地球化学讲义 第五章同位素地球化学(中国地质大学)
- 格式:ppt
- 大小:1.03 MB
- 文档页数:79
DOI:10.3772/j.issn.1009-5659.2012.22.030沧海桑田,时过境迁,曾经的海洋崛起为世界屋脊。
地质的变迁犹如一幕漫长的戏剧,在这片大地上无声的上演,在地质演化史上,随意的一个岩层、一个样品动辄几百万年,甚至数亿年。
跟漫长的地质演化史比起来,人的一生转瞬即逝,谁能将几十亿年的历史掌握在自己心中?中国地质大学陈岳龙教授,是我国著名的同位素地球化学研究领域的专家,他以同位素为技术手段,探索漫长的地质演化史。
他用隐藏在岩层中的蛛丝马迹,还原一个数十亿年的区域地质演化史。
碎屑沉积岩研究的突破进展地球化学是研究地球的化学组成、化学作用和化学演化的科学,它是地质学与化学相结合而产生和发展起来的边缘学科。
地球化学的理论和方法,对地球科学的基本问题及矿产的寻找、评价和开发,农业发展和环境科学等都不可或缺。
陈岳龙1983年毕业于东华理工大学(原抚州地质学院、华东地质学院、东华理工学院)岩石矿物本科,获工学学士学位;1983~1990年间先后在中国科学院地球化学研究所攻读硕士、博士研究生,分别获理学硕士、博士学位。
1990年进入中国地质大学(北京)地球化学博士后流动站从事秦岭造山带花岗岩类地球化学研究。
1993年开始,陈岳龙在中国地质大学(北京)地球科学与资源学院先后任副教授、教授,从事地球化学方面的教学与科研工作。
从之前的求学到如今从事教学和科研工作,陈岳龙对地球化学这门边缘学科始终抱有极大的热情,他把这种热情倾注到科研中,倾注在三尺讲台。
科研不能闭门造车,要把眼光投向国际前沿。
陈岳龙在自己做科研的同时,又以前瞻性关注学科的最新动向,与国际同行做深入的交流,在学习与交流中不断地提升自己。
1998~2000年,他在日本大阪大学分别任日本学术振兴会外国人特别研究员、中国留学基金访问学者,2005年9月至2006年3月在澳大利亚国立大学、阿德来得大学任中国留学基金高级访问学者。
碎屑沉积物是指由地表流体所携带的源区岩石、矿物颗粒物当流动条件发生改变时,这些颗粒物在流体底部界面沉淀下来所形成的产物,一般携带这些颗粒物的流体是水流。
分馏系数分馏系数表示同位素的分馏程度,反映了两种物质或两种物相之间同位素相对富集或亏损程度。
在自然界,分馏系数是指两种矿物或两种物相之间的同位素比值之商。
其表达式为:□ A-B=RA/RB式中A和B表示两种物质(物相),R代表重同位素对轻同位素的比值,如18O/16O,13C/12C等。
□ 值偏离1愈大,说明两种物质之间的同位素分馏程度也就愈大;□=1时,物质间没有同位素分馏。
δ值稳定同位素组成常用δ值表示,δ值指样品中某元素的稳定同位素比值相对标准(标样)相应比值的千分偏差。
其公式为□δ值能清楚地反映同位素组成的变化,样品的δ值愈高,反映重同位素愈富集。
样品的δ值总是相对于某个标准而言的,同一个样品,对比的标准不同得出的δ值各异。
所以必须采用同一标准;或者将各实验室的数据换算成国际公认的统一标准,这样获得的δ值才有实际应用价值。
比较普遍的国际公认标准为:①SMOW,即标准平均海洋水,作为氢和氧的同位素的国际统一标准;② PDB,是美国南卡罗来纳州白垩系皮狄组地层内的似箭石,一种碳酸钙样品,用作碳同位素的国际统一标准,有时也作为沉积碳酸盐氧同位素的标准;③CDT,是美国亚利桑纳州迪亚布洛峡谷铁陨石中的陨硫铁,用作硫同位素的国际统一标准。
稳定同位素实验研究表明,大多数矿物对体系(矿物-矿物)或矿物-水体系,在有地质意义的温度范围内,103ln□ 值与T 2成反比,T为绝对温度。
103ln□ 值可以近似地用两种物质的δ差值表示,即δ-δB=ΔA-B≈103ln□A-B。
因此,只要测得样品的δ值,就可直接计算出103ln□值。
它同样表示物质间同位素分馏程度的大小,利用它可绘制同位素分馏曲线,拟合同位素分馏方程式和计算同位素平衡温度(见地质温度计)。
在稳定同位素地球化学研究中,H、C、O、S等研究较深入。
它们在天然物质中分布广泛,可形成多种化合物,由于它们的同位素质量数都比较小,相对质量差别大,因而同位素分馏更明显,这对确定地质体的成因及其物质来源和判明地质作用特征具有重要意义。
