不等式测试题及详解
- 格式:doc
- 大小:310.00 KB
- 文档页数:13
初中数学--《不等式》测试题(含答案)姓名:__________ 班级:__________考号:__________一、选择题(共40题)1、已知方程组的解x、y满足2x+y≥0,则m的取值范围是()A. B. C. D.2、已知且,则的取值范围为A.B.C.D.3、关于不等式的解集如图所示,的值是()A.0 B.2 C.-2 D.-4 4、若,则下列式子错误的是()A. B.C. D.5、如果 x>y,那么下列各式一定成立的是()A.ax>ay B.a2x>a2y C.x2>y2 D.a2+x>a2+y6、方程,当时,m的取值范围是()A、 B、 C、 D、7、不等式的负整数解有()A.1个 B.2个 C.3个 D.无数个8、若方程组的解,满足,则的取值范围是()A.B.C.D.9、不等式的解集是().A. B. C. D.10、若方程的解是负数,则的取值范围是()A. B. C. D.11、在数学表达式① -3<0 ② 4x+3y>0 ③ x=3 ④ x 2 +xy+y 2 ⑤x ≠ 5⑥x+2>y+3 中,是不等式的有 ( ) 个 .A . 1B . 2C . 3D . 412、不等式的解集在数轴上表示为()13、下列说法不一定成立的是()A .若,则B .若,则C .若,则D .若,则14、已知四个实数 a , b , c , d ,若 a>b , c>d ,则()A . a+c>b+dB . a-c>b-dC . ac>bdD .15、二次函数的图象过四个点,下列说法一定正确的是()A .若,则B .若,则C .若,则D .若,则16、下列式子:( 1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7 中,不等式的个数有()A . 2 个B . 3 个C . 4 个D . 5 个17、若三角形的三边长分别为3,4,x-1,则x的取值范围是()A.0<x<8 B.2<x<8 C.0<x<6 D.2<x<6 18、 x 与 3 的和的一半是负数,用不等式表示为 ( )A .x + 3 > 0B .x + 3 < 0C .( x + 3 )< 0D .( x + 3 )> 019、下面列出的不等式中,正确的是()A .“m 不是正数” 表示为 m<0B .“m 不大于3” 表示为 m<3C .“n 与 4 的差是负数” 表示为 n﹣4<0D .“n 不等于6” 表示为 n>620、下列说法错误的是 ( ).A .不等式 x-3>2 的解集是 x>5B .不等式 x<3 的整数解有无数个C . x=0 是不等式 2x<3 的一个解D .不等式 x+3<3 的整数解是 021、若 m>n ,则下列不等式正确的是()A . m﹣2<n﹣2B .C . 6m<6nD .﹣8m>﹣8n22、如果,那么下列不等式成立的是()A .B .C .D .23、不等式( 2a-1)x<2(2a-1 )的解集是 x>2 ,则 a 的取值范围是()A . a<0B . a<C . a<D . a>24、实数 a 、 b 、 c 满足 a > b 且 ac < bc ,它们在数轴上的对应点的位置可以是()A. B .C .D .25、以下所给的数值中,为不等式-2x + 3<0的解的是().A.-2 B.-1 C. D.226、如果a<0,ab<0,则|b-a+4|-|a-b-6|化简的结果为…………………………()(A)2 (B)-10 (C)-2 (D)2b-2a-227、若关于 x 的不等式的解集为,则 a 的取值范围是()A .B .C .D .28、下列说法正确的是()A . x =﹣ 3 是不等式 x >﹣ 2 的一个解B . x =﹣ 1 是不等式 x >﹣ 2 的一个解C .不等式 x >﹣ 2 的解是 x =﹣ 3D .不等式 x >﹣ 2 的解是 x =﹣ 129、已知 a>b ,则下列不等式中,正确的是 ( )A . -3a>-3bB .>C . 3-a>3-bD . a-3>b-330、下面说法正确的是 ( )A . x=3 是不等式 2x>3 的一个解B . x=3 是不等式 2x>3 的解集C . x=3 是不等式 2x>3 的唯一解D . x=3 不是不等式 2x>3 的解31、不等式 x<-2的解集在数轴上表示为( )A .B .C .D .32、如果a >b ,下列各式中正确的是()A .﹣2021 a >﹣ 2021 bB .2021 a < 2021 bC .a ﹣ 2021 >b ﹣ 2021D .2021 ﹣a > 2021 ﹣b33、已知三角形的三边长分别为 1,2,x ,则 x 的取值范围在数轴上表示为 ( )A .B .C .D .34、下列变形中,错误的是 ( )A .若 3a > 6 ,则 a > 2B .若-x > 1 ,则 x <-C .若- x < 5 ,则 x >- 5D .若x < 1 ,则 x < 335、下列说法中,错误的是 ( )A .不等式 x < 5 的整数解有无数多个B .不等式 x >- 5 的负整数解集有有限个C .不等式- 2x < 8 的解集是 x <- 4D .- 40 是不等式 2x <- 8 的一个解36、以下说法中正确的是()A .若 a>|b| ,则 a 2 > b 2B .若 a>b ,则<C .若 a>b ,则 ac 2 >bc 2D .若 a>b,c>d ,则 a﹣c>b﹣d37、已知,则下列不等式变形正确的是A .B .C .D .38、已知, 则下列不等式成立的是()A .B .C .D .39、若,且,则应满足的条件是()A. B. C. D.40、若 m - n < 0 ,则下列各式中正确的是 ( )A . m + p > n + pB . m - p > n - pC . p - m < p - nD . p - m >- n + p============参考答案============一、选择题1、 A2、 D3、 A4、 B5、 D6、 C7、 A8、A9、 A;10、 A11、 D【解析】根据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠” 等不等号表示不相等关系的式子是不等式,依次判断 6 个式子即可.【详解】根据不等式的定义 , 依次分析可得:−3<0,4x+3y>0,x≠5,x+2>y+3,4 个式子符合定义,是不等式,而 x=3 是等式,x 2 +xy+y 2 是代数式 .故答案为: D.【点睛】本题考查了不等式的定义,熟练掌握该知识点是本题解题的关键 .12、 C13、 C【详解】A .在不等式的两边同时加上 c ,不等式仍成立,即,故本选项错误;B .在不等式的两边同时减去 c ,不等式仍成立,即,故本选项错误;C .当c=0 时,若,则不等式不成立,故本选项正确;D .在不等式的两边同时除以不为 0 的,该不等式仍成立,即,故本选项错误.故选 C .14、 A【解析】根据不等式的性质及反例的应用逐项分析即可 .【详解】A. ∵ a>b , c>d ,∴ a+c>b+d ,正确;B. 如 a=3,b=1,c=2 , d=-5 时, a-c=1 , b-d =6 ,此时 a-c<b-d ,故不正确;C. 如 a=3,b=1,c=-2 , d=-5 时, ac=-6 , bd =-5 ,此时 ac<bd ,故不正确;D. 如 a=4,b=2,c=-1 , d=-2 时,,,此时,故不正确;故选 A.【点睛】本题考查了不等式的性质及举反例的应用,举反例是解选择题常用的一种方法,要熟练掌握 .15、 C【分析】求出抛物线的对称轴,根据抛物线的开口方向和增减性,根据横坐标的值,可判断出各点纵坐标值的大小关系,从而可以求解.【详解】解:二次函数的对称轴为:,且开口向上,距离对称轴越近,函数值越小,,A ,若,则不一定成立,故选项错误,不符合题意;B, 若,则不一定成立,故选项错误,不符合题意;C ,若,所以,则一定成立,故选项正确,符合题意;D ,若,则不一定成立,故选项错误,不符合题意;故选: C .【点睛】本题考查了二次函数的图象与性质及不等式,解题的关键是:根据二次函数的对称轴及开口方向,确定各点纵坐标值的大小关系,再进行分论讨论判断即可.16、 C【解析】根据不等式的定义,只要有不等符号的式子就是不等式,所以①②④⑥为不等式,共有 4 个,故选 C.17、 B18、 C【解析】“ 与 3 的和的一半是负数”用不等式表示为:.故选 C.19、 C【解析】根据各个选项的表示列出不等式,与选项中所表示的不等式对比即可 .【详解】A. “m 不是正数” 表示为故错误 .B. “m 不大于3” 表示为故错误 .C. “n 与 4 的差是负数” 表示为 n﹣4<0, 正确 .D. “n 不等于6” 表示为, 故错误 .故选 :C.【点睛】考查列不等式,解决本题的关键是理解负数是小于 0 的数,非负数是大于或等于 0 的数,不大于用数学符号表示是“≤”.20、 D【解析】解:A.不等式 x-3>2 的解集是 x>5 ,正确;B.不等式 x<3 的整数解有无数个,正确;C. x=0 是不等式 2x<3 的一个解,正确;D.不等式 x+3<3 的解集是 x<0 ,故 D 选项错误.故选 D.21、 B【分析】将原不等式两边分别都减 2 、都除以 4 、都乘以 6 、都乘以﹣ 8 ,根据不等式得基本性质逐一判断即可得.【详解】A 、将 m>n 两边都减 2 得: m﹣2>n﹣2 ,此选项错误;B 、将 m>n 两边都除以 4 得:,此选项正确;C 、将 m>n 两边都乘以 6 得: 6m>6n ,此选项错误;D 、将 m>n 两边都乘以﹣ 8 ,得:﹣ 8m<﹣8n ,此选项错误,故选 B.【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.22、 D根据不等式的性质即可求出答案.【详解】解:∵ ,∴ ,∵ ,∴ ,故选 D .【点睛】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型.23、 B【解析】仔细观察,( 2a-1)x<2(2a-1 ),要想求得解集,需把( 2a-1 )这个整体看作 x 的系数,然后运用不等式的性质求出,给出的解集是 x>2 ,不等号的方向已改变,说明运用的是不等式的性质 3 ,运用性质 3 的前提是两边都乘以( • 或除以)同一个负数,从而求出 a 的范围.【详解】∵不等式( 2a-1)x<2(2a-1 )的解集是 x>2,∴不等式的方向改变了,∴ 2a-1<0,∴ a<,故选 B.【点睛】本题考查了利用不等式的性质解含有字母系数的不等式,解题的关键是根据原不等式和给出的解集的情况确定字母系数的取值范围,为此需熟练掌握不等式的基本性质,也是正确解一元一次不等式的基础.24、 A根据不等式的性质,先判断 c 的正负.再确定符合条件的对应点的大致位置.【详解】解:因为 a > b 且 ac < bc ,所以 c < 0 .选项 A 符合 a > b , c < 0 条件,故满足条件的对应点位置可以是 A .选项 B 不满足 a > b ,选项 C 、 D 不满足 c < 0 ,故满足条件的对应点位置不可以是 B 、 C 、 D .故选 A .【点睛】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断 c 的正负.25、 D26、由a<0,ab<0,得b>0,∴b-a+4>0,a-b-6<0,∴原式=(b-a+4)-(6+b-a)=-2.【答案】C.27、 B【解析】根据不等式的性质,不等式两边都除以同一个负数,不等号方向改变,得出 a - 3<0,求出即可 .【详解】∵ (a - 3 )x > 2的解集为 x <,∴不等式两边同时除以 (a - 3 ) 时,不等号的方向改变,∴ a - 3<0,∴ a < 3 . 故答案选 B.【点睛】本题主要考查了不等式的性质,要逆向思维,从不等式的变号推出 (a - 3 ) < 0是本题的解题关键 .28、 B【分析】根据不等式解集和解的概念求解可得【详解】解: A . x =﹣ 3 不是不等式 x >﹣ 2 的一个解,此选项错误;B . x =﹣ 1 是不等式 x >﹣ 2 的一个解,此选项正确;C .不等式 x >﹣ 2 的解有无数个,此选项错误;D .不等式 x >﹣ 2 的解有无数个,此选项错误;故选: B .【点睛】本题主要考查不等式的解集,不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示,不等式的每一个解都在它的解集的范围内 .29、 D【解析】由题意可知,根据不等式的性质,看各不等式是加(减)什么数或乘(除)以哪个数得到的,用不用变号即可求解 .【详解】A.a>b,-3a<-3b ,故 A 错误;B.a>b,<,故 B 错误;C.a>b,3-a<3-b ,故 C 错误;D. a>b,a-3>b-3 ,故 D 正确;故答案为: D.【点睛】本题考查了不等式的性质,熟练掌握该知识点是本题解题的关键 .30、 A【解析】先解出不等式的解集,判断各个选项是否在解集内就可以进行判断.【详解】解不等式 2x>3 的解集是 x>,A. x=3 是不等式 2x>3 的一个解正确;B. x=3 不是不等式 2x>3 的全部解,因此不是不等式的解集,故错误;C. 错误;不等式的解有无数个;D. 错误 .故答案为 A.【点睛】本题考查了不等式的解集,熟练掌握该知识点是本题解题的关键 .31、 D【解析】A 选项中,数轴上表达的解集是:,所以不能选 A;B 选项中,数轴上表达的解集是:,所以不能选 B;C 选项中,数轴上表达的解集是:,所以不能选 C;D 选项中,数轴上表达的解集是:,所以可以选 D.故选 D.32、 C根据不等式的性质即可求出答案.【详解】解:A 、∵ a >b ,∴−2021 a <−2021 b ,故A 错误;B 、∵ a >b ,∴2021 a > 2021 b ,故B 错误;C 、∵ a >b ,∴ a ﹣ 2021 >b ﹣ 2021 ,故C 正确;D 、∵ a >b ,∴2021 ﹣a < 2021 ﹣b ,故D 错误;故选: D .【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.33、 A【解析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边可得: 1<x<3 ,然后在数轴上表示出来即可.【详解】∵ 三角形的三边长分别是 1,2,x,∴x 的取值范围是 1<x<3.故选 A.【点睛】本题考查三角形三边关系,在数轴上表示不等式的解集 , 解题的关键是熟练掌握三角形三边关系34、 B根据不等式的性质即可判断 .【详解】若 3a > 6 ,则 a > 2 ,故正确;若-x > 1 ,则 x <-,故错误;若- x < 5 ,则 x >- 5 ,故正确;若x < 1 ,则 x < 3 ,故正确,故选 B.【点睛】此题主要考查不等式的性质,解题的关键是熟知不等式的性质 .35、 C【解析】对于 A 、 B 选项,可分别写出满足题意的不等式的解,从而判断 A 、 B 的正误;对于 C 、 D ,首先分别求出不等式的解集,再与给出的解集或解进行比较,从而判断 C 、D 的正误 .【详解】A. 由 x < 5 ,可知该不等式的整数解有 4 , 3 , 2 , 1 , -1 , -2 , -3 , -4 等,有无数个,所以 A 选项正确,不符合题意;B. 不等式 x>−5 的负整数解集有−4 ,−3 ,−2 ,−1. 故正确 , 不符合题意;C. 不等式−2x<8 的解集是 x>−4, 故错误 .D. 不等式 2x<−8 的解集是 x<−4 包括−40 ,故正确 , 不符合题意;故选 :C.【点睛】本题是一道关于不等式的题目,需结合不等式的解集的知识求解;【解析】分析:根据实数的特点,可确定 a、|b|、a 2 、 b 2 均为非负数,然后根据不等式的基本性质或特例解答即可 .详解: A、若a>|b|,则a 2 > b 2 ,正确;B、若a>b,当a=1,b=﹣2时,则>,错误;C、若a>b,当c 2 =0时,则ac 2 =bc 2 ,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选 A.点睛:此题主要考查了不等式的性质,利用数的特点,结合不等式的性质进行判断即可,关键是注意不等式性质应用时乘以或除以的是否为负数或 0.37、 D【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】解: A 、已知如果 c>0, 则,如果 c=0, 则,如果 c < 0, 则,故 A 错误;B 、已知,不等式的两边都乘以 -2 ,不等号的方向改变,故 B 错误;C 、已知,不等式的两边都乘以 -1 ,不等号的方向改变,故 C 错误;D 、已知,不等式的两边都减去 2 ,不等号的方向不改变,故 D 正确;故选 D .【点睛】本题考查了不等式的基本性质,能在变换得时,把握不等式符号方向的变换,是解答此题的关键.【分析】根据不等式的性质逐项分析 .【详解】A 在不等式的两边同时减去 1 ,不等号的方向不变,故 A 错误;B 在不等式的两边同时乘以 3 ,不等号的方向不变,故 B 错误;C 在不等式的两边同时乘以 -1 ,不等号的方向改变,故 C 正确;D 在不等式的两边同时乘以,不等号的方向不变,故 D 错误 .【点睛】本题主要考查不等式的性质,( 1 )在不等式的两边同时加上或减去同一个数,不等号的方向不变;( 2 )在不等式的两边同时乘以或除以(不为零的数)同一个正数,不等号的方向不变;( 3 )在不等式的两边同时乘以或除以(不为零的数)同一个负数,不等号的方向改变 .39、 C40、 D【解析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 两边都加 (n+p) ,不等号的方向不变,故 A 错误;B. 两边都加 (n−p) ,不等号的方向不变,故 B 错误;C. 两边都加 (n−p) ,都乘以−1 ,不等号的方向改变,故 C 错误;D. 两边都加 (n−p) ,都乘以−1 ,不等号的方向改变,故 D 正确;故选: D.【点睛】考查不等式的基本性质,熟练掌握不等式的 3 个基本性质是解题的关键 .。
