线运动,进入磁场时的速度为v 1=2.0 m/s ,所以在此过程中的加速度a =Δv Δt=5.0 m/s 2由牛顿第二定律有F -mg sin θ-μmg cos θ=ma 解得F =1.5 N由v -t 图象可知,导线框进入磁场区域后以速度v 1做匀速直线运动 通过导线框的电流I =E R =BLv 1R导线框所受安培力F 安=BIL对于导线框匀速运动的过程,由力的平衡条件有F =mg sin θ+μmg cos θ+B 2L 2v 1R解得B =0.50 T.(2)导线框进入磁场区域后做匀速直线运动,并以速度v 1匀速穿出磁场,说明导线框的宽度等于磁场的宽度H导线框ab 边离开磁场后做匀减速直线运动,到达挡板时的位移为x 0=x -H =0.15 m设导线框与挡板碰撞前的速度为v 2,由动能定理,有-mg (x -H )sin θ-μmg (x -H )cos θ=12mv 22-12mv 21解得v 2=v 21-2g x -Hsin θ+μcos θ=1.0 m/s导线框碰挡板后速度大小仍为v 2,导线框下滑过程中,由于重力沿斜面方向的分力与滑动摩擦力大小相等,即mg sin θ=μmg cos θ=0.50 N ,因此导线框与挡板碰撞后向下做匀速运动,ab 边刚进入磁场时的速度为v 2=1.0 m/s ;进入磁场后因为又受到安培力作用而减速,做加速度逐渐变小的减速运动,设导线框全部离开磁场区域时的速度为v 3由v =v 0-B 2L 2mR s 得v 3=v 2-2B 2L 2HmR=-1.0 m/s因v 3<0,说明导线框在离开磁场前速度已经减为零,这时安培力消失,导线框受力平衡,所以导线框将静止在磁场中某位置导线框向上运动通过磁场区域的过程中产生的焦耳热 Q 1=I 2Rt =2B 2L 2Hv 1R=0.40 J导线框向下运动进入磁场的过程中产生的焦耳热Q 2=12mv 22=0.05 J所以Q =Q 1+Q 2=0.45 J.[答案] (1)1.5 N 0.50 T (2)0.45 J用动力学观点、能量观点解答电磁感应问题的一般步骤[熟练强化]迁移一 单杆模型中的能量问题1.(2017·河北名校联盟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻.整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下.将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度.重力加速度为g ,导轨电阻不计,杆与导轨接触良好.求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量.[解析] (1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv ,回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L2,方向沿导轨平面向下. (2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12mv 2m又Q 杆=12Q 总所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4.[答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L2,方向沿导轨平面向下 (2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4 迁移二 双杆模型中的能量问题2.(多选)(2017·浙江五校联考)如图所示,足够长的光滑水平直导轨的间距为l ,电阻不计,垂直轨道平面有磁感应强度为B 的匀强磁场,导轨上相隔一定距离放置两根长度均为l 的金属棒,a 棒质量为m ,电阻为R ,b 棒质量为2m ,电阻为2R ,现给a 棒一个水平向右的初速度v 0,已知a 棒在以后的运动过程中没有与b 棒发生碰撞,当a 棒的速度减为v 02时,b 棒刚好碰到了障碍物立即停止运动,而a 棒仍继续运动,则下列说法正确的是( )A .b 棒碰到障碍物前瞬间的速度为v 02B .