解析函数 的幂函数表示
- 格式:ppt
- 大小:1.62 MB
- 文档页数:46
专题10 幂函数以及函数的应用【考点预测】 考点一、幂函数概念形如y x α=的函数,叫做幂函数,其中α为常数. 考点诠释:幂函数必须是形如y x α=的函数,幂函数底数为单一的自变量x ,系数为1,指数为常数.例如:4223,1,(2)y x y x y x ==+=-等都不是幂函数.考点二、幂函数的图象及性质 1.作出下列函数的图象:(1)y x =;(2)12y x =;(3)2y x =;(4)1y x -=;(5)3y x =.考点诠释:幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质: (1)所有的幂函数在(0,)+∞都有定义,并且图象都过点()1,1;(2)0α>时,幂函数的图象通过原点,并且在区间[0,)+∞上是增函数.特别地,当1α>时,幂函数的图象下凸;当01α<<时,幂函数的图象上凸;(3)0α<时,幂函数的图象在区间(0,)+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴.2.作幂函数图象的步骤如下: (1)先作出第一象限内的图象;(2)若幂函数的定义域为(0,)+∞或[0,)+∞,作图已完成; 若在(0)-∞,或0]-∞(,上也有意义,则应先判断函数的奇偶性 如果为偶函数,则根据y 轴对称作出第二象限的图象; 如果为奇函数,则根据原点对称作出第三象限的图象.3.幂函数解析式的确定(1)借助幂函数的定义,设幂函数或确定函数中相应量的值. (2)结合幂函数的性质,分析幂函数中指数的特征.(3)如函数()a f x k x =⋅是幂函数,求()f x 的表达式,就应由定义知必有1k =,即()a f x x =. 4.幂函数值大小的比较(1)比较函数值的大小问题一般是利用函数的单调性,当不便于利用单调性时,可与0和1进行比较.常称为“搭桥”法.(2)比较幂函数值的大小,一般先构造幂函数并明确其单调性,然后由单调性判断值的大小. (3)常用的步骤是:①构造幂函数;②比较底的大小;③由单调性确定函数值的大小. 考点三、解决实际应用问题的步骤: 第一步:阅读理解,认真审题读懂题中的文字叙述,理解叙述所反映的实际背景,领悟从背景中概括出来的数学实质,尤其是理解叙述中的新名词、新概念,进而把握住新信息.第二步:引进数学符号,建立数学模型设自变量为x ,函数为y ,并用x 表示各相关量,然后根据问题已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为一个数学问题,实现问题的数学化,即所谓建立数学模型.第三步:利用数学的方法将得到的常规数学问题(即数学模型)予以解答,求得结果. 第四步:再转译为具体问题作出解答.【典型例题】例1.(2022·全国·高一单元测试)已知幂函数()()23122233m m f x m m x++=-+为奇函数.(1)求函数()f x 的解析式;(2)若()()132f a f a +<-,求a 的取值范围. 【解析】(1)由题意,幂函数()()23122233m m f x m m x++=-+,可得2331m m -+=,即2320m m -+=,解得1m =或2m =, 当1m =时,函数()311322f x x x ++==为奇函数,当2m =时,()21152322f x xx ++==为非奇非偶函数,因为()f x 为奇函数,所以()3f x x =.(2)由(1)知()3f x x =,可得()f x 在R 上为增函数,因为()()132f a f a +<-,所以132a a +<-,解得23<a , 所以a 的取值范围为2,3⎛⎫-∞ ⎪⎝⎭.例2.(2022·全国·高一单元测试)已知幂函数2()(33)a f x a a x =-+为偶函数, (1)求函数()f x 的解析式;(2)若函数()()()213g x f x m x =+--在[]1,3-上的最大值为2,求实数m 的值.【解析】(1)因为2()(33)af x a a x =-+为幂函数,所以2331a a -+=,解得2a =或1a = 因为()f x 为偶函数,所以2a =,故()f x 的解析式2()f x x =;(2)由(1)知()()2213g x x m x =+--,对称轴为122mx -=,开口向上,当1212m-≤即12m ≥-时,()()max 3362g x g m ==+=,即16m =-; 当1212m ->即12m <-时,()()max 1122g x g m =-=--=,即32m =-; 综上所述:16m =-或32m =-.例3.(2022·全国·高一课时练习)吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x 万盒,需投入成本()h x 万元,当产量小于或等于50万盒时()180100h x x =+;当产量大于50万盒时()2603500h x x x =++,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y (万元)关于产量x (万盒)的函数关系式; (2)当产量为多少万盒时,该企业在生产中所获利润最大?【解析】(1)当产量小于或等于50万盒时,20020018010020300y x x x =---=-, 当产量大于50万盒时,222002006035001403700y x x x x x =----=-+-, 故销售利润y (万元)关于产量x (万盒)的函数关系式为220300,050,N 1403700,50x x y x x x x -≤≤⎧=∈⎨-+->⎩(2)当050x ≤≤时,2050300700y ≤⨯-=; 当50x >时,21403700y x x =-+-, 当140702x ==时,21403700y x x =-+-取到最大值,为1200.因为7001200<,所以当产量为70万盒时,该企业所获利润最大.例4.(2022·全国·高一课时练习)如图,某日的钱塘江观测信息如下:2017年⨯月⨯日,天气:阴;能见度:1.8千米;11:40时,甲地“交叉潮”形成,潮水匀速奔向乙地;12:10时,潮头到达乙地,形成“一线潮”,开始均匀加速,继续向西;12:35时,潮头到达丙地,遇到堤坝阻挡后回头,形成“回头潮”.按上述信息,小红将“交叉潮”形成后潮头与乙地质检的距离x (千米)与时间t (分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点(0,12)A ,点B 坐标为(,0)m ,曲线BC 可用二次函数:21(125s t bt c b =++,c 是常数)刻画. (1)求m 值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度02(30)125v v t =+-,0v 是加速前的速度) 【解析】(1)11:40到12:10的时间是30分钟,则(30,0)B ,即30m =, 潮头从甲地到乙地的速度120.430=(千米/分钟). (2)因潮头的速度为0.4千米/分钟,则到11:59时,潮头已前进190.47.6⨯=(千米), 此时潮头离乙地127.6 4.4-=(千米),设小红出发x 分钟与潮头相遇, 于是得0.40.48 4.4x x +=,解得5x =, 所以小红5分钟后与潮头相遇.(3)把(30,0),(55,15)C 代入21125s t bt c =++,得221303001251555515125b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩,解得225b =-,245c =-, 因此21224125255s t t =--,又00.4v =,则22(30)1255v t =-+, 当潮头的速度达到单车最高速度0.48千米/分,即0.48v =时,22(30)0.481255t -+=,解得35t =,则当35t =时,21224111252555s t t =--=, 即从35t =分钟(12:15时)开始,潮头快于小红速度奔向丙地,小红逐渐落后,但小红仍以0.48千米/分的速度匀速追赶潮头,设小红离乙地的距离为1s ,则1s 与时间t 的函数关系式为10.48(35)s t h t =+≥, 当35t =时,1115s s ==,解得:735h =-,因此有11273255s t =-,最后潮头与小红相距1.8千米,即1 1.8s s -=时,有212241273 1.8125255255t t t ---+=, 解得150t =,220t =(舍去),于是有50t =,小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时0.48560.4⨯=(分钟), 因此共需要时间为6503026+-=(分钟),所以小红与潮头相遇到潮头离她1.8千米外共需26分钟.例5.(2022·全国·高一课时练习)已知幂函数()()2253mf x m m x =-+的定义域为全体实数R.(1)求()f x 的解析式;(2)若()31f x x k >+-在[]1,1-上恒成立,求实数k 的取值范围.【解析】(1)∵()f x 是幂函数,∴22531m m -+=,∴12m =或2.当12m =时,()12f x x =,此时不满足()f x 的定义域为全体实数R , ∴m =2,∴()2f x x =.