均值不等式测试题一、选择题1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( )A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( )A .x 2+1≥xB .112+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( )A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值224.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D.210 5.设a>0,b>0,则以下不等式中不恒成立的是( )A.(a+b )(ba 11+)≥4 B.a 3+b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D.b a b a -≥-6.下列结论正确的是( )A .当x>0且x ≠1时,lgx+x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x +x 1 ≥2 D .当0<x ≤2时,x -x1无最大值 7.若a 、b 、c>0且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( )A .13-B .13+C .223+D .223-二.填空题:8.设x>0,则函数y=2-x4-x 的最大值为 ;此时x 的值是 。
9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。
10.函数y=142-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=242+x x (x ≠0)的最大值是 ;此时的x 值为 _______________.三.解答题:12.函数y=log a (x+3)-1(a>0,a ≠1)的图象恒过定点A ,若点A 在直线mx+ny+1=0上,其中mn>0,求n m 11+的最小值为。
初中数学--《不等式》测试题(含答案)姓名:__________ 班级:__________考号:__________一、选择题(共40题)1、若不等式( a+1 ) x > a+1 的解集是 x < 1 ,则 a 必满足()A . a <﹣ 1B . a >﹣ 1C . a < 0D . a < 12、若,则下列各式中一定成立的是()A.B.C. D.3、已知 x=4 是不等式 mx-3m+2≤0 的解,且 x=2 不是这个不等式的解,则实数 m 的取值范围为()A .B .C .D .4、下列各项中,蕴含不等关系的是()A .老师的年龄是你的年龄的 2 倍B .小军和小红一样高C .小明岁数比爸爸小 26 岁D . x 2 是非负数5、如果,,那么下列不等式中成立的是()A .B .C .D .6、若,则下列不等式变形错误的是()A. B .C .D .7、若 x<y ,且 (a+5)x>(a+5)y ,则 a 的取值范围 ( )A .B .C .D .8、不等式的解集是()A.B.C.D.9、若不等式组无解,则不等式组的解集是()A .B .C .D .无解10、若-a>a,则a必为()A.负整数B.正整数C.负数D.正数11、若a>b,则下列各式中成立的是A.-3a>-3b B . C.a-3>b-3 D.2a+3<2b+312、不等式的解集在数轴上表示正确的是()13、已知a,b,c均为实数,若a>b,c≠0.下列结论不一定正确的是( ).A.a+c>b +c B.c-a>c-bC . D.a2>ab>b214、下列命题中,正确的是()A.若a>b,则ac2>bc2 B.若a>b,c=d则ac>bdC.若ac2>bc2,则a>b D.若a>b,c<d则15、关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣216、不等式-3x<9的解集为()A.x<-3;B. x>-3;C. x<3;D. x>3;17、已知关于x的不等式<6的解也是不等式>-1的解,则a的取值范围是()A.a≥-B.a>-C.-≤a<0D.以上都不正确18、下列选项中,可以用来说明命题“若|x|>1,则x>1”是假命题的反例是()A.x=﹣2 B.x=﹣1 C.x=1 D.x=219、已知,下列结论:① ;② ;③ 若,则;④ 若,则,其中正确的个数是()A . 1B . 2C . 3D . 420、如果点在第四象限,那么m的取值范围是().A. B. C. D.21、不等式8-2x>0的解集在数轴上表示正确的是()A. B.C.D.22、不等式2-1>3的解集是()A.>1B. 1C.>2D. 223、不等式的解集在数轴上表示正确的是()24、下列说法错的是()A .不等式<2的正整数解只有一个B.-2是不等式2-1<0的一个解C.不等式-3>9的解集是>-3D .不等式<10的整数解有无数个25、若,则下列各式中一定成立的是()A .B .C .D .26、我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3.如果=3,则满足条件的所有正整数x的个数有()A.2个 B.3个 C.4个 D.5个27、不等式的解集在数轴上表示正确的是()28、不等式2x-1≥3x一5的正整数解的个数为 ( )A.1 B.2 C.3 D.429、把不等式在数轴上表示出来,则正确的是( )A. B. C. D.30、不等式的解集是,那么a的取值范围是()A.B.C.D.31、无论x取何值,下列不等式总是成立的是()A.x+5>0 B.x+5<0 C.﹣(x+5)2<0 D.(x+5)2≥032、已知ab=4,若﹣2≤b≤﹣1,则a的取值范围是()A.a≥﹣4 B.a≥﹣2 C.﹣4≤a≤﹣1 D.﹣4≤a≤﹣233、一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1 C.x>3 D.x≥334、若a<b,则下列各式中一定正确的是A、ab<0B、ab>0C、a-b>0D、-a>-b35、不等式的解集是()A .B .C .D .36、若,则下列不等式中正确的是()A .B .C .D .37、不等式3x-6<3+x的正整数解有()个A.1B.2C.3D.438、不等式的解集为,则的值为()A.4 B.2 C . D .39、关于x的方程2a﹣3x=6的解是非负数,那么a满足的条件是()A.a>3 B.a≤3C.a<3 D.a≥3 40、不等式x<2在数轴上表示正确的是============参考答案============一、选择题1、 A【解析】由已知不等式的解集,利用不等式的基本性质判断即可确定出 a 的范围.【详解】∵不等式 (a+1)x>a+1 的解集是 x<1 ,∴ a+1<0 ,解得: a<−1.故选 A.【点睛】此题考查不等式的解集,解题关键在于掌握运算法则2、 A3、 A【分析】根据 x=4 是不等式 mx-3m+2≤0 的解,且 x=2 不是这个不等式的解,列出不等式,求出解集,即可解答.【详解】∵ x=4 是不等式 mx-3m+2≤0 的解,∴ 4m-3m+2≤0 ,解得:m≤-2 ,∵ x=2 不是这个不等式的解,∴ 2m-3m+2 > 0 ,解得: m < 2 ,∴ m≤-2 ,故选 A .【点睛】本题考查了不等式的解集,解决本题的关键是根据 x=4 是不等式 mx-3m+2≤0 的解,且 x=2 不是这个不等式的解,列出不等式,从而求出 m 的取值范围.4、 D【解析】分析:根据四个选项中描述的数量关系进行分析判断即可 .详解:A 选项中,语句“老师的年龄是你的 2 倍”描述的是“等量关系”;B 选项中,语句“小军和小红一样高”描述的是“等量关系”;C 选项中,语句“小明的岁数比爸爸小 26 岁”描述的是“等量关系”;D 选项中,语句“x 2 是非负数”描述的是“不等关系” .故选 D.点睛:读懂每个语句的含义,弄清其中所描述的数量间的关系是解答本题的关键 .5、 C【解析】已知 a>b,m<0,根据不等式的基本性质可得,,,,只有选项 C 正确,故选 C.6、 D【分析】根据不等式运算法则做出判断即可:【详解】解: A 、因为不等式两边同加一个数,不等式方向不变,不等式变形正确;B 、因为不等式两边同除以一个正数,不等式方向不变,不等式变形正确;C 、∵ ,∴ 不等式变形正确;D 、∵ ,∴ 不等式变形错误.故选 D .7、 C【解析】直接根据不等式的基本性质即可得出结论.【详解】,且,,即.故选 C.【点睛】本题考查的是不等式的性质,熟知不等式的两边同时乘以或除以同一个负数,不等号的方向改变是解答此题的关键.8、 C9、 C【分析】根据不等式组无解,得出 a > b ,进一步得出 3-a < 3-b ,即可求出不等式组的解集.【详解】解:∵不等式组无解,∴ a > b ,∴ -a < -b ,∴ 3-a < 3-b ,∴不等式组的解集是.故选: C【点睛】本题考查了求不等式组的方法,可以借助口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”求解集.解题的关键是根据已知得到 a > b ,进而得出 3-a < 3-b .10、 C;11、 C12、 C.提示:不等式2x+1>-3的解集是x>-2,故应选C.13、 D14、 C15、 D16、 B;17、 C18、 A【分析】由于反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【解答】解:因为x=﹣2满足|x|>1,但不满足x>1,所以x=﹣2可作为说明命题“若|x|>1,则x>1”是假命题的反例.故选A.19、 A【分析】根据不等式的性质分别判断即可.【详解】解:∵ a >b ,则① 当a =0 时,,故错误;② 当a < 0 ,b < 0 时,,故错误;③ 若,则,即,故错误;④ 若,则,则,故正确;故选 A .【点睛】本题考查了不等式的性质,解题的关键是掌握不等式两边发生变化时,不等号的变化.20、 D21、 C22、 C 解析:移项,得.合并同类项,得.系数化为1,得.23、 A 解析:不等式的解集为.故选A.24、 C【解析】解:A.不等式x<2的正整数解只有1,故A选项正确;B.2x-1<0的解集为x<,所以-2是不等式2x-1<0的一个解,故B选项正确;C.不等式-3x>9的解集是x<-3,故C选项错误;D.不等式x<10的整数解有无数个,故D选项正确.故选C.【难度】一般25、 A26、 B【考点】一元一次不等式组的整数解.【分析】根据已知得出3≤<4,求出x的范围,即可得出答案.【解答】解:根据题意得:3≤<4,解得:8≤x<11,正整数有8,9,10,共3个,故选B.27、 D 解析:不等式两边同乘6,得,即,所以在数轴上表示只有D项正确.28、 D;29、 A30、 B31、 D【考点】不等式的性质.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:A、∵x+5>0,∴x>﹣5,故本选项错误;B、∵x+5<0,∴x<﹣5,故本选项错误;C、∵﹣(x+5)2<0,∴x≠﹣5,故本选项错误;D、∵(x+5)2≥0,∴x为任意实数,故本选项正确.故选D.32、 D【考点】不等式的性质.【分析】根据已知条件可以求得b=,然后将b的值代入不等式﹣2≤b≤﹣1,通过解该不等式即可求得a的取值范围.【解答】解:由ab=4,得b=,∵﹣2≤b≤﹣1,∴﹣2≤≤﹣1,∴﹣4≤a≤﹣2.故选D.【点评】本题考查的是不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.33、 C【考点】在数轴上表示不等式的解集.【分析】根据不等式组的解集是大于大的,可得答案.【解答】解:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>3.故选:C.【点评】本题考查了不等式组的解集,不等式组的解集是大于大的.34、 D35、 A【解析】直接运用不等式的性质解答即可.【详解】解:x<1+2x<3.故答案为A.【点睛】本题考查了不等式的解法和不等式的性质,灵活运用不等式的性质是解答本题的关键.36、 C【解析】根据不等式的基本性质,分别判断四个答案中的不等式是否恒成立,可得结论.【详解】a <b ,则,故选项错误,则,故选项错误,则,故选项正确,则不成立,故选项错误故选 C.【点睛】本题考查不等式,熟练掌握不等式的基本性质是解题关键 .37、 D38、 B39、考点:一元一次方程的解;解一元一次不等式.分析:此题可用a来表示x的值,然后根据x≥0,可得出a的取值范围.解答:解:2a﹣3x=6x=(2a﹣6)÷3又∵x≥0∴2a﹣6≥0∴a≥3故选D点评:此题考查的是一元一次方程的根的取值范围,将x用a的表示式来表示,再根据x的取值判断,由此可解出此题.40、 A。
试卷第1页,总4页 不等式测试卷(各位同学,请自己安排2个小时考试,自己批阅统计好分数,在班级小程序拍照发给老师检查。
)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若0a b <<,则下列不等式不能成立的是( )A .11a b >B .11a b a >-C .|a|>|b|D .22a b >2.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( )A .[7,26]-B .[1,20]-C .[4,15]D .[1,15]3.关于x 的不等式22280x ax a --<(0a >)的解集为()12,x x ,且2115x x -=,则a = A .154 B .72 C .52 D .1524.设集合{}220A x x x =-->,{}2log 2B x x =≤,则集合()R C A B =I A .{}12x x -≤≤ B .{}02x x <≤ C .{}04x x <≤ D .{}14x x -≤≤ 5.若关于x 的不等式ax b 0->的解集是(),2∞--,则关于x 的不等式2ax bx 0+>的解集为( )A .()2,0-B .()(),02,∞∞-⋃+C .()0,2D .()(),20,∞∞--⋃+ 6.已知关于x 的不等式101ax x -<+的解集是11,2骣琪-琪桫,则a 的值为( ) A .2 B .2- C .12 D .12- 7.不等式20ax x c -+>的解集为}{|21x x -<<,函数2y ax x c =-+的图象大致为( ) A . B .。
2021年新高考数学总复习不等式测试卷及答案一、选择题1.下列说法正确的是( )A .若a >b ,c >d ,则a -c >b -dB .若ac >bc ,则a >bC .若a >b >0,则a +1b >b +1aD .若a ,b ∈R ,则a +b 2≥ab 答案 C解析 对于A ,a =8,b =2,c =7,d =-1,此时a -c =1,b -d =3,显然不成立; 对于B ,当c <0时,a <b ,显然不成立;对于C ,∵a >b >0,∴a +1b -b -1a =(a -b )+a -b ab=(a -b )⎝⎛⎭⎫1+1ab >0,∴a +1b >b +1a,显然成立; 对于D ,当a =b =-1时,显然不成立,故选C.2.不等式ax 2+bx +2>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <13,则a +b 等于( ) A .14 B .-14 C .-10 D .10答案 B解析 由题意可得,不等式ax 2+bx +2>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <13, 所以方程ax 2+bx +2=0的解为-12或13, 所以-b a =-16,2a =-16. 所以a =-12,b =-2,所以a +b =-14.故选B.3.已知a >0,b >0,若不等式3a +1b ≥m a +3b恒成立,则m 的最大值为( ) A .9 B .12 C .18 D .24答案 B解析 由3a +1b ≥m a +3b, 得m ≤(a +3b )⎝⎛⎭⎫3a +1b =9b a +a b +6.又9b a +a b+6≥29+6=12 ⎝⎛⎭⎫当且仅当9b a =a b ,即a =3b 时等号成立, ∴m ≤12,∴m 的最大值为12.4.不等式x 2-2x -2x 2+x +1<2的解集为( ) A .{x |x ≠-2}B .RC .∅D .{x |x <-2或x >2}答案 A解析 ∵x 2+x +1>0恒成立,∴原不等式⇔x 2-2x -2<2x 2+2x +2⇔x 2+4x +4>0⇔(x +2)2>0,∴x ≠-2.∴不等式的解集为{x |x ≠-2}.5.关于x 的不等式x 2-(m +1)x +(m +1)≥0对一切x ∈R 恒成立,则实数m 的取值范围为( )A .[-3,1]B .[-3,3]C .[-1,1]D .[-1,3]答案 D解析 ∵关于x 的不等式x 2-(m +1)x +(m +1)≥0对一切x ∈R 恒成立,∴Δ=(m +1)2-4(m +1)=(m +1)(m -3)≤0,解得-1≤m ≤3,∴实数m 的取值范围为[-1,3].故选D.6.设a >0,b >0,若a +b =1,则1a +1b的最小值是( ) A .4 B .8 C .2 D.14答案 A解析 由题意1a +1b =⎝⎛⎭⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·a b =4,当且仅当b a =a b ,即a =b =12时取等号.故选A.7.在1和17之间插入n -2个数,使这n 个数成等差数列,若这n -2个数中第一个为a ,第n -2个为b ,当1a +25b取最小值时,n 的值为( ) A .6 B .7 C .8 D .9答案 D。