在b 棒停止运动前b 棒产生的焦耳热为Q b =524mv 2C .b 棒停止运动后,a 棒继续滑行的距离为3mv 0R2B 2l 2D .b 棒停止运动后,a 棒继续滑行的距离为mv 0R2B 2l2[解析] 设b 棒碰到障碍物前瞬间的速度为v 2,之前两棒组成的系统动量守恒,则mv 0=m v 02+2mv 2,解得v 2=v 04,所以选项A 错误;在b 棒停止运动前,根据能量守恒定律可得a 棒和b 棒产生的总焦耳热Q =Q a +Q b =12mv 20-12m ⎝ ⎛⎭⎪⎫v 022-12×2mv 22=516mv 20,Q b =2Q a ,解得Q b =524mv 20,所以选项B 正确;a 棒单独向右滑行的过程中,当其速度为v 时,所受的安培力大小为F 安=BIl =B 2l 23Rv ,根据动量定理有-F安Δt =mΔv ,所以有∑⎝ ⎛⎭⎪⎫-B 2l 23R v ·Δt =∑(m ·Δv ),可得B 2l 23R x =m v 02,b 棒停止运动后a 棒继续前进的距离x =3mv 0R2B 2l2,所以选项C 正确,选项D 错误.[答案] BC迁移三 线框模型中的能量问题3.(2017·苏州模拟)如图所示,竖直面内的正方形导线框ABCD 和abcd 的边长均为l 、电阻均为R ,质量分别为2m 和m ,它们分别系在一跨过两个定滑轮的绝缘轻绳两端,在两导线框之间有一宽度为2l 、磁感应强度为B 、方向垂直纸面向里的匀强磁场.开始时ABCD 的下边界与匀强磁场的上边界重合,abcd 的上边界到匀强磁场的下边界的距离为l .现将两导线框由静止释放,当ABCD 全部进入磁场时,两导线框开始做匀速运动.不计摩擦和空气阻力,重力加速度为g ,求:(1)两导线框匀速运动的速度大小;(2)两导线框在从开始运动至等高的过程中所产生的总焦耳热; (3)导线框abcd 通过磁场的时间.[解析] (1)如图所示,设两导线框刚匀速运动的速度大小为v 、此时轻绳上的张力为T ,则对ABCD 有T =2mg ①对abcd 有T =mg +BIl ②I =E R ③ E =Blv ④则v =mgR B 2l 2.⑤(2)设两导线框在从开始运动至等高的过程中所产生的总焦耳热为Q ,当左、右两导线框分别向上、向下运动2l 的距离时,两导线框等高,对这一过程,由能量守恒定律有4mgl =2mgl +12×3mv 2+Q ⑥联立⑤⑥解得Q =2mgl -3m 3g 2R22B 4l4.(3)导线框abcd 通过磁场的过程中以速度v 匀速运动,设导线框abcd 通过磁场的时间为t ,则t =3lv⑦联立⑤⑦解得t=3B2l3mgR.[答案] (1)mgRB2l2(2)2mgl-3m3g2R22B4l4(3)3B2l3mgR高考题型预测——杆+导轨模型[考点归纳]1.单杆模型的常见情况2.双杆在导轨上滑动(1)初速度不为零,不受其他水平外力的作用光滑的平行导轨光滑不等距导轨示意图质量m1=m2电阻r1=r2长度L1=L2质量m1=m2电阻r1=r2长度L1=2L2分析杆MN做变减速运动,杆PQ做变加速杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动运动,稳定时,两杆的加速度均为零,两杆的速度之比为1∶2(2)初速度为零,一杆受到恒定水平外力的作用光滑的平行导轨不光滑平行导轨示意图质量m1=m2电阻r1=r2长度L1=L2摩擦力F f1=F f2质量m1=m2电阻r1=r2长度L1=L2分析开始时,两杆做变加速运动;稳定时,两杆以相同的加速度做匀加速运动开始时,若F f<F≤2F f,则PQ杆先变加速后匀加速运动;MN杆静止.若F>2F f,PQ杆先变加速后匀加速运动,MN杆先静止后变加速最后和PQ杆同时做匀加速运动,且加速度相同如图1所示,在竖直向下的磁感应强度为B的匀强磁场中,两根足够长的平行光滑金属轨道MN、PQ固定在水平面内,相距为L.一质量为m的导体棒ab垂直于MN、PQ放在轨道上,与轨道接触良好.轨道和导体棒的电阻均不计.(1)如图2所示,若轨道左端M、P间接一电动势为E、内阻为r的电源和一阻值为R的电阻.闭合开关S,导体棒从静止开始运动.求经过一段时间后,导体棒所能达到的最大速度的大小.(2)如图3所示,若轨道左端M、P间接一电容器,电容器的电容为C,导体棒在水平向右的恒力F的作用下从静止开始运动.求导体棒运动过程中的加速度的大小.[审题指导]第一步读题干—提信息题干信息1)光滑金属轨道滑动中不受摩擦力2)轨道和导体棒的电阻均不计 求电流I 时,图3不能用I =E R 总,应选I =Δq Δt3)求导体棒运动过程中的加速度的大小 猜想棒可能匀加速运动第二步 审程序—顺思路[解析] (1)闭合开关后,导体棒ab 产生的电动势与电阻R 两端的电压相等时,导体棒ab 达到最大速度v 2,I =ER +r,U =IR ,U =BLv 2 解得v 2=ERBL R +r.(2)导体棒ab 向右加速运动,在极短时间Δt 内,导体棒的速度变化Δv ,根据加速度的定义a =ΔvΔt,导体棒产生的电动势变化ΔE =BLΔv ,电容器增加的电荷量Δq =CΔE =CBLΔv根据电流的定义I =ΔqΔt,解得I =CBLa 导体棒ab 受到的安培力F 安=BIL =B 2L 2Ca 根据牛顿第二定律得F -F 安=ma 解得a =Fm +CB 2L 2.