(2)()31f x x k >+-即2310x x k -+->,要使此不等式在[]1,1-上恒成立,令()231g x x x k =-+-,只需使函数()231g x x x k =-+-在[]1,1-上的最小值大于0.∵()231g x x x k =-+-图象的对称轴为32x =,故()g x 在[]1,1-上单调递减, ∴()()min 11g x g k ==--, 由10k -->,得1k <-, ∴实数k 的取值范围是(,1)-∞-.【过关测试】 一、单选题1.(2022·全国·高一单元测试)若函数()f x x α=的图象经过点19,3⎛⎫ ⎪⎝⎭,则19f ⎛⎫= ⎪⎝⎭( )A .13B .3C .9D .8【答案】B【解析】由题意知()193f =,所以193α=,即2133α-=, 所以12α=-,所以()12f x x -=,所以1211399f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.故选:B2.(2022·全国·高一课时练习)已知432a =,254b =,1325c =,236d =,则( ) A .b a d c <<< B .b c a d <<< C .c d b a <<< D .b a c d <<<【答案】D 【解析】由题得4133216a ==,2155416b ==,1325c =,2133636d ==,因为函数13y x =在R 上单调递增,所以a c d <<.又因为指数函数16x y =在R 上单调递增,所以b a <.故选:D .3.(2022·全国·高一课时练习)已知幂函数()a f x x 的图象过点(9,3),则函数1()()1f x y f x -=+在区间[1,9]上的值域为( ) A .[-1,0] B .1[,0]2-C .[0,2]D .3[,1]2-【答案】B【解析】解法一:因为幂函数()a f x x 的图象过点()9,3 ,所以93=a ,可得12a =,所以()f x x =1()12(1)1()1111f x x x y f x x x x ---+===++++.因为19x ≤≤,所以214x ≤≤,故11,021y x ⎡⎤=∈-⎢⎥+⎣⎦.因此,函数1()()1f x y f x -=+在区间[1,9]上的值域为1,02⎡⎤-⎢⎥⎣⎦.故选:B .解法二:因为幂函数()a f x x 的图象过点(9,3),所以93a =,可得12a =, 所以()f x x =[1,9]x ∈,所以()[1,3]f x ∈.因为y =1()()1f x f x -+,所以1()1y f x y -=+,所以1131y y -≤≤+,解得102y -≤≤,即函数1()()1f x y f x -=+在区间[1,9]上的值域为1,02⎡⎤-⎢⎥⎣⎦.故选:B .4.(2022·全国·高一课时练习)如图所示是函数mn y x =(*N m n ∈、且互质)的图象,则( )A .m n 、是奇数且1mn< B .m 是偶数,n 是奇数,且1m n> C .m 是偶数,n 是奇数,且1m n< D .m n 、是偶数,且1m n> 【答案】C【解析】函数n m nm y x x =y 轴对称,故n 为奇数,m 为偶数, 在第一象限内,函数是凸函数,故1mn<, 故选:C.5.(2022·全国·高一期中)幂函数2225()(5)m m f x m m x +-=+-在区间(0,)+∞上单调递增,则(3)f =( ) A .27 B .9C .19D .127【答案】A【解析】由题意,令251m m +-=,即260m m +-=,解得2m =或3m =-, 当2m =时,可得函数3()f x x =,此时函数()f x 在(0,)+∞上单调递增,符合题意; 当3m =-时,可得2()f x x -=,此时函数()f x 在(0,)+∞上单调递减,不符合题意, 即幂函数3()f x x =,则(3)27f =. 故选:A.6.(2022·全国·高一课时练习)向高为H 的水瓶内注水,一直到注满为止,如果注水量V 与水深h 的函数图象如图所示,那么水瓶的形状大致是( )A .B .C .D .【答案】B【解析】当容器是圆柱时,容积V =πr 2h ,r 不变,V 是h 的正比例函数,其图象是过原点的直线,∴选项D 不满足条件;由函数图象可以看出,随着高度h 的增加V 也增加,但随h 变大,每单位高度的增加,体积V 的增加量变小,图象上升趋势变缓,∴容器平行于底面的截面半径由下到上逐渐变小, ∴A 、C 不满足条件,而B 满足条件. 故选:B .7.(2022·全国·高一单元测试)某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位60030x x ⎛⎫+- ⎪⎝⎭元(试剂的总产量为x 单位,50200x ≤≤),则要使生产每单位试剂的成本最低,试剂总产量应为( )A .60单位B .70单位C .80单位D .90单位【答案】D【解析】设每生产单位试剂的成本为y ,因为试剂总产量为x 单位,则由题意可知,原料总费用为50x 元, 职工的工资总额为750020x +元,后续保养总费用为60030x x x ⎛⎫+- ⎪⎝⎭元, 则250750020306008100810040240220x x x x y x x x x x+++-+==++≥⋅=, 当且仅当8100x x=,即90x =时取等号, 满足50200x ≤≤,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位. 故选:D .8.(2022·全国·高一课时练习)给出幂函数:①()f x x =;②2()f x x =;③()3f x x =;④()f x x ()1f x x =.其中满足条件()()()121221022f x f x x x f x x ++⎛⎫>>> ⎪⎝⎭的函数的个数是( ) A .1B .2C .3D .4【答案】A【解析】由题,满足条件()()()121221022f x f x x x f x x ++⎛⎫>>> ⎪⎝⎭表示函数图象在第一象限上凸,结合幂函数的图象特征可知只有④满足.故选:A 二、多选题9.(2022·全国·高一课时练习)幂函数()()22657mf x m m x--=+在()0,∞+上是增函数,则以下说法正确的是( ) A .3m =B .函数()f x 在(),0∞-上单调递增C .函数()f x 是偶函数D .函数()f x 的图象关于原点对称 【答案】ABD【解析】因为幂函数()()22657m f x m m x--=+在()0,∞+上是增函数,所以2257160m m m ⎧-+=⎨->⎩,解得3m =,所以()3f x x =,所以()()()33f x x x f x -=-=-=-,故()3f x x =为奇函数,函数图象关于原点对称,所以()f x 在(),0∞-上单调递增; 故选:ABD10.(2022·全国·高一课时练习)几名大学生创业时经过调研选择了一种技术产品,生产此产品获得的月利润()p x (单位:万元)与每月投入的研发经费x (单位:万元)有关.已知每月投入的研发经费不高于16万元,且21()6205p x x x =-+-,利润率()p x y x =.现在已投入研发经费9万元,则下列判断正确的是( ) A .此时获得最大利润率B .再投入6万元研发经费才能获得最大利润C .再投入1万元研发经费可获得最大利润率D .再投入1万元研发经费才能获得最大利润 【答案】BC【解析】当16x ≤时,2211()620(15)2555p x x x x =-+-=--+,故当15x =时,获得最大利润,为()1525p =,故B 正确,D 错误;()12012012066262555p x y x x x x x x x ⎛⎫==-+-=-++≤-⋅= ⎪⎝⎭, 当且仅当1205x x=,即10x =时取等号,此时研发利润率取得最大值2,故C 正确,A 错误.故选:BC.11.(2022·全国·高一课时练习)(多选)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费,甲厂的总费用y 1(千元)、乙厂的总费用y 2(千元)与印制证书数量x (千个)的函数关系图分别如图中甲、乙所示,则( )A .甲厂的制版费为1千元,印刷费平均每个为0.5元B .甲厂的总费用y 1与证书数量x 之间的函数关系式为10.51y x =+C .当印制证书数量不超过2千个时,乙厂的印刷费平均每个为1.5元D .当印制证书数量超过2千个时,乙厂的总费用y 2与证书数量x 之间的函数关系式为21542y x =+ 【答案】ABCD【解析】由题图知甲厂制版费为1千元,印刷费平均每个为0.5元,故A 正确; 设甲厂的费用1y 与证书数量x 满足的函数关系式为y kx b =+,代入点(0,1),(6,4),可得164b k b =⎧⎨+=⎩,解得0.5,1k b ==,所以甲厂的费用1y 与证书数量x 满足的函数关系式为10.51y x =+,故B 正确; 当印制证书数量不超过2千个时,乙厂的印刷费平均每个为32 1.5÷=元,故C 正确; 设当2x >时,设2y 与x 之间的函数关系式为y mx n =+代入点(2,3),(6,4),可得2364m n m n +=⎧⎨+=⎩,解得15,42k b ==,所以当2x >时,2y 与x 之间的函数关系式为21542y x =+,故D 正确.故选:ABCD.12.(2022·全国·高一课时练习)若函数()f x 在定义域内的某区间M 是增函数,且()f x x在M 上是减函数,则称()f x 在M 上是“弱增函数”,则下列说法正确的是( ) A .