人教版初中八年级数学《不等式》章节测试题一、单选题1、若a <b ,则下列各式中不成立的是( )A 、a+2<b+2B 、﹣3a <﹣3bC 、2﹣a >2﹣bD 、3a <3b 2、设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从小到大的顺序排列为( )A 、○□△B 、○△□C 、□○△D 、△□○3、贵阳市今年5月份的最高气温为27△,最低气温为18△,已知某一天的气温为t△,则下面表示气温之间的不等关系正确的是( )A 、18<t <27B 、18≤t <27C 、18<t≤27D 、18≤t≤274、如果不等式(a ﹣2)x >a ﹣2的解集是x <1,那么a 必须满足( ) A 、a <0 B 、a >1 C 、a >2 D 、a <25、若﹣<﹣,则a 一定满足是( )A 、a >0B 、a <0C 、a≥0D 、a≤06、若a 、b 是有理数,则下列说法正确的是( )A 、若a 2>b 2 ,则a >bB 、若a >b ,则a 2>b 2C 、若|a|>b ,则a 2>b 2D 、若|a|≠|b|,则a 2≠b 27、当1≤x≤2时,ax+2>0,则a 的取值范围是( )A 、a >﹣1B 、a >﹣2C 、a >0D 、a >﹣1且a≠0 8、(2016•大庆)当0<x <1时,x 2、x 、的大小顺序是( ) A 、x 2 B 、<x <x 2 C 、<x D 、x <x 2<二、填空题9、用不等式表示下列关系:x 的3倍与8的和比y 的2倍小: ___. 10、如果2x ﹣5<2y ﹣5,那么﹣x ﹣y (填“<、>、或=”) 11、下列判断中,正确的序号为_ ___ .△若﹣a >b >0,则ab <0; △若ab >0,则a >0,b >0;△若a >b ,c≠0,则ac >bc ;△若a >b ,c≠0,则ac 2>bc 2;△若a >b , c≠0,则﹣a ﹣c <﹣b ﹣c . 12、已知数a 、b 的对应点在数轴上的位置如图所示,则a ﹣3 __ _____b ﹣313、若关于x 的不等式(1﹣a )x >2可化为x >,则a 的取值范围是 。
高一数学测试题一、选择题:1.若R c b a ∈,,,且b a >,则下列不等式一定成立的是( D )A .c b c a -≥+B .bc ac >C .02>-ba cD .0)(2≥-c b a 2.若实数a 、b 满足a +b =2,是3a+3b的最小值是( B )A .18B .6C .23D .2433.函数y =3x 2+162+x 的最小值是(D ) A.32-3` B.-3 C.62 D.62-34.已知x>1,y>1,且lgx+lgy =4,则lgxlgy 的最大值是( A )A.4B.2C.1D.415.若角α,β满足-2π<α<β<2π,则2αβ-的取值范围是( C )A .(-π,0)B .(-π,π)C .(-23π,2π) D .(-π23,23π) 6.在的条件下,,00>>b a 三个结论:①22b a b a ab +≤+,②,2222b a b a +≤+ ③b a b a a b +≥+22, 其中正确的个数是( D )A .0B .1C .2D .37. 数列a n =1n(n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( B )A .-10B .-9C .10D .98. 已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bx x a -+>的解集为( B )A 、11{|}32x x -<<B 、11{|}32x x x <->或C 、{|32}x x -<<D 、{|32}x x x <->或9. 设a 、b ∈R +,且a +b =4,则有( B )A.1ab ≥12B.1a +1b ≥1C.ab ≥2D.1a 2+b 2≥1410. 在如图所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数z =x +ay 取得最小值的最优解有无数个,则yx -a的最大值是(B )A.23B.25C.16D.14二、填空题:11.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于__ n 2+1-12n ___.12. 若,x y 为非负整数,则满足4x y +≤的点(),x y 共有___15____ 个 .13. 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是 4 .14.已知点(-3,-1)和(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为 -7<a <24. . 15. 0,0,a b >>则a b +的最小值为 2 . 三、解答题:16. 若ABC ∆中,a ,b ,c 分别是C B A ∠∠∠,,的对边,且272cos 2sin 42=-+A C B .(Ⅰ)求A ∠;(Ⅱ)若7=a ,ABC ∆的面积为310,求b c +的值.解. (Ⅰ)由272cos 2sin42=-+A C B 得:72[1cos()]cos22B C A -+-=,可得:01cos 4cos 42=+-A A ,21cos =A ,3π=∠∴A .(Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-+=3sin 213103cos 27222ππbc bc c b 169)(2=+∴c b ,13=+∴c b .17.设2()f x ax bx =+,1(1)2f ≤-≤,2(1)4f ≤≤,(2)f -的取值范围.解:[]5,1018.解关于x 的不等式)0( 12)1(>>--a x x a解. 当01a <<时, 2{|2}1a x x a -<<-, 当 1a =时, x ∈∞(2,+),当1a >时,2(,)(2,)1a a --∞⋃+∞- 19.已知不等式111112log (1)1232123a a n n n n ++++>-++++ 对一切大于1的正整数n 都成立,求实数a 的取值范围。
第三章、一元一次不等式单元测试(难度:简单)参考答案与试题解析一.选择题(共10小题)1.在下列数学表达式:①﹣2<0,②2y﹣5>1,③m=1,④x2﹣x,⑤x≠﹣2,⑥x+1<2x ﹣1中,是不等式的有()A.2个B.3个C.4个D.5个【分析】根据不等式的定义,不等号有<,>,≤,≥,≠,选出即可.【解答】解:不等式是指不等号来连接不等关系的式子,如<,>,≠,所以不等式有:①②⑤⑥,等式有:③.故选:C.【点评】本题主要考查对不等式的意义的理解和掌握,能根据不等式的意义进行判断是解此题的关键.2.把不等式组(b<a<0)的解集表示在数轴上,正确的是()A.B.C.D.【分析】先根据b<a<0,在数轴上表示﹣a和﹣b,再把不等式组的解集在数轴上表示出来,找出符合条件的选项即可.【解答】解:∵b<a<0,∴﹣b>﹣a>0,∴不等式组的解集表示在数轴上为.故选:A.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.已知a<b,则下列不等式一定成立的是()A.<B.﹣2a<﹣2b C.a﹣1>b﹣1D.a+3>b+3【分析】根据不等式的性质分析判断.【解答】解:A、不等式a<b的两边同时除以3,不等号的方向不变,即,故此选项符合题意;B、不等式a<b的两边同时乘﹣2,不等号的方向改变,即﹣2a>﹣2b,故此选项不符合题意;C、不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,故此选项不符合题意;D、不等式a<b的两边同时加上3,不等号的方向不变,即a+3<b+3,故此选项不符合题意.故选:A.【点评】本题主要考查了不等式的性质.解题的关键是掌握不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.把一些书分给同学,设每个同学分x本.若____;若分给11个同学,则书有剩余.可列不等式8(x+6)>11x,则横线的信息可以是()A.分给8个同学,则剩余6本B.分给6个同学,则剩余8本C.分给8个同学,则每人可多分6本D.分给6个同学,则每人可多分8本【分析】根据不等式表示的意义解答即可.【解答】解:由不等式8(x+6)>11x,可得:把一些书分给几名同学,如果分给8个同学,则每人可多分6本;若每人分11本,则有剩余.故选:C.【点评】本题考查根据实际问题列不等式,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.5.用适当的符号表示“x的2倍加上5不大于x的3倍减去4”,正确的是()A.2(x+5)≤3(x﹣4)B.2(x+5)<3(x﹣4)C.2x+5<3x﹣4D.2x+5≤3x﹣4【分析】根据题意列出不等式即可.【解答】解:“x的2倍加上5不大于x的3倍减去4”表示为:2x+5≤3x﹣4.故选:D.【点评】本题考查了由实际问题抽象出一元一次不等,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.6.每年的6月5日为世界环境日.中国生态环境部将“共建清洁美丽世界”作为今年环境日的主题,旨在促进全社会增强生态环境保护意识,投身生态文明建设.某校学生会积极响应国家号召,组织七年级和八年级共100名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1800个,至少需要多少名八年级学生参加活动?设参加活动的八年级学生x名,由题意得()A.15x+20(100﹣x)≥1800B.15x+20(100﹣x)>1800C.20x+15(100﹣x)≥1800D.20x+15(100﹣x)≤1800【分析】设至少需要x名八年级学生参加活动,则参加活动的七年级学生为(100﹣x)名,由收集塑料瓶总数不少于1800个建立不等式即可.【解答】解:设八年级有x名学生参加活动,则七年级参加活动的人数为(100﹣x)名,根据题意,得:15(100﹣x)+20x≥1800,故选:C.【点评】本题考查了列一元一次不等式解实际问题的运用和解一元一次不等式,解答时由收集塑料瓶总数不少于1800个建立不等式是解题的关键.7.已知关于x的不等式组的所有整数解的和为﹣5,则m的取值范围为()A.﹣6<m≤﹣3或3<m≤6B.﹣6≤m<﹣3或3≤m<6C.﹣6≤m<﹣3D.﹣6<m≤﹣3【分析】分别求出每一个不等式的解集,根据不等式组的整数解的情况列出关于m的不等式,解之即可.【解答】解:由3x﹣m<0,得:x<,又x>﹣4,且不等式组所有整数解的和为﹣5,∴不等式组的整数解为﹣3、﹣2或﹣3、﹣2、﹣1、0、1,∴﹣2<≤﹣1或1<≤2,解得﹣6<m≤﹣3或3<m≤6,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.已知关于x的不等式组的解集中至少有5个整数解,则整数a的最小值为()A.2B.3C.4D.5【分析】表示出不等式组的解集,由解集中至少有5个整数解,确定出a的范围,进而求出整数a的最小值即可.【解答】解:不等式组整理得:,解得:﹣<x<a,∵不等式组解集中至少有5个整数解,即至少5个整数解为﹣1,0,1,2,3,∴a>3,则整数a的最小值为4.故选:C.【点评】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.9.若定义一种新的取整符号[],即[x]表示不超过x的最大整数.例如:[2.3]=2,[−1.6]=−2,则下列结论正确个数是()①[﹣2.1]+[0.1]=﹣3;②[x]+[−x]=0;③方程x﹣[x]=的解有无数多个;④若[x+1]=2,则x的取值范围是3≤x<4;A.1B.2C.3D.4【分析】①根据取整函数的定义,直接求出值;②取特殊值验证,证实或证伪;③在0到1的范围内,找到一个特殊值,进而可以找到无数个解;④把方程问题转化为不等式问题;【解答】解:对于①,[﹣2.1]+[0.1]=﹣3+0=﹣3,正确;对于②,由[0.5]+[﹣0.5]=0﹣1=﹣1,不正确;对于③,当x=,1,2,...时,方程均成立,正确;对于④,由[x+1]=2,得2≤x+1<3,即1≤x<2,不正确;故选:B.【点评】本题考查取整函数与一元一次不等式.解题的关键在于能够把取整函数的等式,转化为一元一次不等式问题去解决.10.已知关于x的不等式组有且只有三个整数解,且关于y的一元一次方程ay﹣4=2y有整数解,则所有满足条件的整数a值之和是()A.﹣1B.0C.1D.2【分析】先解出每个不等式的解集,即可得到该不等式组的解集,然后根据不等式组有且只有三个整数解,确定a的取值范围,再解一元一次方程,根据方程有整数解确定满足条件的a的值,从而求和.【解答】解:,解不等式5x﹣4<4﹣a,得:x<,∴不等式组的解集为﹣2<x<,又∵该不等式组有且只有三个整数解,∴1<≤2,解得:﹣2≤a<3,ay﹣4=2y,移项,得:ay﹣2y=4,合并同类项,得:(a﹣2)y=4,系数化1,得:y=,∵该方程有整数解,且a﹣2≠0,∴符合条件的整数a有﹣2、0、1,∴满足条件的整数a值之和是﹣2+0+1=﹣1.故选:A.【点评】本题考查解一元一次不等式组,解一元一次方程,理解解一元一次不等式组和解一元一次方程的步骤,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二.填空题(共6小题)11.不等式2x<﹣12的解集是x<﹣6.【分析】直接把未知数的系数化“1”即可.【解答】解:2x<﹣12,解得:x<﹣6,故答案为:x<﹣6.【点评】本题考查的是一元一次不等式的解法,掌握“解一元一次不等式的步骤”是解本题的关键.12.若a<b,那么﹣2a>﹣2b(填“>”“<”或“=”).【分析】根据不等式的性质3得出答案即可.【解答】解:∵a<b,∴﹣2a>﹣2b,故答案为:>.【点评】本题考查了不等式的性质,能熟记不等式的性质3(不等式的两边都乘同一个负数,不等号的方向改变)是解此题的关键.13.已知(k﹣5)x|k|﹣4﹣2y=1是关于x,y的二元一次方程,则k+1 不是(填“是”或“不是”)不等式x+2<2x﹣1的解.【分析】先根据二元一次方程的定义求出k的值,再求出不等式的解集即可判断.【解答】解:∵(k﹣5)x|k|﹣4﹣2y=1是关于x,y的二元一次方程,∴,解得k=﹣5;解不等式x+2<2x﹣1,得x>3,∵k+1=﹣5+1=﹣4<3,∴k+1不是不等式x+2<2x﹣1的解.故答案为:不是.【点评】本题考查了二元一次方程的定义以及不等式的解集,掌握二元一次方程的定义是解答本题的关键.14.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了3次才停止,则x的取值范围是2<x≤4.【分析】根据第二次运算结果不大于28,且第三次运算结果要大于28,列出关于x的一元一次不等式组,解之即可得出x的取值范围.【解答】解:依题意得:,解得:2<x≤4,故答案为:2<x≤4.【点评】本题考查一元一次不等式组的应用,解题的关键是理解题意,能列出不等式组.15.我国《劳动法》对劳动者的加班工资作出了明确规定,“五一”长假期间,前3天(5月1日至5月3日)是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的300%支付加班工资.后4天(5月4日至5月7日)是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资.小屈由于工作需要,今年5月2日、3日、4日共加班三天,已知小屈的日工资标准为247元,则小屈“五一”长假加班三天的加班工资应不低于1976元.【分析】设小屈“五一”长假加班三天的加班工资应不低于x元,由“前3天(5月1日至5月3日)是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的300%支付加班工资.后4天(5月4日至5月7日)是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资”,列出一元一次不等式,解不等式即可.【解答】解:设小屈“五一”长假加班三天的加班工资应不低于x元,由题意得:x≥2×247×300%+247×200%,解得:x≥1976(元),故答案为:1976.【点评】本题考查了一元一次不等式的应用,找准对应关系,列出一元一次不等式是解题的关键.16.已知三个实数a,b,c,满足a+2b+3c=9,2a﹣b﹣4c=﹣2,且a≥0,b≥0,c≥0,则4a+3b+c的最小值为17.【分析】有两个已知等式a+2b+3c=9,2a﹣b﹣4c=﹣2,可用其中一个未知数表示另两个未知数得,然后由条件:a、b、c均是非负数,可求出第一个未知数c的取值范围,代入m=3a+b﹣7c,即可得解.【解答】解:联立,解得,由题意知:a、b、c均是非负数,则,解得﹣1≤c≤2,所以4a+3b+c=4(1+c)+3(4﹣2c)+c=4+4c+12﹣6c+c=16﹣c当c=﹣1时,4a+3b+c有最小值,即4a+3b+c=16﹣(﹣1)=17.故答案为:17.【点评】此题主要考查不等式的性质、解三元一次方程组、代数式求值,涉及的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.三.解答题(共7小题)17.解下列不等式:(1);(2).【分析】根据解一元一次不等式的步骤解不等式即可.【解答】解:(1)两边同时乘以6得:6﹣2(8+x)≥3x,去括号得:6﹣16﹣2x≥3x,移项得:﹣2x﹣3x≥﹣6+16,合并同类项得:﹣5x≥10,把未知数系数化为1得:x≤﹣2;(2)两边同时乘以6得:2(2x+1)﹣(2﹣x)>3(x﹣1),去括号得:4x+2﹣2+x>3x﹣3,移项得:4x+x﹣3x>﹣3﹣2+2,合并同类项得:2x>﹣3,把未知数系数化为1得:x>﹣.【点评】本题考查解一元一次不等式,解题的关键是掌握解一元一次不等式的一般步骤.18.解不等式组:,并把解集在数轴上表示出来.【分析】先解出每个不等式的解集,再取公共解集即可.【解答】解:,解不等式①得:x<3,解不等式②得:x≥2,∴2≤x<3,把解集表示在数轴上:【点评】本题考查解一元一次不等式组,解题的关键是掌握取不等式公共解集的方法.19.下面是小虎同学解不等式的过程,请认真阅读并完成相应任务.解:去分母,得3(1+x)﹣2(2x+1)≤6………第一步去括号,得3+3x﹣4x﹣2≤6……………………………第二步移项,得3x﹣4x≤6﹣3+2………………………………第三步合并同类项,得﹣x≤5…………………………………第四步两边都除以﹣1,得x≤﹣5………………………………第五步任务:(1)上述解题过程中,第二步是依据乘法分配律(运算律)进行变形的;(2)第五步开始出现错误,这一步错误的原因是不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);(3)请直接写出该不等式的正确解集.