[答案] (1)ER BL R +r (2)Fm +CB 2L 2杆模型分析思路[预测题组]1.(多选)(2017·苏州模拟)如图所示,在磁感应强度大小为B 、方向竖直向上的匀强磁场中,有一水平绝缘桌面,桌面上放置了间距为L 的足够长的两平行光滑导轨,导轨左侧连一阻值为R 的电阻,轨道电阻不计.与两轨道垂直的质量为M 、电阻为r 的导体杆开始静止放在轨道上,现通过与轨道平行的轻绳经过一光滑的定滑轮与一质量为m 的物块相连,导体杆在重力作用下开始运动,导体杆的速度达到最大时为v m .运动中杆始终垂直轨道,则下列说法正确的是( )A .导体杆做的是匀变速直线运动,运动过程中流过电阻R 的电流方向是a →bB .导体杆获得的最大速度为v m =mg R +rB 2L 2C .当物块的速度为v =v m2时,导体杆的加速度为mg2MD .导体杆开始运动时加速度最大,且为mgM +m[解析] 导体杆先做变速直线运动,后做匀速运动,运动过程中流过电阻R 的电流方向是b →a ,A 错误;杆产生的感应电动势为E =BLv ,因v 变大,故E 变大,电路中电流I =E R,电流变大,杆受的安培力F 安=BIL ,因I 变大,故F 安变大,选杆和物块整体为研究对象,根据牛顿第二定律,mg -B 2L 2vR +r=(M +m )a ,当a =0时,杆达到最大速度v m =mg R +r B 2L 2,B 正确;当物块的速度为v =v m 2时,导体杆的加速度为mg2M +m,C 错误;导体杆开始运动时加速度最大,为mg M +m,D 正确.[答案] BD2.(2017·江西六校联考)如图所示,ab 和cd 是两条竖直固定的光滑平行金属导轨,MN 和M ′N ′是用绝缘细线连接的两根金属杆,其质量分别为m 和2m ,用竖直向上、大小未知的外力F 作用在杆MN 中点,使两杆水平静止,并刚好与导轨接触.整个装置处在磁感应强度为B 、方向垂直导轨平面向里的匀强磁场中,导轨足够长,间距为L ,电阻可忽略,两杆总电阻为R ,与导轨始终接触良好,重力加速度为g .t =0时刻,将细线烧断,保持力F 不变.(1)细线烧断后任意时刻,求两杆运动的速度大小之比.(2)若杆MN 至速度最大时发生的位移为s ,该过程中通过金属杆横截面的电荷量Δq 和电路中产生的焦耳热Q 各为多少?[解析] (1)解法一:以两杆为研究对象,初始合外力为零,有F =3mg细线烧断后杆MN 向上运动,杆M ′N ′向下运动,任意时刻,两杆中感应电流等大反向,所受安培力等大反向,故系统合外力仍为零,动量守恒,有mv 1-2mv 2=0故两杆运动的速度大小之比为v 1∶v 2=2∶1 解法二:用隔离法,利用牛顿运动定律分析 设杆MN 和杆M ′N ′的加速度大小分别为a 1、a 2 对杆MN :F -mg -F 安1=ma 1 对杆M ′N ′:2mg -F 安2=2ma 2。
绝密★启用前2020年高考物理二轮复习对点集训-电磁感应实验1.图为“研究电磁感应现象”的实验装置.(1)将图中所缺的导线补接完整.(2)如果在闭合开关时发现灵敏电流计的指针向右偏了一下,那么合上开关后可能出现的情况有:①将小线圈迅速插入大线圈时,灵敏电流计指针将向________(填“左”或“右”)偏一下;②小线圈插入大线圈后,将滑动变阻器的阻值调大时,灵敏电流计指针将向________(填“左”或“右”)偏一下.【答案】(1)如图:(2)①右②左【解析】(1)将电源、开关、滑动变阻器、小螺线管串联成一个回路,再将电流计与大螺线管串联成另一个回路,电路图如图所示.(2)闭合开关,磁通量增加,指针向右偏转,将原线圈迅速插入副线圈,磁通量增加,则灵敏电流计的指针将右偏.原线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,电阻增大,则电流减小,穿过副线圈的磁通量减小,则灵敏电流计指针向左偏.2.在研究电磁感应现象的实验中所用的器材如图所示.它们是:①电流计②直流电源③带铁芯的线圈A④线圈B⑤电键⑥滑动变阻器(1)试按实验的要求在实物图上连线(图中已连好一根导线).(2)怎样才能使线圈B中有感应电流产生?试举出三种方法.①________________________________________________________________________;②________________________________________________________________________;③________________________________________________________________________.