若()2f x x =,则不存在区间M 使()f x 为“弱增函数” B .若()1f x x x=+,则存在区间M 使()f x 为“弱增函数”C .若()3f x x x =+,则()f x 为R 上的“弱增函数”D .若()()24f x x a x a =+-+在区间(]0,2上是“弱增函数”,则4a =【答案】ABD【解析】对于A :()2f x x =在[)0,∞+上为增函数,()==f x y x x在定义域内的任何区间上都是增函数,故不存在区间M 使()2f x x =为“弱增函数”,A 正确;对于B :由对勾函数的性质可知:()1f x x x=+在[)1,+∞上为增函数,()21f x y x x-==+,由幂函数的性质可知,()21f x y x x-==+在[)1,+∞上为减函数,故存在区间[)1,M =+∞使()1f x x x =+为“弱增函数”,B 正确;对于C :()3f x x x =+为奇函数,且0x ≥时,()3f x x x =+为增函数,由奇函数的对称性可知()3f x x x=+为R 上的增函数,()21f x y x x==+为偶函数,其在0x ≥时为增函数,在0x <时为减函数,故()3f x x x=+不是R 上的“弱增函数”,C 错误;对于D :若()()24f x x a x a =+-+在区间(]0,2上是“弱增函数”,则()()24f x x a x a =+-+在(]0,2上为增函数,所以402a --≤,解得4a ≤,又()()4f x ay x a x x==+-+在(]0,2上为减函数,由对勾函数的单调性可知,2a ≥,则4a ≥,综上4a =.故D 正确. 故选:ABD . 三、填空题13.(2022·全国·高一单元测试)已知1114,1,,,,1,2,3232a ⎧⎫∈---⎨⎬⎩⎭,若函数()af x x =在()0,+∞上单调递减,且为偶函数,则=a ______. 【答案】4-【解析】由题知:0a <, 所以a 的值可能为4-,1-,12-.当4a =-时,()()1440f x x x x -==≠为偶函数,符合题意.当1a =-时,()()110-==≠f x x x x为奇函数,不符合题意. 当12a =-时,()12f x x x-==,定义域为()0,+∞,则()f x 为非奇非偶函数,不符合题意.综上,4a =-. 故答案为:4-14.(2022·全国·高一课时练习)已知幂函数()2232(1)m m f x m x -+=-在()0+∞,上单调递增,则()f x 的解析式是_____.【答案】()2f x x =【解析】()f x 是幂函数,211m ∴-=,解得2m =或0m =,若2m =,则()0f x x =,在()0+∞,上不单调递减,不满足条件; 若0m =,则()2f x x =,在()0+∞,上单调递增,满足条件; 即()2f x x =. 故答案为:()2f x x =15.(2022·全国·高一课时练习)现在有红豆、白豆各若干粒.甲乙两人为了计算豆子的粒数,选用了这样的方法:第一轮甲每次取4粒红豆,乙每次取2粒白豆,同时进行,当红豆取完时,白豆还剩10粒;第二轮,甲每次取1粒红豆,乙每次取2粒白豆,同时进行,当白豆取完时,红豆还剩()*1620,n n n ∈<<N 粒.则红豆和白豆共有________粒. 【答案】58【解析】设红豆有x 粒,白豆有y 粒, 由第一轮结果可知:1042x y -=,整理可得:220x y =-; 由第二轮结果可知:2yx n =-,整理可得:22y x n =-; 当17n =时,由220234x y y x =-⎧⎨=-⎩得:883743x y ⎧=⎪⎪⎨⎪=⎪⎩(舍);当18n =时,由220236x y y x =-⎧⎨=-⎩得:923763x y ⎧=⎪⎪⎨⎪=⎪⎩(舍);当19n =时,由220238x y y x =-⎧⎨=-⎩得:3226x y =⎧⎨=⎩,322658x y ∴+=+=,即红豆和白豆共有58粒. 故答案为:58.16.(2022·全国·高一期中)已知幂函数()223()p p f x x p N --*=∈ 的图像关于y 轴对称,且在()0+∞,上是减函数,实数a 满足()()233133pp a a -<+,则a 的取值范围是_____.【答案】14a <<【解析】幂函数()()223*p p f x xp N --=∈在()0+∞,上是减函数, 2230p p ∴--<,解得13p -<<,*p N ∈,1p ∴=或2.当1p =时,()4f x x -=为偶函数满足条件,当2p =时,()3f x x -=为奇函数不满足条件,则不等式等价为233(1)(33)ppa a -<+,即()11233(1)33a a -<+,()13f x x =在R 上为增函数, 2133a a ∴-<+,解得:14a <<.故答案为:14a <<. 四、解答题17.(2022·全国·高一课时练习)比较下列各组数的大小: (1)()32--,()32.5--; (2)788--,7819⎛⎫- ⎪⎝⎭; (3)3412⎛⎫ ⎪⎝⎭,3415⎛⎫ ⎪⎝⎭,1412⎛⎫ ⎪⎝⎭.【解析】(1)因为幂函数3y x -=在(),0∞-上单调递减,且2 2.5->-,所以()()332 2.5---<-. (2)因为幂函数78y x =在[)0,∞+上为增函数,且7788188-⎛⎫-=- ⎪⎝⎭,1189>,所以77881189⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以77881189⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,所以7788189-⎛⎫-<- ⎪⎝⎭.(3)41341128⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,3144115125⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,11112582<<,因为幂函数14y x =在()0,∞+上单调递增,所以331444111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.18.(2022·全国·高一单元测试)已知函数()f x x =()2g x x =-.(1)求方程()()f x g x =的解集;(2)定义:{},max ,,a a b a b b a b ≥⎧=⎨<⎩.已知定义在[)0,∞+上的函数{}()max (),()h x f x g x =,求函数()h x 的解析式;(3)在(2)的条件下,在平面直角坐标系中,画出函数()h x 的简图,并根据图象写出函数()h x 的单调区间和最小值. 【解析】(12x x =-,得2540x x -+=且0x ≥,解得11x =,24x =;所以方程()()f x g x =的解集为{1,4}(2)由已知得()2,01,2,14222,4x x x x x h x x x x x x x x -≤<⎧⎧-⎪⎪==≤≤⎨⎨-<-⎪⎪⎩->⎩. (3)函数()h x 的图象如图实线所示:函数()h x 的单调递减区间是[]0,1,单调递增区间是()1,+∞,其最小值为1.19.(2022·天津市第九十五中学益中学校高一期末)已知幂函数()a g x x =的图像经过点(22,,函数2(4)()1g x af x x ⋅+=+为奇函数.(1)求幂函数()y g x =的解析式及实数a 的值;(2)判断函数f (x )在区间(-1,1)上的单调性,并用的数单调性定义证明【解析】(1)由条件可知22a=12a =,即()12g x x x ==,()42g =,因为()221x a f x x +=+是奇函数,所以()00f a ==,即()221xf x x =+,满足()()f x f x -=-是奇函数,所以2a =成立; (2)由(1)可知()221xf x x =+, 在区间()1,1-上任意取值12,x x ,且12x x <, ()()()()()()211212122222121221221111x x x x x x f x f x x x x x ---=-=++++,因为1211x x -<<<,所以210x x ->,1210x x -<,()()2212110x x ++>所以()()120f x f x -<, 即()()12f x f x <,所以函数在区间()1,1-上单调递增.20.(2022·全国·高一课时练习)几名大学毕业生合作开设3D 打印店,生产并销售某种3D 产品.已知该店每月生产的产品当月都能销售完,每件产品的生产成本为34元,该店的月总成本由两部分组成:第一部分是月销售产品的生产成本,第二部分是其他固定支出20000元.假设该产品的月销售量t (件)与销售价格x (元/件)(*x ∈N )之间满足如下关系:①当3460x ≤≤时,()()2510050t x a x =-++;②当6076x ≤≤时,()1007600t x x =-+.记该店月利润为M (元),月利润=月销售总额-月总成本.(1)求M 关于销售价格x 的函数关系式;(2)求该打印店的最大月利润及此时产品的销售价格.【解析】(1)当60x =时,()260510050100607600a -++=-⨯+,解得2a =.