【分析】(1)观察解不等式第二步的步骤即可求解;(2)观察解不等式的步骤,找出出错的步骤,分析其原因即可;(3)写出不等式正确解集即可.【解答】解:(1)上述解题过程中,第二步是依据乘法分配律(运算律)进行变形的;故答案为:乘法分配律;(2)第五步开始出现错误,这一步错误的原因是不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);故答案为:五,不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);(3)去分母,得3(1+x)﹣2(2x+1)≤6………第一步,去括号,得3+3x﹣4x﹣2≤6……………………………第二步,移项,得3x﹣4x≤6﹣3+2………………………………第三步,合并同类项,得﹣x≤5…………………………………第四步,两边都除以﹣1,得x≥﹣5………………………………第五步.【点评】此题考查了解一元一次不等式,熟练掌握不等式的基本性质是解本题的关键.20.某文教用品商店用1200元购进了甲、乙两种圆珠笔.已知甲种笔进价为每支12元,乙种笔进价为每支10元.文教店在销售时甲种笔售价为每支15元,乙种笔售价为每支12元,全部售完后共获利270元.(1)求这个文教店购进甲、乙两种笔各多少支;(2)若该文教商店以原价再次购进甲、乙两种笔,且购进甲种笔的数量不变,而购进乙种笔的数量是第一次的2倍,乙种笔按原售价销售,而甲种笔降价销售,当两种笔销售完毕时,要使再次购进的笔获利不少于340元,甲种笔最低售价每支应为多少元?【分析】(1)设商店购进甲种圆珠笔x支,乙种圆珠笔y支,根据其进价和利润建立等量关系列出方程组求出其解即可.(2)设甲种圆珠笔每只的售价为m元,就可以求出甲种圆珠笔每只的利润,表示出甲种圆珠笔的总利润再加上乙种圆珠笔的总利润就是两种圆珠笔销售完后的总利润,由题意就可以建立不等式.从而求出其解.【解答】解:(1)设商店购进甲种圆珠笔x支,乙种圆珠笔y支,由题意得,,解得.答:这个商店购进甲种圆珠笔50支,乙种圆珠笔60支.(2)设甲种笔每只的最低售价为m元,由题意得,50(m﹣12)+2×60(12﹣10)≥340,解得:m≥14.∵m为整数,∴m的最小值为14,故甲种笔每只的最低售价为每支14元.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确得出等式是解题关键.21.已知方程组的解x为非负数,y为非正数,求a的取值范围.【分析】解方程组得,根据“x为非负数,y为非正数”得出,解之即可.【解答】解:解方程组得,由题意知,,解得a≥3.【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.冰墩墩(如图)是2022年北京冬季奥运会的吉祥物.某商店购进冰墩墩手办和冰墩墩装饰扣若干个,已知每个冰墩墩装饰扣的进价是冰墩墩手办进价的,购进5个冰墩墩手办比购进4个冰墩墩装饰扣多花140元.(1)冰墩墩装饰扣和冰墩墩手办的进价各多少元?(2)若商店以相同的价格1200元分别购进冰墩墩装饰扣和冰墩墩手办若干个,其中冰墩墩装饰扣的售价要比冰墩墩手办的售价少30元,且销售完毕后获利不低于1100元,问每个冰墩墩手办的售价至少是多少元?【分析】(1)设冰墩墩装饰扣的进价为x元,冰墩墩手办的进价为y元,根据“每个冰墩墩装饰扣的进价是冰墩墩手办进价的,购进5个冰墩墩手办比购进4个冰墩墩装饰扣多花140元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用数量=总价÷单价,可求出购进冰墩墩装饰扣及冰墩墩手办的数量,设每个冰墩墩手办的售价为m元,则每个冰墩墩装饰扣的售价为(m﹣30)元,利用总利润=销售单价×销售数量﹣进货总价,结合销售完毕后获利不低于1100元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设冰墩墩装饰扣的进价为x元,冰墩墩手办的进价为y元,依题意得:,解得:.答:冰墩墩装饰扣的进价为40元,冰墩墩手办的进价为60元.(2)购进冰墩墩装饰扣的数量为1200÷40=30(个),购进冰墩墩手办的数量为1200÷60=20(个).设每个冰墩墩手办的售价为m元,则每个冰墩墩装饰扣的售价为(m﹣30)元,依题意得:20m+30(m﹣30)﹣1200﹣1200≥1100,解得:m≥88,∴m的最小值为88.答:每个冰墩墩手办的售价至少为88元.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.若不等式(组)只有n个正整数解(n为自然数),则称这个不等式(组)为n阶不等式(组).我们规定:当n=0时,这个不等式(组)为0阶不等式(组).例如:不等式x+1<6只有4个正整数解,因此称其为4阶不等式.不等式组只有3个正整数解,因此称其为3阶不等式组.请根据定义完成下列问题:(1)x<是0阶不等式;是1阶不等式组;(2)若关于x的不等式组是4阶不等式组,求a的取值范围;(3)关于x的不等式组的正整数解有a1,a2,a3,a4,…其中a1<a2<a3<a4<…如果是(m﹣3)阶不等式组,且关于x的方程2x﹣m=0的解是的正整数解a3,请求出m的值以及p的取值范围.【分析】(1)根据题目中的定义进行分析;(2)根据题目中的定义进行分析,可知整数解为1,2,3,4,从而可得出a的范围;(3)分析题意,可以利用特殊值法,看(m﹣3)是从第几个整数开始的,从而求解.【解答】解:(1)∵x<没有正整数解,∴x<是0阶不等式;由得1<x<3,∴有1个正整数解,∴是1阶不等式组,故答案为:0,1;(2)解不等式组得:1≤x<2a,由题意得:x有4个正整数解,为:1,2,3,4,∴4<2a≤5,解得:2<a≤2.5;(3)由题意得,m是正整数,且p≤x<m有(m﹣3)个正整数解,∴2<p≤3,=5,∴m=10.【点评】本题考查了一元一次不等式组的正整数解,理解题中的新定义是解题的关键.。
一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。
【高中数学】《不等式》考试知识点一、选择题1.设x ,y 满足102024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m的最小值为( ) A .125B .125-C .32D .32-【答案】B 【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.2.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y=-+的最大值为n,则2nxx⎛-⎪⎝⎭的展开式中2x项的系数为( )A.60 B.80 C.90 D.120【答案】B【解析】【分析】画出可行域和目标函数,根据平移得到5n=,再利用二项式定理计算得到答案.【详解】如图所示:画出可行域和目标函数,32z x y=-+,即322zy x=+,故z表示直线与y截距的2倍,根据图像知:当1,1x y=-=时,32z x y=-+的最大值为5,故5n=.52xx⎛-⎪⎝⎭展开式的通项为:()()35552155221rrr rr r rrT C x C xx---+⎛=⋅-=⋅⋅-⋅⎪⎝⎭,取2r=得到2x项的系数为:()225252180C-⋅⋅-=.故选:B.【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力. 3.关于x的不等式0ax b->的解集是(1,)+∞,则关于x的不等式()(3)0ax b x+->的解集是()A.(,1)(3,)-∞-+∞U B.(1,3)-C .(1,3)D .(,1)(3,)-∞+∞U【答案】A 【解析】 【分析】由0ax b ->的解集,可知0a >及1ba=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集. 【详解】由0ax b ->的解集为()1,+?,可知0a >且1ba=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U , 故选:A. 【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.4.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A .5 BCD【答案】C 【解析】 【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩,由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离, 所以AB ()()2242325-+-=故选:C . 【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.5.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=, 即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=,所以()2tan tan2tan2tan11tan tan13tan3tantanαββαβαββββ--===+++,又因为β为锐角,所以tan0β>,根据基本不等式213tantanββ≤=+当且仅当tanβ=时等号成立,因为,22ππαβ⎛⎫-∈-⎪⎝⎭,且函数tany x=在区间,22ππ⎛⎫-⎪⎝⎭上单调递增,则αβ-的最大值为6π.故选:B.【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.6.已知变量,x y满足240240x yx yx+-≥⎧⎪+-≤⎨⎪≥⎩,则24x y--的最小值为()A.5B.8C.15D.163【答案】D【解析】【分析】24x y--=表示点(,)x y到直线240x y--=的距离,作出可行域,数形结合即可得到答案.【详解】因为24x y--=,所以24x y--可看作为可行域内的动点到直线240x y--=点44(,)33A 到直线240x y --=的距离d 最小,此时224424333512d -⨯-==+, 所以24x y --的最小值为1653d =. 故选:D. 【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.7.若,,则( )A .B .C .D .【答案】C【解析】 【分析】 【详解】试题分析:用特殊值法,令,,得,选项A 错误,,选项B 错误,,选项D 错误,因为选项C 正确,故选C . 【考点】指数函数与对数函数的性质 【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.8.以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直,且该三棱锥外接球的表面积为8π,则以A 为顶点,以面BCD 为下底面的三棱锥的侧面积之和的最大值为( ) A .2 B .4 C .6 D .7 【答案】B 【解析】 【分析】根据题意补全几何图形为长方体,设AB x =,AC y =,AD z =,球半径为R ,即可由外接球的表面积求得对角线长,结合侧面积公式即可由不等式求得面积的最大值. 【详解】将以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直的三棱锥补形成为一个长方体,如下图所示:长方体的体对角线即为三棱锥A BCD -外接球的直径, 设AB x =,AC y =,AD z =,球半径为R , 因为三棱锥外接球的表面积为8π, 则284R π=π, 解得2R =,所以体对角线为2,所以2228x y z ++=,111222S yz xy xz =++侧面积 由于()()()()222222240x y zS x y y x x z ++-=-+-+-≥,所以416S ≤,故4S ≤,即三棱锥的侧面积之和的最大值为4, 故选:B. 【点睛】本题考查了空间几何体的综合应用,三棱锥的外接球性质及应用,属于中档题.9.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .42B .4C .22D .2【答案】B 【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.10.已知实数x ,y 满足20x y >>,且11122x y x y+=-+,则x y +的最小值为( ).A .335+ B 423+ C 243+ D 343+ 【答案】B 【解析】 【分析】令22x y m x y n-=⎧⎨+=⎩,用,m n 表示出x y +,根据题意知111m n +=,利用1的代换后根据基本不等式即可得x y +的最小值.【详解】20,20,20x y x y x y >>∴->+>Q ,令22x y m x y n -=⎧⎨+=⎩,解得2525m n x n my +⎧=⎪⎪⎨-⎪=⎪⎩,则0,0m n >>,111m n +=,223111555m n n m n m x y m n +-+⎛⎫⎛⎫∴+=+⨯=⨯+ ⎪⎪⎝⎭⎝⎭13113(455n m m n ⎛⎫=⨯+++≥⨯+ ⎪⎝⎭=当且仅当3n mm n=,即m =,即22)x y x y -=+即x y ==. 故选:B . 【点睛】本题主要考查的是利用基本不等式求最值的问题,换元后根据1的代换是解题的关键,考查学生的计算能力,是中档题.11.已知,a b 都是正实数,则222a ba b a b+++的最大值是( )A .2B .3-C .1D .43【答案】A 【解析】 【分析】设2,2m a b n a b =+=+,将222a b a b a b+++,转化为2222233a b n ma b a b m n +=--++,利用基本不等式求解. 【详解】设2,2m a b n a b =+=+, 所以22,33m n n ma b --==,所以2222222333a b n m a b a b m n +=--≤-=-++, 当且仅当233n mm n=时取等号.所以222a b a b a b +++的最大值是23-. 故选:A 【点睛】本题主要考查基本不等式的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.12.已知实数,x y满足线性约束条件120xx yx y≥⎧⎪+≥⎨⎪-+≥⎩,则1yx+的取值范围为()A.(-2,-1]B.(-1,4]C.[-2,4) D.[0,4]【答案】B【解析】【分析】作出可行域,1yx+表示可行域内点(,)P x y与定点(0,1)Q-连线斜率,观察可行域可得最小值.【详解】作出可行域,如图阴影部分(含边界),1yx+表示可行域内点(,)P x y与定点(0,1)Q-连线斜率,(1,3)A,3(1)410QAk--==-,过Q与直线0x y+=平行的直线斜率为-1,∴14PQk-<≤.故选:B.【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1yx+表示动点(,)P x y与定点(0,1)Q-连线斜率,由直线与可行域的关系可得结论.13.已知函数()2222,2{log,2x x xf xx x-+≤=>,若0Rx∃∈,使得()254f x m m≤-成立,则实数m的取值范围为()A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.14.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.15.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C++的最小值为( ) A.3BC.3D.【答案】A 【解析】 【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求. 【详解】∵2cos cos b C c B =,∴2sin cos sinCcos B C B =, ∴tan 2tan C B =.又A B C π++=, ∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B BB C B B +=-=-=---,∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B -++=++27tan 36tan B B =+. 又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan B B +≥=,当且仅当tan B =时取等号,∴min111tan tan tan 3A B C ⎛⎫++=⎪⎝⎭,故选A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.16.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.17.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( ) A .169πB .89π C .1627πD .827π 【答案】A 【解析】 【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可. 【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-,∴圆柱的体积为23()(3)(02)2V r r r r π=-<<,则33333163331616442()(3)()9442939r r rV r r r r πππ++-=-=g g g g ….当且仅当33342r r =-,即43r =时等号成立.∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.18.实数,x y 满足020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y -的最大值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据平移得到答案. 【详解】如图所示,画出可行域和目标函数,2z x y =-,则2y x z =-,z 表示直线与y 轴截距的相反数,根据平移知:当3,3x y ==时,2z x y =-有最大值为3. 故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.19.设x ∈R ,则“|1|1x -<”是“220x x --<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.20.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( )A .512B .8C .256D .64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.。