【答案】(1)如图所示(2)①闭合开关②断开开关③开关闭合时移动滑动变阻器滑片【解析】(1)使线圈A与电键、直流电源、滑动变阻器串联,线圈B与电流计连成闭合回路;(2)只要能使穿过线圈B的磁通量发生变化,就可以使线圈B中产生感应电流.3.如图为“研究电磁感应现象”的实验装置,部分导线已连接.(1)请用笔画线代替导线将图中未完成的电路连接好.(2)闭合开关时发现灵敏电流计的指针向左偏了一下.将原线圈A迅速拔出副线圈B,发现电流计的指针向________偏;原线圈插入副线圈不动,将滑动变阻器滑片迅速向右移动,发现电流计的指针向________偏.【答案】(1)连线如图:(2)右右【解析】(1)连线如图;(2)闭合开关时发现灵敏电流计的指针向左偏了一下.可知磁通量增加时指针左偏;将原线圈A迅速拔出副线圈B,则磁通量减小,故电流计的指针向右偏;原线圈插入副线圈不动,将滑动变阻器滑片迅速向右移动,则A线圈中电流减小,则磁通量减小,故电流计的指针向右偏.4.英国物理学家法拉第在1831年发现了“磁生电”现象.现在某一课外活动小组的同学想模仿一下法拉第实验,于是他们从实验室里找来了两个线圈A、B,两节干电池、电键、电流计、滑动变阻器等器材,如图所示.请同学们帮助该活动小组,用笔画线代替导线,将图中的器材连接成实验电路.【答案】【解析】线圈A与带电池的电路相连,线圈B与电流计相连,当滑动滑动变阻器时,线圈A 中的电流变化,从而引起B中产生感应电流,也可以保持滑动器划片不动,线圈A插入或者拔出时,都可以引起B中产生感应电流.5.下图为“研究电磁感应现象”实验中所用器材的示意图,试回答下列问题:(1)在该实验中电流计G的作用是__________________________________________________.(2)按实验要求,将下面的实物连成电路.(3)在产生感应电流的回路中,下图器材中哪个相当于电源(填字母代号)?【答案】(1)检测感应电流的大小与方向(2)实验电路如图所示:(3)螺线管B.【解析】(1)在该实验中电流计G的作用是检测感应电流的大小与方向.(2)探究电磁感应现象的实验电路如图所示:(3)在产生感应电流的回路中,螺线管B产生感应电动势,相当于电源.6.如图是做探究电磁感应的产生条件实验的器材.(1)在图中用实线代替导线把它们连成实验电路.(2)由哪些操作可以使灵敏电流计的指针发生偏转()A.闭合开关B.断开开关C.保持开关一直闭合D.将线圈A从B中拔出(3)假设在开关闭合的瞬间,灵敏电流计的指针向左偏转,则当螺线管A向上拔出的过程中,灵敏电流计的指针向______(填“左”或“右”)偏转.【答案】(1)见解析(2)ABD(3)右【解析】(1)将灵敏电流计与大线圈B组成闭合回路,电源、开关、小线圈A组成闭合回路,电路图如图所示.(2)将开关闭合或断开,导致穿过线圈的磁通量变化,产生感应电流,灵敏电流计指针偏转,故A、B正确;保持开关一直闭合,则穿过线圈B的磁通量不变,没有感应电流产生,灵敏电流计指针偏转,故C错误;将螺线管A插入(或拔出)螺线管B时穿过线圈B的磁通量发生变化,线圈B中产生感应电流,灵敏电流计指针偏转,故D正确.(3)在开关闭合的瞬间,穿过线圈B的磁通量增大,灵敏电流计的指针向左偏转,则当螺线管A向上拔出的过程中,穿过线圈B的磁通量减小,灵敏电流计的指针向右偏转.7.如图所示为“研究电磁感应现象”的实验装置.(1)将图中所缺的导线补接完整;(2)如果在闭合开关时发现灵敏电流计的指针向右偏了一下,那么合上开关后可能出现的情况有:(填“向左偏一下”、“向右偏一下”或“不动”)①将线圈A迅速插入线圈B时,灵敏电流计指针将________.②线圈A插入线圈B后,将滑动变阻器的滑片迅速向左拉时,灵敏电流计指针________.【答案】(1)电路连接如图(2)①向右偏转一下②向左偏转一下【解析】(1)电路连接如图(2)因在闭合开关时,电路中的电流变大,磁通量增大,此时发现灵敏电流计的指针向右偏了一下,则当将线圈A迅速插入线圈B时,磁通量也是增大的,则灵敏电流计指针将向右偏转一下;线圈A插入线圈B后,将滑动变阻器的滑片迅速向左拉时,电路中的电流减小,磁通量减小,则灵敏电流计指针向左偏转一下.8.如图所示为“研究电磁感应现象”的实验装置.(1)将图中所缺的导线补接完整;(2)如果在闭合电键时发现灵敏电流计的指针向右偏了一下,那么合上电键后可能出现的情况有:A.将原线圈迅速插入副线圈时,灵敏电流计指针将________.B.原线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,灵敏电流计指针________.【答案】(1)(2)向右偏转一下向左偏转一下【解析】(1)见下图(2)依照楞次定律及灵敏电流计的指针偏转方向与流过它的电流方向的关系来判定,则A.向右偏转一下;B.向左偏转一下.。