∴()()()()()2**220100003420000,3460,,10076003420000,6076,x x x x x N M x x x x x N ⎧--+--≤≤∈⎪=⎨-+--≤≤∈⎪⎩即()32*2*24810680360000,3460,,10011000278400,6076,x x x x x N M x x x x x N ⎧-++-≤≤∈=⎨-+-≤≤∈⎩(2)当3460x ≤≤,x ∈R 时,设()3224810680360000g x x x x =-++-,则()()26161780g x x x '=---.令()0g x '=,解得182461x =-,()28246150,51x =+, 当3450x ≤≤时,()0g x '>,()g x 单调递增; 当5160x ≤≤时,()0g x '<,()g x 单调递减.∵*x ∈N ,()5044000M =,()5144226M =,()M x 的最大值为44226.当6076x ≤≤时,()()21001102784M x x x =-+-单调递减,故此时()M x 的最大值为()6021600M =.综上所述,当51x =时,()M x 有最大值44226.∴该打印店的最大月利润为44226元,此时产品的销售价格为51元/件. 21.(2022·全国·高一课时练习)已知幂函数2()(33)a f x a a x =-+为偶函数, (1)求函数()f x 的解析式;(2)若函数()()()213g x f x m x =+--在[]1,3-上的最大值为1,求实数m 的值. 【解析】(1)因为()f x 为幂函数所以233112a a a a -+===,得或 因为()f x 为偶函数所以2a = 故()f x 的解析式2()f x x =.(2)由(1)知()()2213g x x m x =+--,当1212m-≤即12m ≥-时,()()max 3361g x g m ==+=,即13m =- 当1212m ->即12m <-时,()()max 1121g x g m =-=--=即1m =- 综上所述:13m =-或1m =-22.(2022·全国·高一课时练习)已知幂函数()()()22tf x t t x t R -=+∈,且()f x 在区间()0,∞+上单调递减.(1)求()f x 的解析式及定义域; (2)设函数()()()221g x f x f x =-⎡⎤⎣⎦⎡⎤⎣⎦,求证:()g x 在()0,∞+上单调递减.【解析】(1)因为幂函数()()()22t f x t t x t R -=+∈,()f x 在区间()0,+∞上单调递减,所以221+=t t ,解得1t =-或12t =, 所以()12f x x -=,定义域为()0,+∞.(2)由(1)知函数()()()()2222110--=-=-≠⎡⎤⎣⎦⎡⎤⎣⎦g x f x x x x f x ,设120x x >>,则()()()222222211212212222121211------=--+=-+x x g x g x x x x x x x x x因为120x x >>,所以2212x x >,222221210,0-<>x x x x ,所以()()120g x g x -<,即()()12g x g x <, 所以()g x 在()0,+∞上单调递减.。
高考数学中的幂函数和指数函数的性质解析高考数学中的幂函数和指数函数是非常重要的知识点。
这两种函数在数理化等学科中都有广泛的应用,因此在高考中也成为了不可忽视的重点。
掌握它们的性质,不仅可以解决一些基本的计算问题,还可以引申出很多思维难度较大的问题。
本文将对幂函数和指数函数的性质进行深入的解析。
一、幂函数的性质幂函数是一种非常基础的函数类型。
它的形式可以表示为$y = x^a$,其中$x$为自变量,$a$为指数。
幂函数的性质有以下几个方面。
1. 定义域:幂函数的定义域为$x>0$或$x<0$,即幂函数不能为负数。
2. 制图特点:当$a>1$时,幂函数的图像在第一象限上单调递增;当$0<a<1$时,幂函数的图像在第一象限上单调递减;当$a<0$时,幂函数的图像则关于$x$轴对称。
3. 奇偶性:当$a$为偶数时,幂函数关于$y$轴对称;当$a$为奇数时,幂函数关于原点对称。
4. 渐进线:当$a>0$时,幂函数的左渐近线为$x=0$,右渐近线为$y=0$;当$a<0$时,幂函数的左渐近线为$x=0$,右渐近线为$y=0$。
5. 导数规律:当$y=x^a$,则$\dfrac{dy}{dx}=ax^{a-1}$。
在幂函数的导数规律中,指数减1并乘以常数,就是导数。
以上是幂函数的几个常见性质,可以根据具体问题作出判断。
下面将重点介绍指数函数的性质。
二、指数函数的性质指数函数是另一种基础的函数类型。
它的形式可以表示为$y = a^x$,其中$a$为底数,$x$为自变量。
指数函数的性质有以下几个方面。
1. 定义域:指数函数的定义域为$(-\infty,+\infty)$,可以为任意实数。
2. 制图特点:当$0<a<1$时,指数函数的图像在第一象限上单调递减,且关于$y$轴对称;当$a>1$时,指数函数的图像在第一象限上单调递增。
3. 反函数:指数函数的反函数为对数函数,即$y = \log_{a}x$。
高考数学知识点幂函数知识点总结幂函数是高考数学中的重要知识点之一。
它在求解各类问题中具有广泛的应用。
本文将对幂函数的定义、性质以及解题技巧进行总结,以帮助考生全面掌握相关知识。
一、幂函数的定义与性质1. 定义:幂函数是指形如f(x) = a^x的函数,其中a为实数且a>0且a≠1。
2. 幂函数的基本性质:(1) 当a>1时,幂函数是递增函数;(2) 当0<a<1时,幂函数是递减函数;(3) 幂函数的图象是关于y轴对称的;(4) 当x取整数时,幂函数的函数值为恒定值。
3. 幂函数的特殊情况:(1) 当a>1时,幂函数的图象在x轴正半轴上逼近y轴;(2) 当0<a<1时,幂函数的图象在x轴正半轴上逼近x轴;(3) 当a=1时,幂函数为常数函数。
二、幂函数的常见解题技巧1. 求解幂函数的零点:对于幂函数f(x) = a^x = 0,可以通过求解a^x = 0的条件来得到幂函数的零点。
由于指数函数a^x的定义域为实数集,而等式0^x没有意义,因此幂函数的零点不存在。
2. 求解幂函数的最值:当幂函数f(x) = a^x存在最值时,可以通过导数法求解。
具体步骤为:(1) 求得f'(x) = a^x * ln(a),其中ln(a)表示以e为底的对数;(2) 令f'(x) = 0,解得x = ln(a);(3) 将x = ln(a)带入幂函数,得到最值点或者端点的函数值;(4) 比较得到最值。
3. 幂函数与其他函数的复合:幂函数和其他常见函数的复合,如幂函数与线性函数、指数函数、对数函数的复合等,可以通过替换变量或者利用函数关系进行求解。
具体步骤需要根据题目的要求和已知条件进行灵活运用。
4. 幂函数在实际问题中的应用:幂函数在生活和工作中有广泛的应用,比如指数增长与衰减问题,利润与销售量关系的建模,物理中的涉及到指数增长和衰减的问题等,需要考生能够将幂函数与实际问题相结合,进行建模和求解。
高考数学一轮复习考点知识专题讲解二次函数与幂函数考点要求1.通过具体实例,了解幂函数及其图象的变化规律.2.掌握二次函数的图象与性质(单调性、对称性、顶点、最值等).知识梳理1.幂函数(1)幂函数的定义一般地,函数y=xα叫做幂函数,其中x是自变量,α为常数.(2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减;④当α为奇数时,y=xα为奇函数;当α为偶数时,y=xα为偶函数.2.二次函数(1)二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象和性质函数 y =ax 2+bx +c (a >0) y =ax 2+bx +c (a <0)图象(抛物线)定义域 R值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a对称轴x =-b2a顶点坐标 ⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递减;在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递增;在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递减思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =1212x 是幂函数.(×)(2)若幂函数y =x α是偶函数,则α为偶数.(×)(3)二次函数y =ax 2+bx +c 的图象恒在x 轴下方,则a <0且Δ<0.(√)(4)若二次函数y =ax 2+bx +c 的两个零点确定,则二次函数的解析式确定.(×) 教材改编题1.已知幂函数y =f (x )的图象过点(2,2),则f ⎝ ⎛⎭⎪⎫14等于()A .-12B.12C .±12D.22答案B解析设f (x )=x α, ∴2α=2,α=12,∴f (x )=12x , ∴f ⎝ ⎛⎭⎪⎫14=12.2.若函数f (x )=4x 2-kx -8在[5,20]上单调,则实数k 的取值范围为________. 答案(-∞,40]∪[160,+∞) 解析依题意知,k 8≥20或k8≤5,解得k ≥160或k ≤40.3.已知y=f(x)为二次函数,若y=f(x)在x=2处取得最小值-4,且y=f(x)的图象经过原点,则函数解析式为________.