Mo同位素地球化学综述张洪求(东华理工大学地球科学学院,江西 南昌 330013)摘 要:随着样品纯化技术的改进以及多接收等离子体质谱仪发展(MC-ICP-MS),使得Mo同位素可以被精确地测定。
Mo同位素作为氧化还原的敏感元素,可用来示踪各种地质过程和演化历史:古环境演化、成矿物质来源和海洋Mo的循环等。
本文从Mo同位素的测试方法、自然界的分布、分馏机制和地质中的应用等方面进行了论述,系统总结Mo同位素地球化学特征。
关键词:Mo同位素;分馏机制;示踪中图分类号:P597 文献标识码:A 文章编号:1002-5065(2020)20-0170-2A review of Mo isotope geochemistryZHANG Hong-qiu(School of Earth Sciences, East China University of Technology,Nanchang 330013,China)Abstract: With the improvement of sample purification technology and the development of multi-receiving plasma mass spectrometer (MC-ICP-MS), Mo isotopes can be accurately determined. Mo isotopes, as sensitive elements of redox, can be used to trace various geological processes and evolutionary histories: ancient environmental evolution, mineral sources and ocean Mo cycles. This paper discusses the test method of Mo isotopes, the distribution of nature, the distillation mechanism and the application of geology, and systematically summarizes the geochemical characteristics of Mo isotopes. Keywords: Mo isotope; fractionation mechanism; tracer近年来,随着样品纯化技术的改进以及MC-ICP-MS 的发展,其高电离率和稳定的质量分馏行为特点,使得Mo 同位素组成的高精度测量成为可能。
同位素地球化学研究进展同位素地球化学是研究不同元素同位素组成及其在地球化学过程中的应用的学科领域。
随着科技的进步和研究方法的不断发展,同位素地球化学研究取得了许多重要进展。
本文将从同位素分馏、同位素示踪、同位素定年等方面介绍同位素地球化学研究的进展。
同位素分馏是指同一元素的不同同位素在地球化学过程中有选择地分离的现象。
同位素分馏的研究对于地球和行星的演化过程以及地球内部和外部物质循环过程有着重要的指示意义。
过去几十年,同位素分馏的研究主要集中在稳定同位素(如氢、氧、碳、氮等)和放射性同位素(如铀、钍、铅等)上。
研究表明,同位素分馏与地球化学过程密切相关,如同位素分馏可以揭示地球的形成和演化过程、大气和海洋中的物质循环过程、生物地球化学循环等。
近年来,随着新技术的发展,研究范围不断扩大,涵盖了更多的元素和同位素体系。
同位素示踪是利用同位素在地球化学过程中的特殊性质来追踪地球系统中的物质的流动和转化过程。
同位素示踪技术被广泛应用于环境、气候、生态、地质等领域的研究中。
近年来,同位素示踪研究的进展主要集中在气候变化、水资源和环境污染等方面。
例如,氧同位素和氢同位素广泛应用于追踪水体起源和循环过程,碳同位素和氮同位素用于研究气候变化和生物地球化学循环等。
同时,同位素示踪技术在环境和地质工程中的应用也得到了广泛关注。
同位素定年是利用一些具有放射性衰变性质的同位素来确定岩石、矿物和古代生物的年代。
同位素定年是地质学和考古学研究中非常重要的手段之一、传统的同位素定年方法主要包括放射性同位素定年(如铀-铅、钍-铅、锶-锶等)和稳定同位素定年(如碳-14、氚、钾-锶等)。
近年来,随着加速器质谱技术的发展,同位素定年的精确性和应用范围不断扩大。