2020届高考物理通用二轮题:电路与电磁感应、近代物理练习及答案专题:电路与电磁感应、近代物理一、选择题1、(2019·山东省烟台市模拟)如图甲所示,一个简单的闭合电路由内、外两部分电路构成。
已知内电路的电源是一个化学电池,电池的正、负极附近分别存在着化学反应层,反应层中非静电力(化学作用)把正电荷从电势低处移到电势高处,在这两个地方,电势会沿电流方向“跃升”。
这样整个闭合电路的电势高低变化情况如图乙所示。
图乙中各点位置的高低表示电路中相应各点电势的高低,D点的高度略低于C点。
若减小外电路电阻R,则下列说法正确的是()A.C、D两点之间的高度差将变大B.A、D两点之间的高度差和C、B两点之间的高度差之和将变小C.A、B两点之间的高度差不变D.在电子从A点经DC移动至B点的过程中,非静电力做功将变大2、如图所示,10匝矩形金属线框在磁感应强度为0.4 T的匀强磁场中绕垂直磁场的轴OO′以角速度100 rad/s匀速转动,线框电阻不计,面积为0.5 m2,线框通过滑环与一理想变压器的原线圈相连,副线圈接有两只灯泡L1和L2,且开关S断开时灯泡L1正常发光,电流表示数为0.01 A,则()A.若从图示位置开始计时,线框中感应电动势的瞬时值表达式为e=200sin100t(V)B.灯泡L1的额定功率为2 WC.若开关S闭合,灯泡L1将更亮D.若开关S闭合,电流表示数将增大3、(2019·湖南模拟)图甲为兴趣小组制作的无线充电装置中受电线圈示意图,已知线圈匝数n=100匝、电阻r=1 Ω、横截面积S=1.5×10-3 m2,外接电阻R=7 Ω。
线圈处在平行于线圈轴线的磁场中,磁场的磁感应强度随时间变化如图乙所示,设磁场的正方向水平向左,则()A.在0.005 s时通过电阻R的电流大小为0B.在0.005 s时通过电阻R的电流方向由a流向bC.在0~0.01 s内通过电阻R的电荷量q=1.5×10-3CD.在0.02~0.03 s内电阻R产生的焦耳热为Q=1.8×10-3 J4、如图所示,质量为m=0.04 kg、边长l=0.4 m的正方形线框abcd放置在一光滑绝缘斜面上,线框用一平行斜面的细绳系于O点,斜面的倾角为θ=30°;线框的一半处于磁场中,磁场的磁感应强度随时间变化的关系为B=2+0.5t(T),方向垂直于斜面;已知线框电阻为R=0.5 Ω,重力加速度取g=10 m/s2.下列说法中正确的是()A .线框中的感应电流方向为abcdaB .t =0时,细线拉力大小为F =0.2 NC .线框中感应电流大小为I =80 mAD .经过一段时间t ,线框可能拉断细绳向下运动5、(多选)如图所示,用某单色光照射光电管的阴极K ,会发生光电效应.在阳极A 和阴极K 之间加上反向电压,通过调节滑动变阻器的滑片逐渐增大加在光电管上的电压,直至电流表中电流恰为零,此时电压表的电压值U 称为反向遏止电压,现分别用频率为ν1和ν2的单色光照射阴极,测得反向遏止电压分别为U 1和U 2.设电子的质量为m ,电荷量为e.下列说法正确的是( )A .用频率为ν1的光照射时,光电子的最大初速度为2eU 1m B .用频率为ν2的光照射时,光电子的最大初速度为eU 22mC .阴极K 金属的逸出功为W =e (U 1ν2-U 2ν1)ν1-ν2D .阴极K 金属的极限频率是ν0=U 1ν2-U 2ν1U 1-U 26、如图所示,E为电源,其内阻为r,L为小灯泡(其灯丝电阻可视为不变),R1、R2为定值电阻,R1>r,R3为光敏电阻,其阻值随光照强度的增加而减小,闭合开关S后,若照射R3的光照强度减弱,则()A.R1两端的电压变大B.通过R2的电流变大C.电源的输出功率变大D.小灯泡消耗的功率变大7、(2019·江苏模拟)发光二极管是目前电器指示灯广泛使用的电子元件,在电路中的符号是“”。
专题能力训练12 电磁感应及综合应用(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题8分,共64分。
在每小题给出的四个选项中,1~6题只有一个选项符合题目要求,7~8题有多个选项符合题目要求。
全部选对的得8分,选对但不全的得4分,有选错的得0分) 1.如图所示,边长为a的导线框abcd处于磁感应强度为B0的匀强磁场中,bc边与磁场右边界重合。
现发生以下两个过程:一是仅让线框以垂直于边界的速度v匀速向右运动;二是仅使磁感应强度随时间均匀变化。
若导线框在上述两个过程中产生的感应电流大小相等,则磁感应强度随时间的变化率为( )A. B. C. D.2.如图所示,在光滑水平面上,有一个粗细均匀的单匝正方形闭合线框abcd。