完整版)均值不等式测试题(含详解)解析:将不等式化简为x2-x+1/4+1/4≥1,即(x-1/2)2≥3/4,当x≤1/2-√3/2或x≥1/2+√3/2时,不等式成立,选项B符合条件。
3.C解析:2x+8y=2(x+4y),由于x+3y-1=0,所以2x+8y=2(x+4y)=(x+3y-1)+5y+1≥2√15,故最小值为2√15,选项C符合条件。
4.B解析:根据柯西-施瓦茨不等式,有|(mx+ny)|≤√(m2+n2)(x2+y2),代入已知条件得到|(mx+ny)|≤√3,故mx+ny的最大值为3,选项B符合条件。
5.B解析:将选项B化简为(a-b)2(a2+b2+ab)≥0,显然成立,其他选项均不成立。
6.A解析:将选项A化简为(x+1/x+2)2≥4,即(x2+1+2x/x)2≥4,由于x>0,故(x2+1+2x/x)2≥(2(x2+1))/x≥4,故选项A成立。
7.A解析:将2a+b+c表示为a+(a+b+c),代入已知条件得到a(a+b+c)+bc=4-2(a+b+c),化简得到(a+b+c-2)2=4-23,故a+b+c的最小值为3-1,选项A符合条件。
填空题:8.最大值为2,当x=1时取得。
9.最小值为2,当x=2时取得。
10.最小值为2,当x=1时取得。
11.最大值为4,当x=2时取得。
解答题:12.由于点A在直线mx+ny+1=0上,所以loga(3)-1=-(mx+ny)/a,化简得到mx+ny=-a(loga(3)-1),代入mn>0得到a>1/3,且mn=a2>0,故m=n=a/√2,所以m+n=√2a,最小值为2√2.13.设购买次数为n,则每次购买x=400/n吨,总运费为4n万元,总存储费用为4x=1600/n万元,总花费为4n+1600/n,根据均值不等式,有4n+1600/n≥2√(4n×1600/n)=80,即n≥4,故购买次数至少为4,每次购买100吨。
一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3C .a >3D .a ≤3 2.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤ 3.不等式组1322<4x x ->⎧⎨-⎩的解集是( ) A .4x > B .1x >- C .14x -<< D .1x <- 4.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- 5.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > 6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2 8.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <-9.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a <-2B .a ≤-2C .a >-2D .a ≥-2 10.不等式1322x x -+>的解在数轴上表示正确的是( )A .B .C .D . 11.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 12.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( )A .x >3B .x <3C .x >﹣3D .x <﹣3 二、填空题13.a b ≥,1a -+_____1b -+14.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.15.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 16.定义一种法则“⊗”如下:()()a a b a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.17.不等式组210360x x ->⎧⎨-<⎩的解集为_______. 18.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.19.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.20.关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.三、解答题21.解下列不等式(组):(1)2132x x -≤; (2)把它的解集表示在数轴上.3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩22.(1)解方程组:43220x y x y +=⎧⎨+=⎩(2)解不等式组:3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩ 23.解不等式组:365(2)543123x x x x +-⎧⎪--⎨-<⎪⎩,并求出最小整数解与最大整数解的和. 24.(1)解方程组:35427x y x y -=⎧⎨+=⎩; (2)解不等式组:()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩. 25.不等式组3(2)4,21152x x x x --≥⎧⎪-+⎨<⎪⎩的解集为_______. 26.解下列不等式或不等式组:(1)22x > (2)452(1)x x +>+(3)32123x x x +>⎧⎪⎨≤⎪⎩ (4)211841x x x x ->+⎧⎨+<-⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先解不等式,然后根据不等式组无解确定a 的范围.【详解】解:5210x x a -≥-⎧⎨->⎩①② 解不等式①,得3x ≤;解不等式②,得x a >;∵不等式组无解,∴3a ≥;故选:B .本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.A解析:A【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩,解之即可得出x 的取值范围. 【详解】解:依题意,得:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩①②, 由①得:936x ≤4x ∴≤,由②得:()398x ->30,98x ∴->10,x >2,所以不等式组的解集为:24x <≤.故选:A .【点睛】本题考查了程序框图中的一元一次不等式组的应用,找准不等关系,正确列出一元一次不等式组是解题的关键.3.A解析:A【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集.【详解】解:解不等式13x ->得4x >,解不等式224x -<得1x >-,∴不等式组的解集为4x >.【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.C解析:C根据解一元一次不等式的方法解答即可.【详解】解:去括号,得2539x x ->-,移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <.故选:C .【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.5.C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C 、∵a >b ,∴a+b >2b ,故本选项符合题意;D 、∵a >b ,且a >0时,∴a 2>ab ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.B解析:B【详解】设可打x 折,则有1200×10x -800≥800×5%,即最多打7折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.7.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a⩽2,故选C.8.A解析:A【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-+⋯⎧⎨+⋯⎩=①=②①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>-2.故选:A.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.9.D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122 x ax x->⎧⎨->-⎩①②解①得:x>a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.10.B解析:B【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:∵1322x x -+>, ∴3122x x >+, ∴3322x <, ∴1x <, 将不等式解集表示在数轴上如下:故选:B .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.11.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.12.B解析:B【分析】直接利用单项式乘多项式得出a 的值,进而解不等式得出答案.【详解】解:∵x (x +a )=x 2﹣x ,∴x 2+ax =x 2﹣x ,∴a =﹣1,则不等式ax +3>0即为﹣x +3>0的解集是:x <3.故选:B .【点睛】此题主要考查了单项式乘多项式以及解不等式,正确得出a 的值是解题关键.二、填空题13.≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤【分析】根据不等式的性质判断即可.【详解】∵a≥b∴-a≤-b∴ -a+1≤-b+1故答案为≤.【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号. 14.15【分析】设至少答对x道题总分才不会低于6根据对1题给5分错1题扣3分不答题不给分也不扣分小华有3题未做总分不低于65分可列不等式求解【详解】解:设至少答对x道题总分才不会低于6根据题意得5x-3解析:15【分析】设至少答对x道题,总分才不会低于6,根据对1题给5分,错1题扣3分,不答题不给分也不扣分.小华有3题未做,总分不低于65分,可列不等式求解.【详解】解:设至少答对x道题,总分才不会低于6,根据题意,得5x-3(20-x-3)≥65,解之得x≥14.5.答:至少答对15道题,总分才不会低于6.故答案是:15.【点睛】本题考查了一元一次不等式的应用,理解题意找到题目中的不等关系列不等式是解决本题的关键.15.2﹤a≤3【分析】先解出第一个不等式的解集进而得到不等式组的解集再根据不等式组有3个整数解确定a的取值范围即可【详解】解:解不等式得:x﹥﹣1∴原不等式组的解集为:﹣1﹤x﹤a∵不等式组有3个整数解解析:2﹤a≤3【分析】先解出第一个不等式的解集,进而得到不等式组的解集,再根据不等式组有3个整数解确定a的取值范围即可.【详解】解:解不等式3112x+-<得:x﹥﹣1,∴原不等式组的解集为:﹣1﹤x﹤a,∵不等式组有3个整数解,∴2﹤a≤3,故答案为:2﹤a≤3.【点睛】本题考查了不等式组的整数解,能根据已知不等式组的整数解确定参数a的取值范围是解答的关键,必要时可借助数轴更直观.16.【分析】根据题意可得2m﹣5≤3然后求解不等式即可【详解】根据题意可得∵(2m-5)⊕3=3∴2m﹣5≤3解得:m≤4故答案为【点睛】本题主要考查解一元一次不等式解此题的关键在于准确理解题中新定义法解析:4m ≤【分析】根据题意可得2m ﹣5≤3,然后求解不等式即可.【详解】根据题意可得,∵(2m -5)⊕3=3,∴2m ﹣5≤3,解得:m≤4故答案为4m ≤.【点睛】本题主要考查解一元一次不等式,解此题的关键在于准确理解题中新定义法则的运算规律,得到一元一次不等式.17.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 18.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌 解析:35m <- 【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】 25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.19.【分析】先求出不等式的解再根据不等式的最大整数解确定a 的取值范围即可【详解】解:解得∵不等式的最大整数解为∴解得:;故答案为:【点睛】本题考查的是不等式的解正确的解不等式是解题的关键 解析:512a -<≤- 【分析】先求出不等式的解,再根据不等式的最大整数解确定a 的取值范围即可.【详解】解:解2310a x -->, 得213<-a x , ∵不等式2310a x -->的最大整数解为2-, ∴21-2-13<-≤a , 解得:512a -<≤-; 故答案为:512a -<≤-. 【点睛】本题考查的是不等式的解,正确的解不等式是解题的关键.20.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得 2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.三、解答题21.(1)2x ≤;(2)1≤x <4,数轴见详解.【分析】(1)通过去分母,移项,合并同类项,未知数系数化为1,即可求解;(2)通过去分母,移项,合并同类项,未知数系数化为1,分别求出两个不等式的解,进而即可求解,然后再数轴上表示不等式组的解,即可.【详解】(1)2132x x -≤, 2(21)3x x -≤,423x x -≤,432x x -≤,2x ≤;(2)3(2)41213x x x x --≤⎧⎪⎨+>-⎪⎩①② 由①得:x≥1,由②得:x <4,∴不等式组的解为:1≤x <4,在数轴上表示如下:【点睛】本题主要考查解一元一次不等式(组),熟练掌握解一元一次不等式的基本步骤,是解题的关键.22.(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.23.38x -<,6【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出答案.【详解】解:()3652543123x x x x ⎧+-⎪⎨---<⎪⎩①②, 由①得:8x ,由②得:3x >-,∴不等式组的解集为38x -<, x 的最小整数为2-,最大整数为8, x 的最小整数解与最大整数解的和为6.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,解题的关键是能根据不等式的解集求出不等式组的解集.24.(1)31x y =⎧⎨=⎩;(2)无. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)35427x y x y -=⎧⎨+=⎩①②, 由①5+⨯②得:310435x x +=+,解得3x =,将3x =代入②得:67y +=,解得1y =,则方程组的解为31x y =⎧⎨=⎩; (2)()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩①②,解不等式①得:5x ≤-,解不等式②得:2x >-,则不等式组无解.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.25.71x -<≤【分析】首先分别解出两个不等式的解集,再根据:同大取大;同小取小;大小小大中间找;大大小小找不到,写出不等式组的解集即可.【详解】 解:3(2)4211 52x x x x --≥⎧⎪⎨-+<⎪⎩①② 由①得,x≤1由②得,x >-7∴不等式组的解集为:-7<x≤1.故答案为:-7<x≤1.【点睛】此题主要考查了不等式组的解法,关键是熟练掌握不等式解集的取法.26.(1)1x >;(2)32x >-;(3)16x -<≤;(4)3x >. 【分析】(1)两边同除以2即可得;(2)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式即可得; (3)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集; (4)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集.【详解】(1)22x >,两边同除以2,得1x >;(2)452(1)x x +>+, 4522x x +>+,4225x x ->-,23x >-,32x >-; (3)32123x x x +>⎧⎪⎨≤⎪⎩①②,解不等式①得:1x >-,解不等式②得:6x ≤,则不等式组的解集为16x -<≤;(4)211841x x x x ->+⎧⎨+<-⎩①②, 解不等式①得:2x >,解不等式②得:3x >,则不等式组的解集为3x >.【点睛】本题考查了解一元一次不等式、解一元一次不等式组,熟练掌握不等式和不等式组的解法是解题关键.。