答案f(x)=x2-4x解析因为y=f(x)在x=2处取得最小值-4,所以可设f(x)=a(x-2)2-4(a>0),又图象过原点,所以f(0)=4a-4=0,a=1,所以f(x)=(x-2)2-4=x2-4x.题型一幂函数的图象与性质例1(1)若幂函数y=x-1,y=x m与y=x n在第一象限内的图象如图所示,则m与n的取值情况为()A.-1<m<0<n<1B.-1<n<0<m<1 2C.-1<m<0<n<1 2D.-1<n<0<m<1答案D解析幂函数y=xα,当α>0时,y=xα在(0,+∞)上单调递增,且0<α<1时,图象上凸,∴0<m<1.当α<0时,y=xα在(0,+∞)上单调递减.不妨令x=2,由图象得2-1<2n,则-1<n<0.综上可知,-1<n<0<m<1.(2)(2022·长沙质检)幂函数f(x)=(m2-3m+3)x m的图象关于y轴对称,则实数m=________.答案2解析由幂函数定义,知m2-3m+3=1,解得m=1或m=2,当m=1时,f(x)=x的图象不关于y轴对称,舍去,当m=2时,f(x)=x2的图象关于y轴对称,因此m=2.教师备选1.若幂函数f(x)=(a2-5a-5)12ax-在(0,+∞)上单调递增,则a等于()A.1B.6 C.2D.-1 答案D解析因为函数f(x)=(a2-5a-5)12ax-是幂函数,所以a2-5a-5=1,解得a=-1或a=6. 当a=-1时,f(x)=12x在(0,+∞)上单调递增;当a =6时,f (x )=x -3在(0,+∞)上单调递减, 所以a =-1.2.若f (x )=12x ,则不等式f (x )>f (8x -16)的解集是() A.⎣⎢⎡⎭⎪⎫2,167B .(0,2] C.⎝ ⎛⎭⎪⎫-∞,167D .[2,+∞)答案A解析因为函数f (x )=12x 在定义域[0,+∞)内为增函数,且f (x )>f (8x -16),所以⎩⎨⎧x ≥0,8x -16≥0,x >8x -16,即2≤x <167,所以不等式的解集为⎣⎢⎡⎭⎪⎫2,167.思维升华 (1)对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.跟踪训练1(1)(2022·宝鸡检测)已知a =432,b =233,c =1225,则() A .b <a <c B .a <b <c C .b <c <a D .c <a <b答案A解析由题意得b =233<234=432=a ,a =432=234<4<5=1225=c , 所以b <a <c .(2)已知幂函数f (x )=x m -3(m ∈N *)为奇函数,且在区间(0,+∞)上是减函数,则m 等于()A .1B .2C .1或2D .3 答案B解析因为f (x )=x m -3在(0,+∞)上是减函数, 所以m -3<0,所以m <3. 又因为m ∈N *,所以m =1或2. 又因为f (x )=x m -3是奇函数, 所以m =2.题型二 二次函数的解析式例2已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解方法一(利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎨⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7. 方法二(利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为x =2+(-1)2=12, 所以m =12.又根据题意,函数有最大值8,所以n =8, 所以f (x )=a ⎝⎛⎭⎪⎫x -122+8. 因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.方法三(利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1. 又函数有最大值8, 即4a (-2a -1)-(-a )24a =8.解得a =-4或a =0(舍去).故所求函数的解析式为f (x )=-4x 2+4x +7.教师备选若函数f(x)=(x+a)(bx+2a)(a,b∈R)满足条件f(-x)=f(x),定义域为R,值域为(-∞,4],则函数解析式f(x)=________.答案-2x2+4解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2.∵f(-x)=f(x),∴2a+ab=0,∴f(x)=bx2+2a2.∵f(x)的定义域为R,值域为(-∞,4],∴b<0,且2a2=4,∴b=-2,∴f(x)=-2x2+4.思维升华求二次函数解析式的三个策略:(1)已知三个点的坐标,宜选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式;(3)已知图象与x轴的两交点的坐标,宜选用零点式.跟踪训练2(1)已知f(x)为二次函数,且f(x)=x2+f′(x)-1,则f(x)等于()A.x2-2x+1B.x2+2x+1C.2x2-2x+1D.2x2+2x-1答案B解析设f(x)=ax2+bx+c(a≠0),则f ′(x )=2ax +b , 由f (x )=x 2+f ′(x )-1可得ax 2+bx +c =x 2+2ax +(b -1),所以⎩⎨⎧ a =1,b =2a ,c =b -1,解得⎩⎨⎧a =1,b =2,c =1,因此,f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),且图象被x 轴截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )的解析式为________. 答案f (x )=x 2-4x +3解析∵f (2+x )=f (2-x )对任意x ∈R 恒成立, ∴f (x )图象的对称轴为直线x =2, 又∵f (x )的图象被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3, 设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), ∵f (x )的图象过点(4,3), ∴3a =3,∴a =1,∴所求函数的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.题型三 二次函数的图象与性质 命题点1二次函数的图象例3设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是()答案D解析因为abc >0,二次函数f (x )=ax 2+bx +c ,那么可知, 在A 中,a <0,b <0,c <0,不符合题意; B 中,a <0,b >0,c >0,不符合题意; C 中,a >0,c <0,b >0,不符合题意,故选D. 命题点2二次函数的单调性与最值 例4已知函数f (x )=x 2-tx -1.(1)若f (x )在区间(-1,2)上不单调,求实数t 的取值范围; (2)若x ∈[-1,2],求f (x )的最小值g (t ).解f (x )=x 2-tx -1=⎝⎛⎭⎪⎫x -t 22-1-t 24.(1)依题意,-1<t2<2,解得-2<t <4,∴实数t 的取值范围是(-2,4).(2)①当t2≥2,即t ≥4时,f (x )在[-1,2]上单调递减,∴f (x )min =f (2)=3-2t . ②当-1<t2<2,即-2<t <4时,f (x )min =f ⎝ ⎛⎭⎪⎫t 2=-1-t 24.③当t2≤-1,即t ≤-2时,f (x )在[-1,2]上单调递增,∴f (x )min =f (-1)=t .综上有g (t )=⎩⎪⎨⎪⎧t ,t ≤-2,-1-t 24,-2<t <4,3-2t ,t ≥4.延伸探究本例条件不变,求当x ∈[-1,2]时,f (x )的最大值G (t ). 解f (-1)=t ,f (2)=3-2t ,f (2)-f (-1)=3-3t , 当t ≥1时,f (2)-f (-1)≤0, ∴f (2)≤f (-1), ∴f (x )max =f (-1)=t ; 当t <1时,f (2)-f (-1)>0, ∴f (2)>f (-1), ∴f (x )max =f (2)=3-2t ,综上有G (t )=⎩⎨⎧t ,t ≥1,3-2t ,t <1.教师备选1.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论正确的是________.(填序号)①当x >3时,y <0;②4a +2b +c =0; ③-1≤a ≤-23;④3a +b >0.答案①③解析依题意知,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ), ∴函数与x 轴的另一交点为(3,0), ∴当x >3时,y <0,故①正确;当x =2时,y =4a +2b +c >0,故②错误;∵抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),且a <0, ∴a -b +c =0,∵b =-2a ,∴a +2a +c =0, ∴3a +b <0,c =-3a , ∵2≤c ≤3,∴2≤-3a ≤3, ∴-1≤a ≤-23,故③正确,④错误.2.(2022·沈阳模拟)已知f (x )=ax 2-2x +1. (1)若f (x )在[0,1]上单调,求实数a 的取值范围; (2)若x ∈[0,1],求f (x )的最小值g (a ). 