t=0时刻,线框在水平外力的作用下,从静止开始向右做匀加速直线运动,bc边刚进入磁场的时刻为t1,ad边刚进入磁场的时刻为t2,设线框中产生的感应电流的大小为I,ad边两端电压大小为U,水平拉力大小为F,则下列I、U、F随运动时间t变化关系图象正确的是( )3.(2020·湖南株洲期末)用导线绕一圆环,环内有一用同样导线折成的内接正方形线框,圆环与线框彼此绝缘,如图所示。
把它们放在磁感应强度为B的匀强磁场中,磁场方向垂直于圆环平面(纸面)向里。
当磁场均匀减小时( )A.圆环和线框中的电流方向都为顺时针B.圆环和线框中的电流方向都为逆时针C.圆环和线框中的电流大小之比为1∶2D.圆环和线框中的电流大小比为2∶14.小明有一个磁浮玩具,其原理是利用电磁铁产生磁性,让具有磁性的玩偶稳定地飘浮起来,其构造如图所示。
若图中电源的电压固定,可变电阻为一可以随意改变电阻大小的装置,则下列叙述正确的是( )A.电路中的电源必须是交流电源B.电路中的a端点须连接直流电源的负极C.若增加环绕软铁的线圈匝数,可增加玩偶飘浮的最大高度D.若将可变电阻的电阻值调大,可增加玩偶飘浮的最大高度5.如图甲所示,正三角形导线框abc固定在磁场中,磁场方向与线圈平面垂直,磁感应强度B随时间变化的关系如图乙所示。
2020届高考物理二轮专题提升训练四、电路与电磁感应牢记主干,考场不茫然 1.电流强度的定义式:I =qt 。
2.电流强度的决定式:I =UR 。
3.电阻的定义式:R =UI 。
4.导体的电阻:R =ρlS 。
5.闭合电路欧姆定律:I =ER +r。
6.电源的几个功率(1)电源的总功率:P 总=EI =I 2(R +r) (2)电源内部消耗的功率:P 内=I 2r (3)电源的输出功率:P 出=UI =P 总-P 内 7.电源的效率 η=P 出P 总×100%=U E ×100%=R R +r×100% 8.正弦交变电流瞬时值表达式:e =E m sin ωt 或e =E m cos ωt 9.正弦交变电流有效值和最大值的关系 E =E m 2 I =I m 2 U =U m210.理想变压器及其关系式(1)电压关系为U 1U 2=n 1n 2(多输出线圈时为U 1n 1=U 2n 2=U 3n 3…)。
(2)功率关系为P 出=P 入(多输出线圈时为P 入=P 出1+P 出2+…)。
(3)电流关系为I 1I 2=n 2n 1(多输出线圈时为n 1I 1=n 2I 2+n 3I 3+…)。
(4)频率关系为:f 出=f 入。
11.磁通量的计算:Φ=BS ⊥ 12.电动势大小的计算:E =nΔΦΔt或E =Blv(切割类) 13.高压远距离输电的分析方法及计算(1)在高压输电的具体计算时,为条理清楚,可参考如图2-9所示画出相应的题意简图。
图2-9(2)确定输电过程的电压关系、功率关系如下列表达式所示。
(3)在高压输电中,常用以下关系式: 输电电流I 2=P 2U 2=P 3U 3=U 2-U 3R 线输电导线损失的电功率 P 损=P 2-P 3=I 22R 线=(P 2U 2)2R 线输电导线损耗的电压U 损=U 2-U 3=I 2R 线=P 2U 2R 线。
14.应用楞次定律判断感应电流方向的方法(1)确定穿过回路的原磁场的方向;(2)确定原磁场的磁通量是“增加”、还是“减小”;(3)确定感应电流磁场的方向(与原磁场“增则反、减则同”);(4)根据感应电流的磁场方向,由安培定则判断感应电流的方向。
提升训练15 电磁感应的综合问题1.一实验小组想要探究电磁刹车的效果。
在遥控小车底面安装宽为L、长为2.5L的N匝矩形线框,线框电阻为R,面积可认为与小车底面相同,其平面与水平地面平行,小车总质量为m。
其俯视图如图所示,小车在磁场外行驶时的功率保持P不变,且在进入磁场前已达到最大速度,当车头刚要进入磁场时立即撤去牵引力,完全进入磁场时速度恰好为零。
已知有界磁场PQ和MN间的距离为2.5L,磁感应强度大小为B,方向竖直向上,在行驶过程中小车受到地面阻力恒为F f。
求:(1)小车车头刚进入磁场时,线框的感应电动势E;(2)电磁刹车过程中产生的焦耳热Q;(3)若只改变小车功率,使小车刚出磁场边界MN时的速度恰好为零,假设小车两次与磁场作用时间相同,求小车的功率P'。
2.(2017浙江义乌高三模拟)如图所示,固定在上、下两层水平面上的平行金属导轨MN、M'N'和OP、O'P'间距都是l,二者之间固定有两组竖直半圆形轨道PQM和P'Q'M',它们是用绝缘材料制成的,两轨道间距也均为l,且PQM和P'Q'M'的竖直高度均为4R,两组半圆形轨道的半径均为R。
轨道的QQ'端、MM'端的对接狭缝宽度可忽略不计,图中的虚线为绝缘材料制成的固定支架。