例如,放射性同位素铀-铅定年可用于确定火山岩和古岩石的年代,碳-14定年可用于确定古代文物和化石的年代。
总的来说,同位素地球化学研究在过去几十年取得了许多重要进展,涉及的领域不断扩大。
地球化学中的同位素示踪和分析地球化学是研究地球化学元素地球内部和表层分布、地球化学过程及其规律的学科。
而同位素则是一种在化学和物理方面都具有重要意义的存在。
地球化学中的同位素示踪和分析,是通过同位素不同的浓度和比例来逐步研究地球物质的来源、演化和变化的过程。
在此过程中,地球化学家们可以获取大量有关地球构造、生物演化、古气候、古环境等重要信息。
本文将会探讨地球化学中的同位素示踪和分析的基本原理及其应用。
一、基本原理同位素是指具有相同原子序数(Z)但质量数(A)不同的原子。
同种元素的不同同位素,因为质量的差异而具有不同的化学特性和物理特性。
地球化学中,多数同位素其存在量非常稀少,可以利用现代分析技术对其进行测定,进而对地球物质进行示踪和分析。
在地球科学中,同位素示踪和分析的主要原理是利用同位素存在量不同的特性,对化学和地质过程进行追踪和研究。
具体而言,同位素示踪和分析是在分析样品中不同同位素存在量的基础上,研究样品来源、演化、变化等方面的科学方法。
地球化学中的同位素示踪可以分为两类,一种是稳定同位素示踪,另一种则是放射性同位素示踪。
稳定同位素示踪主要是利用稳定同位素在地球化学过程中不同的分馏效应,来推测样品中的某些地球化学过程,如元素演化,矿物相变,物种演化等。
放射性同位素示踪,则主要是利用放射性同位素的不同半衰期,来推测样品中年代和历史上某些事件的发生时间。
在同位素示踪的过程中,通常采用同位素比值的方法来获得与分析对象相关的信息。
同位素比值(R)是指两个同种元素不同同位素的存在量之比,可以根据比值的变化来推测样品中与分析对象相关的信息。
例如,碳同位素示踪就是利用炭素同位素比值中稳定同位素^13C和^12C的存在量差异,来推测样品中元素演化,动植物来源等信息。
二、应用地球化学中的同位素示踪和分析在地质学、生物学、气候学等领域都有着广泛的应用。
以下是一些常见的应用:1. 地球内部物质循环及元素分馏模型研究地球内部物质循环及元素分馏模型研究需要大量的岩石和矿物样品,利用稳定同位素的存在量差异,可以推测出岩石、矿物的成因和演化历史。
地球化学中的同位素分析技术在地球科学领域中,同位素分析技术是一项关键而广泛应用的技术。
同位素分析可以为我们解析地球系统的演化过程、研究地下水资源的动态变化、了解生物地球化学循环等提供重要的线索和信息。
本文将介绍地球化学中常用的同位素分析技术,包括质谱法、放射性同位素法和同位素比值法。
一、质谱法质谱法是一种常见的同位素分析技术,主要用于确定样品中各种同位素的相对丰度。
该技术基于样品中同位素的质量差异,通过质谱仪将样品中的同位素分离出来,并通过检测器进行检测和分析。
常用的质谱法包括质谱质谱法(MS-MS)和电感耦合等离子体质谱法(ICP-MS)。
质谱质谱法结合了质谱仪和质谱/质谱仪的优点,可以提高同位素测量的准确性和灵敏度。
而ICP-MS技术则可以同时测量多种元素的同位素组成,并具有高灵敏度和高分析速度的特点。
二、放射性同位素法放射性同位素法是一种基于放射性同位素衰变的分析技术。
每种放射性同位素都有其特定的半衰期,通过测量样品中放射性同位素的衰变速率,可以确定样品的年龄、起源等信息。
常用的放射性同位素包括铀、钍、铀系列等。
放射性同位素法在地质学、环境科学和考古学等领域得到广泛应用,为我们提供了研究地球演化和环境变化的重要工具。
三、同位素比值法同位素比值法是一种基于不同同位素的比例关系进行分析的技术。
通过测量样品中不同同位素的比值,可以获得一些关于样品来源和过程的信息。
常用的同位素比值法包括碳同位素比(δ13C)、氮同位素比(δ15N)和氧同位素比(δ18O)等。
这些同位素比值可以用于研究生物地球化学循环、古气候变化、水文地球化学等方面。
四、案例分析在一个地下水资源调查项目中,同位素分析技术被广泛应用。
研究人员采集了地下水样品,并使用质谱法测定了样品中各种同位素的浓度。
通过分析地下水中氧同位素比(δ18O)和氢同位素比(δ2H),研究人员可以判断水体的来源以及水文循环过程。
此外,还可以通过测量样品中放射性同位素的浓度,获得地下水的年龄和补给速率等信息。