不等式测试题1.若0b a <<,则下列不等式中正确的是( )A .11a b >B .a b >C .2b aa b+> D .a b ab +>【解析】取2,1b a =-=-,容易排除选项A 、B 、D ,故选C . 【答案】C ;2.若0a b <<,则下列结论中正确的命题是( )A .11a b >和11||||a b >均不能成立 B .11a b a >-和11||||a b >均不能成立 C .不等式11a b a >-和2211a b b a ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭均不能成立D .不等式11||||a b >和2211a b b a ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭均不能成立 【解析】∵0b <,∴0b ->,∴a b a ->,又∵0a b -<,0a <,∴11a b a <-.故11a b a>-不成立. ∵0a b <<,∴a b >,∴11||||a b <,故11||||a b >不成立.由此可知B 正确. 又∵0a b <<,110b a <<,∴110a b b a +<+<,∴11a b b a +>+,故2211a b b a ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭成立,且11a b >成立.其它都不正确.【答案】B ;3.若111a b<<,则下列结论中不正确的是( ) A .log log a b b a > B .|log log |2a b b a +>C .2(log )1b a <D .|log ||log ||log log |a b a b b a b a +>+【解析】由题意知1b a <<,于是log log 1a a b a >=,而log log 1a b b a ⋅=,故0log 1b a <<,容易得到答案.本题也可以用特殊值法.【答案】D ;4.设a b ∈R ,,且()10b a b ++<,()10b a b +-<,则( )A .1a >B .1a <-C .11a -<<D .1a >【解析】由题意知0b ≠,当0b >时,有10a b ++<,10a b +-<,故11a b <--<-;当0b <时,有10a b ++>,10a b +->,故11a b >-+>.故1a >或1a <-.【答案】D ;5.设a b c ,,是互不相等的正数,则下列等式中不恒成立....的是( )A .||||||a b a c b c --+-≤B .2211a a a a++≥ C .1||2a b a b-+-≥ D【解析】运用排除法,C 选项12a b a b-+-≥,当0a b -<时不成立,运用公式一定要注意公式成立的条件.【答案】C ;6.若121200a a b b <<<<,,且12121a a b b +=+=,则下列代数式中值最大的是( )A .1122a b a b +B .1212a a b b +C .1221a b a b +D .12【解析】作差比较选项A 与选项B ,有21122121211()()(1)0a b a b a a b b a b +-+=+->,∴11221212a b a b a a b b +>+, 比较选项A 与选项C ,有1122122111()()(21)(21)a b a b a b a b b a +-+=--,由2112a a >>,2112b b >>,有11221221a b a b a b a b +>+,因此比较选项A 与选项D ,有111122(21)(21)1022b a a b a b --+-=>,∴112212a b a b +>.故选答案A .另,本题可采用特殊值法比较,也可根据排序不等式的结论比较大小 【答案】A ;7.已知函数()|lg |f x x =,若0a b <<,且()()f a f b =,则2a b +的取值范围是()A.()+∞ B.)⎡+∞⎣ C .(3)+∞, D .[)3+∞, 【解析】由()()f a f b =易知()lg lg lg lg lg 0a b a b ab =⇒=-⇒=即1ab =.又由0a b <<知,01a b <<<于是22a b a a +=+,而()2f x x x =+在(0,上单调减,于是22131a a +>+=.即()23,a b +∈+∞.【答案】C ;8.已知函数10|lg |0()16102x x f x x x <⎧⎪=⎨-+>⎪⎩≤,,,若a ,b ,c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是A .(110),B .(56),C .(1112),D .(2024),【解析】 C ;9.已知集合(){}121212|00D x x x x x x k =>>+=,,,(其中k 为正常数). ⑴ 设12u x x =,求u 的取值范围;⑵ 求证:当1k ≥时不等式212121122k x x x x k ⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≤对任意()12x x D ∈,恒成立;⑶ 求使不等式212121122k x x x x k ⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≥对任意()12x x D ∈,恒成立的2k 的范围.【解析】 ⑴ 22121224x x k x x +⎛⎫= ⎪⎝⎭≤,当且仅当122k x x ==时等号成立,故u 的取值范围为204k ⎛⎤ ⎥⎝⎦,. ⑵ 方法一:(函数法)121212*********x x x x x x x x x x x x ⎛⎫⎛⎫--=+-- ⎪⎪⎝⎭⎝⎭222121212121212112x x k x x x x x x x x x x +-=+-=-+212k u u -=-+ 由204k u <≤,又2110k k -≥,≥,∴()212k f u u u -=-+在204k ⎛⎤ ⎥⎝⎦,上是增函数,所以212121112k x x u x x u ⎛⎫⎛⎫---=-+ ⎪⎪⎝⎭⎝⎭222222142224424k k k k k k k -⎛⎫-+=-+=- ⎪⎝⎭≤即当1k ≥时不等式212121122k x x x x k ⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≤成立. 解法二:(不等式证明的作差比较法)212121122k x x x x k ⎛⎫⎛⎫⎛⎫---- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭21212212211424x x k x x x x x x k =+----+ 21212212211424x x k x x x x k x x ⎛⎫⎛⎫=----+- ⎪ ⎪⎝⎭⎝⎭()22212121221212444x x k x x k x x k x x x x ---=--, 将()2212124k x x x x -=-代入得212121122k x x x x k ⎛⎫⎛⎫⎛⎫---- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭()()2221212212444x x k x x k k x x ---=, ∵()21201x x k -≥,≥时,()2222121244410k x x k k k x x --=--<, ∴()()22212122124404x x kx x k k x x ---≤,即当1k ≥时不等式212121122k x x x x k ⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≤成立.⑶ 方法一:(函数法)记()212121112k x x u f u x x u ⎛⎫⎛⎫---=++= ⎪⎪⎝⎭⎝⎭, 则22224k k f k ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭, 即求使()24k f u f ⎛⎫ ⎪⎝⎭≥对204k u ⎛⎤∈ ⎥⎝⎦,恒成立的k 的范围.由⑵知,要使212121122k x x x x k ⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≥对任意()12x x D ∈,恒成立,必有01k <<,因此210k ->,∴函数()212k f u u u-=++在(0上递减,在)+∞上递增, 要使函数()f u 在204k ⎛⎤ ⎥⎝⎦,上恒有()24k f u f ⎛⎫ ⎪⎝⎭≥,必有24k即4216160k k +-≤,解得208k <≤.方法二:(不等式证明的作差比较法)由⑵可知212121122k x x x x k ⎛⎫⎛⎫⎛⎫---- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭()()2221212212444x x k x x k k x x ---=, 要不等式恒成立,必须2212440k x x k --≥恒成立,即212244k x x k -≤恒成立,由21204k x x <≤得222444k k k-≤,即4216160k k +-≤,解得208k <≤. 因此不等式212121122k x x x x k ⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≥恒成立的2k的范围是208k <≤.10.设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是( ) A .2 B .4 C. D .5【解析】 B ;()221121025a ac c ab a a b ++-+- ()()22111025a a b ab a ac c ab a a b =⋅-++++-+-()254a c -≥≥11.已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意正实数x y ,恒成立,则正实数a 的最小值为( )A .8B .6C .4D .2【解析】 C只需求()1a x y x y ⎛⎫++ ⎪⎝⎭的最小值大于等于9即可,又()1111a x y x y a a a a x y y x ⎛⎫++=+⋅+++++ ⎪⎝⎭≥,等号成立当且仅当x yay x⋅=即可,所以219+≥,即280+≥24-(舍),所以4a ≥,即a 的最小值为4.12.设0a b >>,那么21()a b a b +-的最小值为( )A .2B .3C .4D .5【解析】 C ;由0a b >>知0a b ->,故有2()4ab a b -≤.∴222144()a a b a b a ++-≥≥.当且仅当224b a b a a =-⎧⎪⎨=⎪⎩即a b ⎧=⎪⎨=⎪⎩时等号成立. ∴21()a b a b +-的最小值为4,故选C .13.设O 为坐标原点,(1,1)A ,若点B 满足2222101212x y x y x y ⎧+--+⎪⎨⎪⎩≥≤≤≤≤,则OA OB ⋅的最小值为( ) AB .2C .3D.2【解析】 C ;如图,点B 如阴影所示,||||cos ||||cos ||||cos OA OB OA OB OA OC OA OC AOC θθ⋅=⨯⨯∠≥≥,仅当B 点为(2,1)C 时取等号,此时(1,1),(2,1)OA OB ==,最小值为3.14.不等式组0,10,3260x x y x y ⎧⎪--⎨⎪--⎩≥≥≤所表示的平面区域的面积等于 .【解析】 4;如图所示,不等式组所表示的平面区域即为图中阴影部分的面积12442S =⋅⋅=.15.已知不等式组110x y x y y +⎧⎪--⎨⎪⎩≤≥≥表示的平面区域为M ,若直线3y kx k =-与平面区域M 有公共点,则k 的取值范围是( )A .1,03⎡⎤-⎢⎥⎣⎦B .1,3⎛⎤-∞ ⎥⎝⎦C .10,3⎛⎤⎥⎝⎦D .1,3⎛⎤-∞- ⎥⎝⎦【解析】 A ;画出M 的可行域,如图阴影所示,3y kx k =-是恒过定点(3,0)的直线,因此斜率1,03k ⎡⎤∈-⎢⎥⎣⎦.16.若a b c +∈R 、、,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭≥.【解析】 法一(综合法)∵111a b c aa -+-==,又0a >,0b >,0c >, ∴b c a+,即1a a- 同理11b -,11c -,∵1111118a b c ⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭≥,当且仅当13a b c ===时,等号成立.法二(综合法)∵a b c +∈R 、、,1ab c ++=,∴111111()()()8b c a c a ba b c a a b b c c⎛⎫⎛⎫⎛⎫---=+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭≥,当且仅当,,b c a c a b a a b b c c ===,即13a b c ===时,等号成立.法三(分析法)∵a b c +∈R 、、,∴要证1111118a b c ⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭≥,即证:(1)(1)(1)8a b c abc ---≥,又1ab c ++=,故证明不等式()()()8b c a c a b abc +++≥即可,又()()()8b c a c a b abc +++≥,故原不等式成立,且当13a b c ===时取到等号.17.设函数2()1f x x =-,对任意23x ⎡⎫∈+∞⎪⎢⎣⎭,,24()(1)4()x f m f x f x f m m ⎛⎫--+ ⎪⎝⎭≤恒成立,则实数m 的取值范围是 .【解析】3⎛⎡⎫-∞-+∞ ⎪⎢ ⎪⎝⎦⎣⎭,,;18.已知不等式()11112log 1122123a a n n n +++>-+++对于一切大于1的自然数n 都成立,试求实数a 的取值范围.【解析】 设()111122f n n n n=+++++(n ∈N 且2n ≥).因为 ()()()()111110212212122f n f n n n n n n +-=+-=>+++++所以()()1f n f n +>,即()f n 是关于n 的递增函数.故有()()7212f n f =≥,即()f n 的最小值是712. 要使()()12log 1123a f n a >-+对于一切2n ≥的自然数n 恒成立,则必须()127log 112312a a -+<,即有()log 11a a -<-.因为1a >,所以11a a -<,解之得1a <19.不等式210x ax ++≥对一切102x ⎛⎤∈ ⎥⎝⎦,成立,则a 的最小值为( )A .0B .2-C .52- D .3-【解析】 C ;∵0x >,故本题的条件等价于1a x x --≥对102x ⎛⎤∈ ⎥⎝⎦,恒成立.此时1x x --的最大值为52-,故a 的最小值为52-.20不等式2|3||1|3x x a a +---≤对任意实数x 恒成立,则实数a 的取值范围为( )A .(][)14-∞-+∞,,B .(][)25-∞-+∞,,C .[12],D .(][)12-∞∞,, 【解析】 A ;31x x +--的最大值为4,故234a a -≥时满足题意,解得4a ≥或1a -≤.21.若不等式lg 21lg()axa x <+在[1,2]x ∈时恒成立,试求a 的取值范围.【解析】 由题设知120x ax ⎧⎨>⎩≥,得0a >,可知1a x +>,所以lg()0a x +>.原不等式变形为lg 2lg()ax a x <+.∴2ax a x <+,即(21)x a x -<.又[1,2]x ∈,可得210x -> ∴11121221x a x x ⎛⎫<=+ ⎪--⎝⎭恒成立. 设11()1221f x x ⎛⎫=+ ⎪-⎝⎭,在[1,2]x ∈上为减函数,可得min2()(2)3f x f ==,知23a <. 综上知203a <<.22.设对所有实数x ,不等式()()2222224112log 2log log 014a a ax x a a a ++++>+恒成立,求a 的取值范围.【解析】 由题意得⑴()()22222412log 2log 011log 04a aa a a a +⎧==⎪+⎪⎨+⎪>⎪⎩或⑵()()()22222220141log 041122log 4log log 014aa a a a a a a a a ⎧>⎪+⎪⎪+⎪>⎨⎪⎪++⎛⎫⎪-⋅< ⎪+⎪⎝⎭⎩①②③ 易见⑴的解集为∅.下面我们解⑵. 令1a t a +=,②可变为221log 4log 0a a++>,即22log 0t +> ④由③有222log 4log 50t t +-> ⑤联立解之得2t >,即12a a+>,解得01a <<.所以当01a <<时不等式恒成立.23.设不等式2220x ax a -++≤的解集为M ,如果[1,4]M ⊆,求实数a 的取值范围.【解析】 [1,4]M ⊆有两种情况:其一是M =∅,此时0∆<;其二是M ≠∅,此时0∆=或0∆>;故分三种情况计算a 的取值范围.设2()22f x x ax a =-++,有22(2)4(2)4(2)a a a a ∆=--+=--, ①当0∆<时,12a -<<,[1,4]M =∅⊆;②当0∆=时,1a =-或2;当1a =-时,{1}[1,4]M =-⊄;当2a =时,{2}[1,4]M =⊆; ∴2a =满足题意;③当0∆>时,1a <-或2a >.设方程()0f x =的两根12,x x ,且12x x <,那么12[,]M x x =,[1,4]M ⊆⇔1214x x ≤≤≤(1)0,(4)014,0f f a ⎧⇔⎨∆>⎩≥且≥≤≤且,即3018701412a a a a a -+⎧⎪-⎪⎨⎪⎪<->⎩或≥≥≤≤,解得1827a <≤.