下层金属导轨接有电源,当将一金属杆沿垂直导轨方向搭接在两导轨上时,将有电流从电源正极流出,经过导轨和金属杆流回电源负极。
此时金属杆将受到导轨中电流所形成磁场的安培力作用而运动。
运动过程中金属杆始终与导轨垂直,且接触良好。
当金属杆由静止开始向右运动4R到达水平导轨末端PP'位置时其速度大小v P=4。
已知金属杆质量为m,两轨道间的磁场可视为匀强磁场,其磁感应强度与电流的关系为B=kI(k为已知常量),金属杆在下层导轨的运动可视为匀加速运动,运动中金属杆所受的摩擦阻力、金属杆和导轨的电阻均可忽略不计。
(1)求金属杆在下层导轨运动过程中通过它的电流大小。
(2)金属杆由PP'位置无碰撞地水平进入第一组半圆轨道PQ和P'Q',又在狭缝Q和Q'无碰撞地水平进入第二组半圆形轨道QM和Q'M'的内侧。
求金属杆由PP'处到MM'处过程中动量的增量。
(3)金属杆由第二个半圆轨道的最高位置MM'处,以一定的速度在M和M'处沿对接狭缝无碰撞地水平进入上层金属导轨后,能沿着上层金属导轨滑行。
设上层水平导轨足够长,其右端连接的定值电阻阻值为r,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中(不计此时导轨中电流产生的磁场的影响)。
求金属杆在上层水平金属导轨上滑行过程中通过导体横截面的电荷量。
3.如图所示,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块K和质量为m的缓冲车厢。
在缓冲车的底板上,沿车的轴线固定着两个光滑水平绝缘导轨PQ、MN。
缓冲车的底部,安装电磁铁(图中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度为B。
导轨内的缓冲滑块K由高强度绝缘材料制成,滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab边长为L。
假设缓冲车以速度v0与障碍物C碰撞后,滑块K立即停下,此后线圈与轨道的磁场作用力使缓冲车厢减速运动,从而实现缓冲,一切摩擦阻力不计。
(1)求滑块K的线圈中最大感应电动势的大小;(2)若缓冲车厢向前移动距离L后速度为零,则此过程线圈abcd中通过的电荷量和产生的焦耳热各是多少?(3)若缓冲车以v0速度与障碍物C碰撞后,滑块K立即停下,求此后缓冲车厢的速度v随位移x的变化规律?(4)若缓冲车以v0速度与障碍物C碰撞后,要使导轨右端不碰到障碍物,则缓冲车与障碍物C碰撞前,导轨右端与滑块K的cd边距离至少多大?4.(2017浙江七彩阳光联盟高三期初)如图所示,两根足够长的光滑金属导轨G1、G2放置在倾角为α的斜面上,导轨间距为l,电阻不计。
在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡。
整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直。
现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放,经过时间t0,两灯泡开始并保持正常发光。
金属棒下落过程中保持与导轨垂直,且与导轨接触良好。
重力加速度为g。
求:(1)磁感应强度B的大小;(2)灯泡正常发光时导体棒的运动速率v;(3)在t=0至t=t0期间,两小灯泡产生的焦耳热。
5.(2018浙江4月选考,23)如图所示,在竖直平面内建立xOy坐标系,在0≤x≤0.65 m、y≤0.40 m 范围内存在一具有理想边界、方向垂直纸面向里的匀强磁场区域。
一边长l=0.10 m、质量m=0.02 kg、电阻R=0.40 Ω的匀质正方形刚性导线框abcd处于图示位置,其中心的坐标为(0,0.65 m)。
现将线框以初速度v0=2.0 m/s水平向右抛出,线框在进入磁场过程中速度保持不变,然后在磁场中运动,最后从磁场右边界离开磁场区域,完成运动全过程。
线框在全过程中始终处于xOy平面内,其ab边与x轴保持平行,空气阻力不计,g取10 m/s2。
求:(1)磁感应强度B的大小;(2)线框在全过程中产生的焦耳热Q;(3)在全过程中,cb两端的电势差U c b与线框中心位置的x坐标的函数关系。
6.(2016浙江杭州模拟)如图甲所示,在水平面上固定有长为L=2 m、宽为d=1 m的U形金属导轨,在U形导轨右侧l=0.5 m范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如图乙所示,在t=0时刻,质量为m=0.1 kg的导体棒以v0=1 m/s的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度(1 m)的电阻均为λ=0.1 Ω/m,不计导体棒与导轨之间的接触电阻及地球磁场的影响(g取10 m/s2)。