解(1)当a =0时,f (x )=-2x +1单调递减; 当a >0时,f (x )的对称轴为x =1a ,且1a>0,∴1a≥1,即0<a ≤1;当a <0时,f (x )的对称轴为x =1a 且1a<0,∴a <0符合题意. 综上有,a ≤1.(2)①当a =0时,f (x )=-2x +1在[0,1]上单调递减, ∴f (x )min =f (1)=-1.②当a >0时,f (x )=ax 2-2x +1的图象开口方向向上,且对称轴为x =1a.(ⅰ)当1a<1,即a >1时,f (x )=ax 2-2x +1图象的对称轴在[0,1]内,∴f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,1上单调递增.∴f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a+1=-1a +1.(ⅱ)当1a≥1,即0<a ≤1时,f (x )在[0,1]上单调递减.∴f (x )min =f (1)=a -1.③当a <0时,f (x )=ax 2-2x +1的图象的开口方向向下,且对称轴x =1a<0,在y 轴的左侧,∴f (x )=ax 2-2x +1在[0,1]上单调递减. ∴f (x )min =f (1)=a -1.综上所述,g (a )=⎩⎨⎧a -1,a ≤1,-1a +1,a >1.思维升华 二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.跟踪训练3(1)若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均单调递增,则实数a 的取值范围是() A.⎣⎢⎡⎦⎥⎤-113,-3B .[-6,-4] C .[-3,-22] D .[-4,-3] 答案B解析∵f (x )为偶函数,∴f (x )在[1,2]上单调递减,在[3,+∞)上单调递增, 当x >0时,f (x )=x 2+ax +2, 对称轴为x =-a 2,∴2≤-a2≤3,解得-6≤a ≤-4.(2)(2022·汉中模拟)已知函数f (x )=-x 2+2x +5在区间[0,m ]上有最大值6,最小值5,则实数m 的取值范围是________. 答案[1,2]解析由题意知,f (x )=-(x -1)2+6, 则f (0)=f (2)=5=f (x )min ,f (1)=6=f (x )max ,函数f (x )的图象如图所示,则1≤m ≤2.课时精练1.若f (x )是幂函数,且满足f (4)f (2)=3,则f ⎝ ⎛⎭⎪⎫12等于() A .3B .-3C.13D .-13答案C解析设f (x )=x α,则4α2α=2α=3,∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12α=13.2.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为() A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x 答案B解析二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点, 设二次函数为g (x )=ax 2+bx , 可得⎩⎨⎧a +b =1,a -b =5,解得a =3,b =-2,所求的二次函数为g (x )=3x 2-2x .3.(2022·延吉检测)若函数y =(m 2-3m +3)·224m m x +-为幂函数,且在(0,+∞)上单调递减,则实数m 的值为() A .0B .1或2C .1D .2 答案C解析由于函数y =(m 2-3m +3)224mm x +-为幂函数,所以m 2-3m +3=1,解得m =1或m =2,当m =1时,y =x -1=1x,在(0,+∞)上单调递减,符合题意.当m =2时,y =x 4,在(0,+∞)上单调递增,不符合题意.4.已知函数f (x )=x 2-2mx -m +2的值域为[0,+∞),则实数m 的值为() A .-2或1B .-2C .1D .1或2 答案A解析因为f (x )=x 2-2mx -m +2=(x -m )2-m 2-m +2≥-m 2-m +2,且函数f (x )=x 2-2mx -m +2的值域为[0,+∞),所以-m 2-m +2=0,解得m =-2或m =1.5.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1.下面四个结论中正确的是()A .b 2<4acB .2a -b =1C .a -b +c =0D .5a <b 答案D解析因为二次函数y =ax 2+bx +c 的图象过点A (-3,0),对称轴为直线x =-1,所以⎩⎨⎧-b 2a =-1,9a -3b +c =0,解得⎩⎨⎧b =2a ,c =-3a ,因为二次函数的图象开口方向向下,所以a <0,对于A ,因为二次函数的图象与x 轴有两个交点,所以b 2-4ac =4a 2+12a 2=16a 2>0, 所以b 2>4ac ,故选项A 不正确; 对于B ,因为b =2a ,所以2a -b =0,故选项B 不正确;对于C ,因为a -b +c =a -2a -3a =-4a >0, 故选项C 不正确; 对于D ,因为a <0,所以5a <2a =b ,故选项D 正确.6.若二次函数y =kx 2-4x +2在区间[1,2]上是单调递增函数,则实数k 的取值范围是() A .[2,+∞) B.(2,+∞) C .(-∞,0) D .(-∞,2) 答案A解析二次函数y =kx 2-4x +2图象的对称轴为直线x =2k,当k >0时,要使函数y =kx 2-4x +2在区间[1,2]上是增函数,只需2k ≤1,解得k ≥2;当k <0时,2k<0,此时抛物线的对称轴在区间[1,2]的左侧,则函数y =kx 2-4x +2在区间[1,2]上是减函数,不符合要求.综上可得实数k 的取值范围是[2,+∞).7.(2022·张家口检测)已知幂函数f (x )=mx n +k 的图象过点⎝ ⎛⎭⎪⎫116,14,则m -2n +3k =________. 答案0解析因为f (x )是幂函数, 所以m =1,k =0,又f (x )的图象过点⎝ ⎛⎭⎪⎫116,14,所以⎝ ⎛⎭⎪⎫116n =14,解得n =12,所以m -2n +3k =0.8.已知函数f (x )=4x 2+kx -8在[-1,2]上不单调,则实数k 的取值范围是________. 答案(-16,8)解析函数f (x )=4x 2+kx -8的对称轴为直线x =-k 8,则-1<-k8<2,解得-16<k <8.9.已知二次函数f (x )=ax 2+(b -2)x +3,且-1,3是函数f (x )的零点. (1)求f (x )的解析式,并解不等式f (x )≤3; (2)若g (x )=f (sin x ),求函数g (x )的值域.解(1)由题意得⎩⎪⎨⎪⎧-1+3=-b -2a ,-1×3=3a ,解得⎩⎨⎧a =-1,b =4,∴f (x )=-x 2+2x +3,∴当-x 2+2x +3≤3时,即x 2-2x ≥0, 解得x ≥2或x ≤0,∴不等式的解集为(-∞,0]∪[2,+∞). (2)令t =sin x ,则g (t )=-t 2+2t +3=-(t -1)2+4,t ∈[-1,1], 当t =-1时,g (t )有最小值0, 当t =1时,g (t )有最大值4,故g (t )∈[0,4].∴g (x )的值域为[0,4].10.(2022·烟台莱州一中月考)已知二次函数f (x )=ax 2+bx +c ,且满足f (0)=2,f (x +1)-f (x )=2x +1.(1)求函数f (x )的解析式;(2)当x ∈[t ,t +2](t ∈R )时,求函数f (x )的最小值g (t )(用t 表示).解(1)因为二次函数f (x )=ax 2+bx +c 满足f (0)=2,f (x +1)-f (x )=2x +1, 所以⎩⎨⎧ c =2,a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2x +1,即⎩⎨⎧ c =2,2ax +b +a =2x +1,所以⎩⎨⎧ c =2,2a =2,b +a =1,解得⎩⎨⎧ c =2,a =1,b =0,因此f (x )=x 2+2.(2)因为f (x )=x 2+2是图象的对称轴为直线x =0,且开口向上的二次函数, 当t ≥0时,f (x )=x 2+2在x ∈[t ,t +2]上单调递增,则f (x )min =f (t )=t 2+2;当t +2≤0,即t ≤-2时,f (x )=x 2+2在x ∈[t ,t +2]上单调递减,则f (x )min =f (t +2)=(t +2)2+2=t 2+4t +6;当t <0<t +2,即-2<t <0时,f (x )min =f (0)=2,综上g (t )=⎩⎨⎧ t 2+2,t ≥0,2,-2<t <0,t 2+4t +6,t ≤-2.11.(2022·安康模拟)已知函数f (x )=2x 2-mx -3m ,则“m >2”是“f (x )<0对x ∈[1,3]恒成立”的()A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件答案C解析若f (x )<0对x ∈[1,3]恒成立,则⎩⎨⎧ f (1)=2-4m <0,f (3)=18-6m <0,解得m >3,{m |m >3}是{m |m >2}的真子集,所以“m >2”是“f (x )<0对x ∈[1,3]恒成立”的必要不充分条件.12.