综上知:[1,4]M ⊆时,a 的取值范围是18(1,]7-.24.若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值范围为 .【解析】 (57),;34x b -<4433b b x -+⇔<<,于是4013b -<≤,且4343b +<≤,解得57b <<.25.01b a <<+,若关于x 的不等式22()()x b ax ->的解集中的整数恰有3个,则( )A .10a -<<B .01a <<C .13a <<D .36a <<【解析】 C ;由题意得不等式22()()x b ax ->,即222(1)20a x bx b -+-<,它的解应在两根之间,故有2222244(1)40b b a a b ∆=+-=>,不等式的解集为11b b x a a -<<-+或011b bx a a -<<<+-. ①若不等式的解集为11b b x a a -<<-+,又由01b a <<+得011ba <<+,故321b a --<<--,即2322331ba b a a <<⇒-<<--,于是33013221a b a a b a ->>⎧⇒<<⎨-<<+⎩. ②若不等式的解集为011b b x a a -<<<+-,由011b a <<+,知341ba -<<-,于是10a -<,又10a +>,从而210a -<,此时不等式222(1)20a x bx b -+-<的解集不可能是11b bx a a -<<+-. 综上,13a <<.26.已知函数32()()f x x ax b a b =-++∈R ,⑴若函数()f x 图象上任意一点处的切线的斜率小于1,求证:a <<⑵若[]01x ∈,,函数()y f x =图象上任意一点处的切线的斜率为k ,试讨论1k ≤的充要条件. 【解析】 ⑴由题意知2()321f x x ax '=-+<恒成立,即23210x ax -+>恒成立.故2(2)120a -<,得到a <⑵[01]x ∈,,要讨论2321x ax -+≤的充要条件,要使2232313x ax x x a -+=-≤,对[01]x ∈,恒成立,先对a 进行分类:①若0a =,31x x ≤不可能恒成立,故0a ≠;②若0a <,则233k x x a ⎛⎫=- ⎪⎝⎭在[01],上单调递增,并在1x =处取到最大值,此时23113k a ⎛⎫=- ⎪⎝⎭≤即可,解得1a ≥,故此时也不满足;③若0a >,讨论23a 与1的大小关系:若213a =,即32a =,2133(1)3124k x x x ⎛⎫=-=--+< ⎪⎝⎭,满足;若213a <,即302a <<,232k x ax =-+,则需满足2max min4(3)0(2)14(3)321a k k a ⎧⨯-⨯-=⎪⨯-⎨⎪=-+-⎩≤≥,解得1a ≤312a <≤时满足;若213a >,即32a >,此时只需24(3)0(2)14(3)a ⨯-⨯-⨯-≤,解得a32a <综上知,1k ≤的充要条件为[1a ∈.27.若实数x 、y 、m 满足x m y m ->-,则称x 比y 远离m .⑴ 若21x -比1远离0,求x 的取值范围;⑵ 对任意两个不相等的正数a 、b ,证明:33a b +比22a b ab +远离2;⑶ 已知函数()f x 的定义域ππ24k D x x k x ⎧⎫⎧=≠+∈∈⎨⎨⎬⎩⎩⎭Z R ,,.任取x D ∈,()f x 等于sin x 和cos x 中远离0的那个值.写出函数()f x 的解析式,并指出它的基本性质(结论不要求证明).【解析】 ⑴(()2x ∈-∞+∞,,⑵ 略⑶ π3πsin ππ44()ππcos ππ44x x k k f x x x k k ⎧⎛⎫∈++ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪∈-+ ⎪⎪⎝⎭⎩,,性质:(1)偶函数关于y 轴对称; (2)周期π2T = (3)πππ242k k ⎛⎫-⎪⎝⎭,单调增 ,πππ224k k ⎛⎫+ ⎪⎝⎭,单调减(4)最大值为128.设1()1xxa f x a +=-(0a >且1a ≠),()g x 的反函数.⑴设关于x 的方程求2log ()(1)(7)a tg x x x =--在区间[]26,上有实数解,求t 的取值范围;⑵当ae =(e 为自然对数的底数)时,证明:22()nk g k =∑;⑶当102α<≤时,试比较1()nk f k n =-∑与4的大小,并说明理由.【解析】 ⑴解得()1log 1a x g x x -⎛⎫= ⎪+⎝⎭,于是有()()21117t x x x x -=+--. 即()()()()()321112171114232223t x x x x x ⎛⎫=-⋅-=-⋅-⋅-⋅=⎡⎤ ⎪⎣⎦⎝⎭≤ 当且仅当1142x x -=-,即5x =时取等号.不妨设()()()217p x x x =--,有()()25,625p p ==,于是当[]2,6x ∈时,[]5,32t ∈.⑵由()1ln 1k g k k -=+,于是()()22ln 1n k g k n n =⎛⎫= ⎪ ⎪+⎝⎭∑, 于是仅需证明()212ln1n n n n +->+,即()112ln 2n n n n +-+<2m =≥,于是仅需证明222ln m >不妨设()2ln 22ln p m m =--,由()2ln 202p =->,而()(2222022p m m m m m -'=++=>,于是()0p m >恒成立. ⑶()14n k f k n =-<∑,证明如下: ()1112211k kn n n k k k k k a a f k n a a ===-==--∑∑∑ 而当102a <≤时,有1111k k k k a a a a a ++<⋅--, 于是有()1112221111k k n nn k k k k a a a f k n a a a a ===-=<<⋅----∑∑∑. 仅需证明()2241aa -≤即可.而此式当102a <≤时是显然的. 也可这样放缩:设1,11a p p =+≥, 于是()()()()12212112221111111kk k k k k kp f k C p C p C C p p ++==+<+<++++-+- 即()()21114112f k k k k k k ⎛⎫-<=⋅- ⎪-+⎝⎭+ 则()1111441n n k k f k n kk ==⎛⎫-<-< ⎪+⎝⎭∑∑. 29.已知a ,b ,c均为正数,证明:2222111a b c a b c ⎛⎫+++++ ⎪⎝⎭≥a ,b ,c 为何值时,等号成立.【解析】 方法一:因为a ,b ,c 均为正数,由平均值不等式得()222233a b c abc ++≥, ① ()131113abc a b c -++≥, 所以()2231119abc a b c -⎛⎫++ ⎪⎝⎭≥. ② 故()()2222223311139a b c abc abc a b c -⎛⎫++++++ ⎪⎝⎭≥.又22333()9()abc abc -+≥ ③所以原不等式成立.当且仅当a b c ==时,①式和②式等号成立. 当且仅当22333()9()abc abc -=时, ③式等号成立. 即当且仅当143a b c ===时,原式等号成立.(证法二)因为a ,b ,c 均为正数,由基本不等式得 222a b ab +≥,222b c bc +≥,222c a ac +≥.所以222a b c ab bc ac ++++≥ ① 同理222111111a b c ab bc ac++++≥ ②故2222111a b c a b c ⎛⎫+++++ ⎪⎝⎭111333ab bc ac ab bc ac +++++≥≥ ③所以原不等式成立.当且仅当a b c ==时时,①式和②式等号成立,当且仅当a b c ==,()()()2223ab bc ac ===时,③式等号成立. 即当且仅当143a b c ===时,原式等号成立.。
参考答案与试题解析一.选择题(共5小题)1.考点:不等式比较大小。
专题:计算题。
分析:利用对数的运算性质可求得a=log23,b=log23>1,而0<c=log32<1,从而可得答案.解答:解:∵a=log23+log2=log23,b===>1,∴a=b>1,又0<c=log32<1,∴a=b>c.故选B.点评:本题考查不等式比较大小,掌握对数的运算性质既对数函数的性质是解决问题之关键,属于基础题.2.考点:基本不等式在最值问题中的应用。
专题:计算题。
分析:将x+3y=5xy转化成=1,然后根据3x+4y=()(3x+4y),展开后利用基本不等式可求出3x+4y的最小值.解答:解:∵正数x,y满足x+3y=5xy,∴=1∴3x+4y=()(3x+4y)=+++≥+2=5当且仅当=时取等号∴3x+4y≥5即3x+4y的最小值是5故选C点评:本题主要考查了基本不等式在求解函数的值域中的应用,解答本题的关键是由已知变形,然后进行“1”的代换,属于基础题.3.考点:基本不等式。
分析:①由ab>0,bc﹣ad>0可得出﹣>0.②bc﹣ad>0,两端同除以ab,得﹣>0.③ab>0.这三个都是正确命题.解答:解:由ab>0,bc﹣ad>0可得出﹣>0.bc﹣ad>0,两端同除以ab,得﹣>0.同样由﹣>0,ab>0可得bc﹣ad>0.ab>0.故选D.点评:本题考查基本不等式的性质和应用,解题时要认真审题,仔细求解.4.考点:基本不等式。
分析: 3a+3b中直接利用基本不等式,再结合指数的运算法则,可直接得到a+b.解答:解:∵a+b=2,∴3a+3b故选B点评:本题考查基本不等式求最值和指数的运算,属基本题.5.考点:基本不等式。
专题:计算题。
分析:设小王从甲地到乙地按时速分别为a和b,行驶的路程S,则v==及0<a<b,利用基本不等式及作差法可比较大小解答:解:设小王从甲地到乙地按时速分别为a和b,行驶的路程S则v==∵0<a<b∴a+b>0∴∵v﹣a===∴v>a综上可得,故选A点评:本题主要考查了基本不等式在实际问题中的应用,比较法中的比差法在比较大小中的应用.二.填空题(共5小题)6.考点:基本不等式在最值问题中的应用。
一、选择题1.若正数x ,y 满足21y x+=,则2x y +的最小值为( )A .2B .4C .6D .82.已知2244x y +=,则2211x y +的最小值为( ) A .52B .9C .1D .943.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-4.设x ,y 满足约束条件4100,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩则23z x y =-的最大值为( )A .10B .8C .5D .6-5.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .16.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R7.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A.B.C .6D .88.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 9.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭10.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( )A .1a <1bB .a 2>b 2C .21ac +>21b c + D .a |c |>b |c |11.设,,a b c ∈R ,且a b >,则( ) A .ac bc >B .11a b< C .22a b > D .33a b >12.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝二、填空题13.已知实数,x y 满足约束条件222,22x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则2z x y =-的最大值为___.14.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________. 15.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.18.已知2z y x =-,式中变量x ,y 满足下列条件:213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩,若z 的最大值为11,则k 的值为______.19.已知a >0,b >0,则p =2b a﹣a 与q =b ﹣2a b 的大小关系是_____.20.若(0,1)x ∈时,不等式111m x x≤+-恒成立,则实数m 的最大值为________. 三、解答题21.设函数2()(2)3(0)f x ax b x a =+-+≠. (1)若不等式()0f x >的解集为(1,3)-,求,a b 的值; (2)若(1)2,0,0f a b =>>,求19a b+的最小值.22.已知函数()21f x x x =-++. (1)求不等式()5f x ≤的解集; (2)若()f x 的最小值是m ,且3m a b +=,求212a b +的最小值.23.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 24.已知关于x 的不等式23240x ax -++>. (1)当2a =时,求此不等式的解集;(2)若此不等式的解集为()4,m -,求实数a ,m 的值. 25.已知a R ∈,若关于x 的不等式2(1)460a x x 的解集是(3,1)-.(1)求a 的值;(2)若关于x 的不等式230ax bx ++≥在[0,2]上恒成立,求实数b 的取值范围. 26.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x ⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min 28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.D解析:D 【分析】利用22222211111(4)4x y x y xy ⎛⎫+=++ ⎪⎝⎭,展开后应用基本不等式可得最小值. 【详解】由题意22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭2222141955444y x x y ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝,当且仅当22224y x x y =,即2242,33x y ==时等号成立.故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.A解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.4.C解析:C 【分析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可. 【详解】画出约束条件所表示的平面区域,如图所示, 由23z x y =-得到233zy x =-, 平移直线233zy x =-,当过A 时直线截距最小,z 最大,由4100yx y=⎧⎨--=⎩得到5(,0)2A,所以23z x y=-的最大值为max523052z=⨯-⨯=,故选C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.5.C解析:C【分析】作出约束条件的可行域,将目标函数转化为122zy x=-,利用线性规划即可求解.【详解】解:由2z x y=-得122zy x=-,作出x,y满足约束条件424x yx yx+≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC):平移直线122z y x =-, 由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.6.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.7.D解析:D 【分析】运用基本不等式2422x y +≥=【详解】因为20,40xy>>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”). 故答案为D. 【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③等号取得的条件.8.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题9.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-,由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -, 此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3代入221z x y =--得125221333z =⨯-⨯-=-,故5[3z ∈-,5)故选:D . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.10.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的;当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.11.D解析:D【分析】结合不等式的性质、特殊值判断出错误选项,利用差比较法证明正确选项成立. 