(1)通过计算分析4 s内导体棒的运动情况;(2)计算4 s内回路中电流的大小,并判断电流方向;(3)计算4 s内回路产生的焦耳热。
7.如图所示,宽度为L的光滑平行金属导轨PQ和P'Q'倾斜放置,顶端QQ'之间连接一个阻值为R的电阻和开关S,底端PP'处通过一小段平滑圆弧与一段光滑水平轨道相连。
已知水平轨道离地面的高度为h,两倾斜导轨间有一垂直于导轨平面向下的匀强磁场,磁感应强度为B;有两根长均为L、质量均为m、电阻均为R的金属棒AA'、CC'。
当金属棒CC'放置在水平轨道右端时,两水平轨道间就会出现竖直方向的磁感应强度为B1的匀强磁场,此时开关S处于断开状态;而如果金属棒CC'一离开水平轨道,水平轨道间的磁场就马上消失,同时开关S马上闭合。
现把金属棒CC'放在光滑水平轨道上右端,金属棒AA'离水平轨道高为H的地方以较大的初速度v0沿轨道下滑,在极短时间内金属棒CC'就向右离开水平轨道,离开水平轨道后在空中做平抛运动,落地点到抛出点通过的水平距离为x1,金属棒AA'最后也落在水平地面上,落地点到抛出点的水平距离为x2;不计导轨电阻,忽略金属棒经过PP'处的机械能损失,不计空气阻力,已知重力加速度为g,则:(1)判断B1的方向;(2)求通过CC'的电荷量q;(3)求整个运动过程中金属棒AA'产生的焦耳热Q。
8.(2016浙江慈溪中学月考)如图所示,“凸”字形硬质金属线框质量为m,相邻各边互相垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l。
匀强磁场区域的上、下边界均水平,磁场方向垂直于线框所在平面。
开始时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd边进入磁场直到ef、pq边进入磁场前,线框做匀速运动,在ef、pq边离开磁场后,ab边离开磁场之前,线框又做匀速运动。
线框完全穿过磁场过程中产生的热量为Q。
线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g。
求:(1)线框ab边将离开磁场时做匀速运动的速度大小是cd边刚进入磁场时的几倍;(2)磁场上、下边界间的距离H。
9.如图所示,两根相同平行金属直轨道竖直放置,上端用导线接一阻值为R的定值电阻,下端固定在水平绝缘底座上。
底座中央固定一根绝缘弹簧,长L、质量为m的金属直杆ab通过金属滑环套在轨道上。
在直线MN的上方分布着垂直轨道面向里、磁感应强度为B的足够大匀强磁场。
现用力压直杆ab使弹簧处于压缩状态,撤去力后直杆ab被弹起,脱离弹簧后以速度v1穿过直线MN,在磁场中上升高度h时到达最高点。
随后直杆ab向下运动,离开磁场前做匀速直线运动。
已知直杆ab与轨道的摩擦力大小恒等于杆重力的k倍(k<1),回路中除定值电阻外不计其他一切电阻,重力加速度为g。
求:(1)杆ab向下运动离开磁场时的速度v2;(2)杆ab在磁场中上升过程经历的时间t。
10.如图所示,粗糙斜面的倾角θ=37°,半径r=0.5 m的圆形区域内存在着垂直于斜面向下的匀强磁场。
一个匝数n=10匝的刚性正方形线框abcd,通过松弛的柔软导线与一个额定功率P=1.25 W的小灯泡A相连,圆形磁场的一条直径恰好过线框bc边。
已知线框质量m=2 kg,总电阻R0=1.25 Ω,边长L>2r,与斜面间的动摩擦因数μ=0.5。
从t=0时起,磁场的磁感应强度按B=2-t(T)的规律变化。
开始时线框静止在斜面上,在线框运动前,灯泡始终正常发光。
设最大静摩擦力等于滑动摩擦力,g取10 m/s2,sin37°=0.6,cos37°=0.8。
求:(1)小灯泡正常发光时的电阻R;(2)线框保持不动的时间内,小灯泡产生的热量Q。
提升训练15电磁感应的综合问题1.答案 (1)(2)-2.5F f L(3)解析 (1)小车刚进入磁场时的速度设为v0,则v0=,感应电动势E=NBLv0=。
(2) 由动能定理,可得2.5F f L+Q=解得Q=-2.5F f L=-2.5F f L。
(3)以小车刚要进入到恰好穿出磁场为研究过程,由动量定理,可得F f t+2NBI'Lt=F f t+2NBLq=mv0' ①q==N②当功率为P时,小车进入磁场时间为t,由动量定理得F f t+NBILt=F f t+NBLq=mv0③由①②③,可得v0'=P'=F f v0'=。
2.答案 (1)(2)m(2-4)(3)解析 (1)a==2gBIL=kI2l=maI=。
(2)-mg4R=mv2-v=2ΔP=m(2-4)。