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图象三等分,即有BM =MN =NA ,那么a -1b 等于()A .0B .1C.12D .2 答案A解析由BM =MN =NA ,点A (1,0),B (0,1),∴M ⎝ ⎛⎭⎪⎫13,23,N ⎝ ⎛⎭⎪⎫23,13, 将两点坐标分别代入y =x a ,y =x b ,得a =13log 23,b =23log 13, ∴a -1b =13log 23-2311log 3=0.13.(2022·江苏海安高级中学模拟)函数f (x )=x 2-4x +2在区间[a ,b ]上的值域为[-2,2],则b -a 的取值范围是________.答案[2,4]解析解方程f (x )=x 2-4x +2=2,解得x =0或x =4,解方程f (x )=x 2-4x +2=-2,解得x =2,由于函数f (x )在区间[a ,b ]上的值域为[-2,2].若函数f (x )在区间[a ,b ]上单调,则[a ,b ]=[0,2]或[a ,b ]=[2,4],此时b -a 取得最小值2;若函数f (x )在区间[a ,b ]上不单调,且当b -a 取最大值时,[a ,b ]=[0,4],所以b -a 的最大值为4.所以b -a 的取值范围是[2,4].14.设关于x 的方程x 2-2mx +2-m =0(m ∈R )的两个实数根分别是α,β,则α2+β2+5的最小值为________.答案7解析由题意有⎩⎨⎧ α+β=2m ,αβ=2-m ,且Δ=4m 2-4(2-m )≥0,解得m ≤-2或m ≥1, α2+β2+5=(α+β)2-2αβ+5=4m 2+2m +1,令f (m )=4m 2+2m +1,而f (m )图象的对称轴为m =-14, 且m ≤-2或m ≥1,所以f (m )min =f (1)=7.15.(2022·台州模拟)已知函数f (x )=(x 2-2x -3)·(x 2+ax +b )是偶函数,则f (x )的值域是________.答案[-16,+∞)解析因为f (x )=(x 2-2x -3)(x 2+ax +b )=(x -3)(x +1)(x 2+ax +b )是偶函数,所以有⎩⎨⎧ f (-3)=f (3)=0,f (1)=f (-1)=0,代入得⎩⎨⎧ 9-3a +b =0,1+a +b =0,解得⎩⎨⎧ a =2,b =-3.所以f (x )=(x 2-2x -3)(x 2+2x -3)=(x 2-3)2-4x 2=x 4-10x 2+9=(x 2-5)2-16≥-16.16.已知a ,b 是常数且a ≠0,f (x )=ax 2+bx 且f (2)=0,且使方程f (x )=x 有等根.(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n ),使得f (x )的定义域和值域分别为[m ,n ]和[2m ,2n ]? 解(1)由f (x )=ax 2+bx ,且f (2)=0,则4a +2b =0,又方程f (x )=x ,即ax 2+(b -1)x =0有等根,得b =1,从而a =-12, 所以f (x )=-12x 2+x . (2)假定存在符合条件的m ,n ,由(1)知f (x )=-12x 2+x =-12(x -1)2+12≤12, 则有2n ≤12,即n ≤14. 又f (x )图象的对称轴为直线x =1,则f (x )在[m ,n ]上单调递增,于是得⎩⎪⎨⎪⎧ m <n ≤14,f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧ m <n ≤14,-12m 2+m =2m ,-12n 2+n =2n ,解方程组得m =-2,n =0,所以存在m =-2,n =0,使函数f (x )在[-2,0]上的值域为[-4,0].。
幂函数1.幂函数:一般地,形如y=x a(a∈R)叫做幂函数,其中x是自变量,a是常数.要准确理解幂函数的定义,注意以下四点:(1)幂函数具有严格的形式,形如 y=mx a, y=(mx)a, y=x a+m,y=(x+m)a(以上m均为不等于零的常数,且前两个函数中的m也不等于1)的函数都不是幂函数,二次函数中只有y=x2是幂函数,其他的二次函数都不是幂函数,幂函数y=x a要满足三个特征:○1幂x a前的系数是1;○2底数只能是自变量x,指数是常数;○3项数只有一项,只有满足这三个特征,才是幂函数;(2)求函数解析式时,若已知待求函数是幂函数,则可根据待定系数法设函数为f(x)=x a,根据条件求出a即可.(3)不要把幂函数与指数函数混淆,幂函数的底数为自变量,指数为常数,而指数函数恰好相反,底数为常数,指数为自变量.当遇到一个有关幂的形式的问题时,要先看自变量所在的位置,然后决定是用幂函数知识解决,还是用指数函数知识解决.2.幂函数在第一象限的图象:幂函数在其他象限的图象,可由幂函数的奇偶性根据对称性做出.α=n/m (其中m∈N*,n∈Z且m,n互质).(1)当n为偶数时,f(x)为偶函数,其图象关于y轴对称.(2)当m,n都为奇数时,f(x)为奇函数,其图象关于原点对称.(3)当m为偶数,n为奇数时,f(x)为非奇非偶函数,其图象只能在第一象限.3.幂函数当α=1,2,3,0.5,-1时的图象与性质.(1)图象(如图所示)(2)性质(如表)4.幂函数的性质:(1)所有的幂函数在(0,+∞)上都有定义,并且图像都通过点(1,1);(2)如果a>0,则幂函数的图像过原点,并且在区间(0,+∞)上为增函数;(3)如果a<0,则幂函数的图像在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于零时,图像在y轴右方无限逼近y轴,当x趋向于无穷大时,图像在x轴上方无限逼近x轴;(4)当a为奇数时,幂函数为奇函数;当a为偶数时,幂函数为偶函数.(5)①α>0,图像都过定点(0,0)和(1,1);在区间(0,+∞)上单调递增;②α<0,图像都过定点(1,1);在区间(0,+∞)上单调递减;③当O<a<l时,曲线上凸,当a>l时,曲线下凸.④当a=l时,图象为过点(0,0)和(1,1)的直线.⑤当a=0时,y=x a表示过点(1,1)且平行于x轴的直线(除去点(0,1))5.幂函数图象的其他性质:(1)图象的对称性:把幂函数y=x a的幂指数a(只讨论a是有理数的情况)表示成既约分数的形式(整数看作是分母1的分数),则不论a>0还是a<0,幂函数y=x a的图象的对称性用口诀记为:“子奇母偶孤单单;母奇子偶分两边;分子分母均为奇,原点对称莫忘记”,(2)图象的形状:①若a>0,则幂函数y=x a的图象为抛物线形,当a>l时,图象在[0,+∞)上是向下凸的(称为凸函数);当O<a<l时,图象在[o,+∞)上是向上凸的(称为凹函数).②若a<0,则幂函数y=x“的图象是双曲线形,图象与x轴、y轴无限接近,在(0,+∞)上图象都是向下凸的。
基本初等函数——幂函数1.幂函数(1)定义:形如a y x =(a ∈R )的函数称为幂函数,其中底数x 是自变量,a 为常数.常见的五类幂函数为y x =,2y x =,3y x =,12y=x ,1y x -=.(2)五种幂函数的图象(3)性质①幂函数在(0,+∞)上都有定义;②当0a >时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当0a <时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 ①一般式:()2f x ax bx c ++=(0a ≠). ②顶点式:()2()f x a x m n −+=(0a ≠). ③零点式:()12()()f x a x x x x −−=(0a ≠). (2)二次函数的图象和性质12y=x题型1 幂函数的图象与性质1.(2020春•沈河区校级月考)设1234a ⎛⎫= ⎪⎝⎭,1443b ⎛⎫= ⎪⎝⎭,3423c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小顺序是( ) A .c a b <<B .c b a <<C .a c b <<D .b c a <<【分析】先判断1b >,再化a 、c ,利用幂函数的性质判断a 、c 的大小. 【解答】解:1124391416a ⎛⎫⎛⎫==< ⎪ ⎪⎝⎭⎝⎭,14413b ⎛⎫=> ⎪⎝⎭, 3144281327c ⎛⎫⎛⎫==< ⎪ ⎪⎝⎭⎝⎭; 且89012716<<<,函数14y x =在(0,+∞)上是单调增函数,所以1144892716⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以a c <; 综上知,c a b <<. 故选:A .2.(2019秋•杨浦区校级期末)幂函数()()()2231,mm f x a x a m −−=−∈N 为偶函数,且在(0,+∞)上是减函数,则a m += .【分析】先利用幂函数的定义和单调性求出a 的值和m 的范围,再结合偶函数确定m 的值,即可求出结果.【解答】解:∵幂函数()()()2231,m m f x a x a m −−=−∈N ,在(0,+∞)上是减函数,∴11a −=,且2230m m −−<, ∴2a =,13m −<<, 又∵m ∈N ,∵0,1,2m =, 又∵幂函数()f x 为偶函数,∵1m =,∵3a m +=, 故答案为:3.3.