(4)集合的补
全集I中所有不属A于 的元素构成的集合,
称为A的补集,记A为 c,即
Ac {x| xI且xA}
微积分第一章的
(5) 集合的直积或笛卡儿(Descartes)乘积
设 有 集 A和B 合 , 则 集 合 AB{(x,y)xA,yB}
称为集合A与集合B的笛卡儿乘积(或直积)
如:R 2 (x ,y )x R ,y R
微积分第一章的
课程要求
(一)要学会自已管理自已,养成良好的学习风气. (二)教学进度较快,要逐步适应与中学不同的教学方 法.每次课都要及时预习复习,所学内容,要及时消化. ( 三)高等数学关注的重点是对定义,定理的理解,方 法的掌握和公式的记忆.(对学经管的学生来说,定理的 证明较次要,但通过定理的证明可以加深理解,开拓思路)
表示 xOy平面上全体点的集合.
同理: R 3 ( x ,y ,z )x R ,y R ,z R
表示 空间 全体点的集合.
微积分第一章的
三、区间和邻域
区间: 是指介于某两个实数之间的全体实数.
这两个实数叫做区间的端点. 有限区间
a ,b R ,且 a b .
{xaxb} 称为开区间, 记作 (a,b)
微积分第一章的
21世纪培养的各类专业技术人才,应该具有将他 所涉及的专业实际问题建立数学模型的能力,这样才 能在实际工作中发挥更大的创造性.所以为了培养学 生的定量思维能力和创造能力,就必须在数学教育中 培养学生的建模能力与数值计算含数据处理的能力, 加强在应用数学方面的教育.使学生具有应用数学知 识解决实际问题的意识和能力.
(2)集合的交
设有集A和 合B,由 A和B的所有公共元素构 集合,称 A与为 B的交,记 A为 B,即