已知幂函数223()(22)()nnf x n n x n −=+−∈Z 的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .3−B .1C .2D .1或2【分析】本题考查幂函数的性质,根据幂函数的性质即可求解. 【解析】∵幂函数223()(22)nnf x n n x −=+−在(0,+∞)上是减函数,∴22221,30,n n n n ⎧+−=⎨−<⎩∴1n =,又1n =时,()2f x x -=的图象关于y 轴对称,故1n =.故选B.★幂函数的性质与图象特征的关系(1)幂函数的形式是()a y x a ∈R =,其中只有一个参数a ,因此只需一个条件即可确定其解析式.(2 )判断幂函数()a y x a ∈R =的奇偶性时,a 是分数时,一般将其先化为根式,再判断. (3)若幂函数a y x =在(0,+∞)上单调递增,则0a >,若在(0,+∞)上单调递减,则0a <. 题型2 二次函数的解析式1 .(2019秋•道里区校级月考)已知二次函数()()230f x ax bx a =++≠图象过点()3,0A −,对称轴为1x =.(1)求()y f x =的解析式;(2)若函数()y g x =满足()()21g x f x +=,求函数()y g x =的解析式.【分析】(1)根据条件即可得出933012a b b a−+=⎧⎪⎨−=⎪⎩,从而可解出12,55a b =−=,这样即可得出()212355f x x x =−++;(2)可根据题意得出()21221355g x x x +=−++,从而可设21x t +=,解出12t x −=,带入()21221355g x x x +=−++即可得出()2131120104g t t t =−++,t 换上x 即可得出()y g x =的解析式.【解答】解:(1)根据题意得,933012a b b a−+=⎧⎪⎨−=⎪⎩,解得1515a b ⎧=−⎪⎪⎨⎪=⎪⎩,∴∴()212355f x x x =−++;(2)由题意得,()21221355g x x x +=−++,设21x t +=,则12t x −=,∴()()()22111311320520104g t t t t t =−−+−+=−++, ∴()2131120104g x x x =−++.2.(一题多解)已知二次函数()f x 满足()21f −=,()11f −-=,且()f x 的最大值是8,试确定此二次函数的解析式. 【解】 法一:(利用一般式)设()()20f x ax bx c a =++≠. 由题意得2421,1,48,4a b c a b c ac b a⎧⎪++=⎪⎪−+=−⎨⎪−⎪=⎪⎩解得447.a b c =−⎧⎪=⎨⎪=⎩所以所求二次函数的解析式为()2447f x x x −++=. 法二:(利用顶点式)设()2()()0f x a x m n a −+≠=. 因为()(2)1f f −=, 所以抛物线的对称轴为()21122x +−==. 所以1=2m .又根据题意函数有最大值8,所以8n =,所以21()82f x a x ⎛⎫=−+ ⎪⎝⎭.因为f ()(2)1f f −=,所以2128=12a ⎛⎫−+− ⎪⎝⎭,解得4a =−,所以221()=48=4472f x x x x ⎛⎫−−+−++ ⎪⎝⎭.法三:(利用零点式)由已知()10f x +=的两根为12x =,21x =−, 故可设()())1(12f x a x x +=−+, 即()221f x ax ax a =−−−. 又函数有最大值8,即()2421=84a a a a−−.解得4a =−或0a =(舍去),所以所求函数的解析式为()2447f x x x −++=.3.(2019秋•贺州期中)已知一个二次函数()f x ,()04f =,()20f =,()40f =.求这个函数的解析式.【分析】先设出函数的表达式,再将函数值代入得到方程组,求出即可. 【解答】解:设()2f x ax bx c =++,∴44201640c a b v a b c =⎧⎪++=⎨⎪++=⎩,解得:124a b c ⎧=⎪⎪=−⎨⎪=⎪⎩,∴∴()21342f x x x =−+. ★求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:题型3 二次函数的图象与性质1.已知0abc >,则二次函数()2f x ax bx c =++的图象可能是( )AB【解析】 A 项,因为0a <,02ba−<,所以0b <. 又因为0abc >,所以0c >,而()00f c =<,故A 错. B 项,因为0a <,02ba−>,所以0b >. 又因为0abc >,所以0c <,而()00f c =>,故B 错. C 项,因为0a >,02ba−<,所以0b >.又因为0abc >, 所以0c >,而()00f c =<,故C 错. D 项,因为0a >,02ba−>,所以0b <,因为0abc >,所以0c <,而()00f c =<,故选D.2 .(2019秋•庐江县期末)函数223y x x =−+在闭区间[]0,m 上有最大值3,最小值为2,m 的取值范围是( )A .(],2−∞B .[]0,2C .[]1,2D .[)1,+∞【分析】本题利用数形结合法解决,作出函数()f x 的图象,如图所示,当1x =时,y 最小,最小值是2,当2x =时,3y =,欲使函数223y x x =−+在闭区间[]0,m 上的上有最大值3,最小值2,则实数m 的取值范围要大于等于1而小于等于2即可. 【解答】解:作出函数()f x 的图象,如图所示, 当1x =时,y 最小,最小值是2,当2x =时,3y =,函数2()23f x x x =−+在闭区间[]0,m 上上有最大值3,最小值2, 则实数m 的取值范围是[]1,2. 故选:C .CD3.(2019秋•吉安期末)函数()()22213f x x a x =−−++在区间[]2,3上是增函数,则a 的取值范围是( )A .13,2⎛⎤−∞− ⎥⎝⎦B .13,2⎛⎤−∞ ⎥⎝⎦C .13,2⎡⎫−+∞⎪⎢⎣⎭D .13,2⎡⎫+∞⎪⎢⎣⎭【分析】函数2()2(21)3f x x a x =−−++的对称轴214a x +=−,从而2134a +−≥,由此能求出a 的取值范围.【解答】解:函数()()22213f x x a x =−−++在区间[]2,3上是增函数,函数()()22213f x x a x =−−++的对称轴214a x +=−, ∴2134a +−≥, 解得132a −≤.∴a 的取值范围是13,2⎛⎤−∞− ⎥⎝⎦.故选:A .4.(2019秋•宜昌期末)函数221y x x =−−在闭区间[]0,3上的最大值与最小值的和是( )A .1−B .0C .1D .2【分析】函数221y x x =−−是一条以1x =为对称轴,开口向上的抛物线,在闭区间[]0,3上y先减后增,所以当1x =时,函数取最小值;当3x =时,函数取最大值,代入计算即可 【解答】解:()222112y x x x =−−=−− ∴当1x =时,函数取最小值2−, 当3x =时,函数取最大值2 ∴最大值与最小值的和为0 故选:B .5.(2019秋•长春期末)已知函数()()22f x x x a x =++∈R .(1)若函数()f x 的值域为[)0,+∞,求实数a 的值;(2)若()0f x >对任意的[)1,x ∈+∞成立,求实数a 的取值范围. 【分析】(1)根据函数的值域可知0=△,解出a 即可;(2)利用分离参数法表示出22a x x >−−,求出22x x −−的取值范围即可. 【解答】解:(1)函数()()22f x x x a x =++∈R 的值域为[)0,+∞,∴22410a =−⨯⨯=△, ∴1a =.(2)∵()0f x >对任意的[)1,x ∈+∞成立, ∴220x x a ++>对任意的[)1,x ∈+∞成立, ∴22a x x >−−对任意的[)1,x ∈+∞成立, 又当[)1,x ∈+∞时,()22max21213x x −−=−−⨯=−,∴3a >−.即所求实数的取值范围是()3,−+∞.★1.识别二次函数图象应学会“三看”★2.二次函数的单调性问题(1)对于二次函数的单调性,关键是看图象的开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的图象的对称性转化到同一单调区间上比较.★3.二次函数的最值问题(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.(2)二次函数的单调性问题主要依据二次函数图象的对称轴进行分类讨论求解.★4.由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2 )两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:()a f x ≥恒成立()max a f x ⇔≥,()a f x ≤恒成立()min a f x ⇔≤.1.(2020春•本溪月考)已知幂函数()()()22421mm f x m x m −+=−∈R ,在()0,+∞上单调递增.设5log 4a =,15log 3b =,0.20.5c −=,则()f a ,()f b ,()f c 的大小关系是( )看函数选象上的一些特殊点,如函数选象与y 选的交点、与x 选的交点、函数选象的最高点或最低点等看选称选和最选。