【详解】A 选项,当0c ≤ 时,由a b >不能得到ac bc >,故不正确;B 选项,当0a >,0b <(如1a =,2b =-)时,由a b >不能得到11a b<,故不正确; C 选项,由()()22a b a b a b -=+-及a b >可知当0a b +<时(如2a =-,3b =-或2a =,3b =-)均不能得到22a b >,故不正确;D 选项,()()()233222324b a b a b a ab b a b a b ⎡⎤⎛⎫-=-++=-⋅++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,因为,a b 不同时为0,所以223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即33a b >,故正确.故选:D 【点睛】本小题主要考查不等式的性质以及差比较法,属于中档题.12.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.1【分析】作出不等式组对应的平面区域利用目标函数的几何意义进行求最值即可【详解】由z=x-2y 得作出不等式组对应的平面区域如图(阴影部分):平移直线的截距最小此时z 最大由得A (10)代入目标函数z=解析:1 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可. 【详解】 由z=x-2y 得1122y x z =-,作出不等式组对应的平面区域如图(阴影部分):平移直线1122y x z =-,,1122y x z =-,的截距最小, 此时z 最大,由2222x y x y -⎧⎨+⎩== ,得A (1,0).代入目标函数z=x-2y , 得z=1-2×0=1, 故答案为1. 【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.14.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得 解析:612【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值. 【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦,∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+, ∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立, ∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan CA C C A C C C A C CC-==++++-,又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan C =等号成立, ∴()tan tan tan tan tan tan 1tan =21123A CA CC CA C -≤++-=.故答案为:12【点睛】本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.15.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.16.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最解析:12-【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案. 【详解】根据题意,令()2f x x mx m ++=,若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭,实数m 的最小值为:12-, 故答案为12-. 【点睛】本题考查二次函数的性质,关键是将x 2+mx +m ≥0在x ∈[1,2]上恒成立转化为二次函数y =x 2+mx +m 在x ∈[1,2]上的最值问题.17.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题解析:3,32⎡⎤-⎢⎥⎣⎦【分析】利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可.【详解】 因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y xx y=, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤.故答案为:3,32⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.18.23【分析】先画出约束条件所表示的可行域结合图象确定目标函数的最优解代入最优解的坐标即可求解【详解】画出不等式组所表示的可行域如图所示可得交点又由解得目标函数可化为当直线过点C 时直线在轴上的截距最大解析:23 【分析】先画出约束条件所表示的可行域,结合图象确定目标函数的最优解,代入最优解的坐标,即可求解. 【详解】画出不等式组213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩所表示的可行域,如图所示,可得交点(0,1),(7,1)A B , 又由21211x y y x -=-⎧⎨-=⎩,解得(3,7)C ,目标函数2z y x =-可化为122zy x =+, 当直线122zy x =+过点C 时,直线在y 轴上的截距最大,此时目标函数取得最大值, 将C 代入直线320x y k +-=,解得23k =.故答案为:23【点睛】本题主要考查了简单的线性规划的应用,其中解答中正确作出不等式组所表示的平面区域,结合图象得出目标函数的最优解是解答的关键,着重考查数形结合法,以及计算能力.19.【分析】由已知结合作差法进行变形后即可比较大小【详解】因为与所以时取等号所以故答案为:【点睛】本题主要考查了不等式大小的比较作差法的应用是求解问题的关键 解析:p q【分析】由已知结合作差法进行变形后即可比较大小. 【详解】因为0a >,0b >,2b p a a =-与2a qb b=-,所以2222222()()()()0b a b a b a b a b a b a p q a b ab ba-----+-=-==,b a =时取等号, 所以p q .故答案为:p q . 【点睛】本题主要考查了不等式大小的比较,作差法的应用是求解问题的关键.20.【分析】根据题意只需小于等于的最小值即可利用基本不等式可得的最值进而即可得到结论【详解】由则所以当且仅当即时取等号所以即的最大值为故答案为:【点睛】本题主要考查了基本不等式求最值以及恒成立问题同时考 解析:4【分析】根据题意,只需m 小于等于111x x +-的最小值即可,利用基本不等式可得111x x+-的最值,进而即可得到结论. 【详解】由()0,1x ∈,则()10,1x -∈,11x x +-=, 所以,()11111124111x x x x x x x x x x-⎛⎫+=++-=++≥ ⎪---⎝⎭, 当且仅当11x xx x -=-,即12x =时取等号, 所以,4m ≤,即m 的最大值为4.故答案为:4. 【点睛】本题主要考查了基本不等式求最值,以及恒成立问题,同时考查了转化的思想和运算求解的能力,属于基础题.三、解答题21.(1)14a b =-⎧⎨=⎩;(2)16.【分析】(1)由不等式()0f x >的解集(1,3)-.1-,3是方程()0f x =的两根,由根与系数的关系可求a ,b 值;(2)由()12f =,得到1a b +=,将所求变形为1(9)()a ba b ++展开,利用基本不等式求最小值. 【详解】解:(1)∵()2230ax b x +-+>的解集为()1,3-,1,3∴-是()2230ax b x +-+=的两根,21313413b a a b a -⎧-+=-⎪=-⎧⎪∴⇒⎨⎨=⎩⎪-⨯=⎪⎩.(2)由于()12f =,0a >,0b >, 则可知232a b +-+=, 得1a b +=,所以199()()101016b a a b a b a b ++=++≥+=, 当且仅当9b aa b=且1a b +=, 即1434a b ⎧=⎪⎪⎨⎪=⎪⎩时成立,所以19a b +的最小值为16. 【点睛】易错点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.22.(1)[]23,-;(2)92. 【分析】(1)将()f x 解析式中绝对值符号去掉,求得分段函数解析式;再在每一段中求得()5f x ≤时的解集;从而得出答案;(2)先由(1)求出()f x 的最小值3m =,所以得1a b +=;再将212a b+构造成符合基本不等式的形式,从而求其最小值. 【详解】解:(1)21,1()213,1221,2x x f x x x x x x -+≤⎧⎪=-++=-<<⎨⎪-≥⎩,()5f x ≤等价于1,215x x ≤-⎧⎨-+≤⎩或1235x -<<⎧⎨≤⎩或2215x x ≥⎧⎨-≤⎩,解得21x -≤≤-或12x -<<或23x ≤≤.故不等式()5f x ≤的解集为[]23,-.(2)由(1)可知3m =,则1a b +=, 则21212559()2222222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭(当23a =,13b =时,等号成立). 故212a b +最小值为92. 【点睛】本题主要考查分段函数和基本不等式的相关性质,考查运算求解能力,属于基础题型.23.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x=-在区间[]1,2上的最大值求解即可. 【详解】(1)由题意得()2102af x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤,解得44a -≤≤,∴实数a 的取值范围为[]4,4-. (2)由题意得[]21,2,122ax x x ∃∈-+≥成立, ∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增, ∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-. 【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >;(2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替. 24.(1)223x x ⎧⎫-<<⎨⎬⎩⎭;(2)13m =,112a =-.【分析】(1)当2a =时,不等式为23440x x -++>,即23440x x --<,利用一元二次不等式求解.(2)根据不等式的解集为()4,m -,则由4-,m 为方程23240x ax -++=的两根求解. 【详解】(1)当2a =时,不等式为23440x x -++>, 所以23440x x --<, 所以()23203x x ⎛⎫+-< ⎪⎝⎭, 解得223x -<<, 所以不等式23440x x -++>的解集为223x x ⎧⎫-<<⎨⎬⎩⎭; (2)由已知得4-,m 为方程23240x ax -++=的两根, 则有243a m -+=--且443m -=-, 解得13m =,112a =-.【点睛】本题主要考查一元二次不等式的解法以及一元二次不等式与一元二次方程的关系,属于中档题.25.(1)3;(2)6b ≥- 【分析】(1)将1x =代入方程2(1)460a x x ,即可求出a 的值;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,利用分离参数即可求出b 的取值范围. 【详解】(1)1和3-是2(1)460a x x 的两根,将1x =代入方程解得3a =;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,即233bx x -≤+在[0,2]上恒成立, 当0x =时,03≤恒成立,此时a R ∈;当2(]0,x ∈时,不等式可转化为13()b x x-≤+在[0,2]上恒成立,因为13()36x x +≥⨯=,当且仅当1x x =,即1x =时,等号成立, 所以6b -≤,所以6b ≥-,综上,实数b 的取值范围为6b ≥-.【点睛】本题主要考查三个二次式关系的应用,不等式恒成立问题的求法,属于中档题.26.(1)25-;(2)⎛-∞ ⎝⎭,. 【分析】(1)由不等式的解集为{}32x x x <->-或知0k <,且3-,2-是方程2260kx x k -+=的两根,代入可解.(2)不等式的解集为R ,知二次函数图像恒在x 轴下方,则利用0k <且24240k ∆=-<可解【详解】(1)∵不等式的解集为{}32x x x <->-或∴3-,2-是方程2260kx x k -+=的两根,且0k < ∴25k =- (2)∵不等式的解集为R∴0k <且24240k ∆=-<∴6k <-∴k 的取值范围是(-∞, 【点睛】解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式∆与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.。
基本不等式练习题(带答案)基本不等式》同步测试一、选择题,本大题共10小题,每小题4分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若 $a\in R$,下列不等式恒成立的是()A。
$a^2+1>a$B。
$\frac{1}{2}<a<1$C。
$a^2+9>6a$D。
$\log_{a+1}。
\log_{|2a|}$2.若 $|a|<|b|$ 且 $a+b=1$,则下列四个数中最大的是()A。
$1$B。
$2$C。
$a^2+b^2$D。
$a$3.设 $x>0$,则 $y=3-\frac{3}{x}$ 的最大值为()A。
$3$B。
$\frac{3}{2}$C。
$\frac{3}{4}$D。
$-1$4.设$x,y\in R$,且$x+y=5$,则$3x+3y$ 的最小值是()A。
$10$B。
$6\sqrt{3}$C。
$4\sqrt{10}$D。
$18$5.若 $x,y$ 是正数,且 $\frac{1}{4x^2}+\frac{1}{9y^2}=1$,则 $xy$ 有()A。
最小值 $\frac{1}{36}$B。
最大值 $\frac{1}{36}$C。
最小值 $\frac{16}{9}$D。
最大值 $\frac{16}{9}$6.若 $a,b,c\in R$,且 $ab+bc+ca=1$,则下列不等式成立的是()A。
$a^2+b^2+c^2\ge 2$XXX 3$C。
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge 2$D。
$a+b+c\le 3$7.若 $x>0,y>0$,且 $x+y\le 4$,则下列不等式中恒成立的是()A。
$\frac{x}{x+1}+\frac{y}{y+1}\le 1$B。
$\frac{x}{x+1}+\frac{y}{y+1}\ge 1$C。
$xy\ge 2$D。
$xy\le 1$8.若 $a,b$ 是正数,则$\frac{a+b}{2},\sqrt{ab},\frac{2ab}{a+b}$ 三个数的大小顺序是()A。
矩阵不等式测试题(含详解)问题一已知一个矩阵A为n×n维矩阵,其特征值都为正数。
证明矩阵B=(A+A^T)/2也是正定矩阵。
解析设矩阵A的特征值为λ₁, λ₂, ..., λₙ。
由已知,所有特征值都为正数,则可以得出以下关系:1. 由于A是n维正定矩阵,故对于A的任意非零向量x,都有x^T*A*x > 0。
2. 对于任意实数a,有a + a^T = 2a。
3. 设特征向量v对应特征值λ,则有(A*v)^T = v^T * A^T = v^T * λv = λ * v^T * v =λ * ||v||²。
根据以上关系,我们可以证明矩阵B也是正定矩阵:对于任意非零向量x,考虑x^T * B * x:x^T * B * x = x^T * (A/2 + (A^T)/2) * x= (1/2) * (x^T * A * x) + (1/2) * (x^T * (A^T) * x)= (1/2) * (x^T * A * x) + (1/2) * (x^T * A^T * x)= (1/2) * (x^T * A * x) + (1/2) * (x^T * λ * x)= (1/2) * (x^T * A * x) + (λ/2) * (x^T * x)= (1/2) * (x^T * A * x) + (λ/2) * ||x||²= (1/2) * (x^T * A * x) + (λ/2) * x^T * I * x其中I为单位矩阵。
由于A是正定矩阵,故x^T * A * x > 0,且λ > 0。
因此,(1/2) * (x^T * A * x) + (λ/2) * x^T * I * x > 0。
即矩阵B=(A+A^T)/2也是正定矩阵。
问题二已知矩阵A为实对称矩阵,即A^T = A。
证明如果A是正定矩阵,则其所有特征值都为正数。
解析设矩阵A的特征值为λ₁, λ₂, ..., λₙ。
不等式第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(文)(2011·甘肃天水一中期末)已知a 、b 为非零实数,且a <b ,则下列不等式成立的是( )A .a 2<b 2 B.1a >1b C.1ab 2<1a 2b D.1a -b >1a[答案] C[解析] ∵a ,b 为非零实数,且a <b ,∴当a =-5,b =1时,A 、B 不成立,当a =1,b =2时,D 不成立,故选C.[点评] C 可证明如下:∵a ,b 为非零实数,∴a 2b 2>0,∵a <b ,∴a a 2b 2<b a 2b 2,∴1ab 2<1a 2b. (理)(2011·东北育才期末、辽宁大连市联考)若a >0,b >0且a +b =4,则下列不等式恒成立的是( )A.1ab >12 B.1a +1b ≤1 C.ab ≥2 D.1a 2+b 2≤18[答案] D[解析] ∵a >0,b >0,a +b =4,∴ab ≤a +b 2=2,∴ab ≤4,∴1ab ≥14, ∴1a +1b =a +b ab =4ab≥1,故A 、B 、C 均错,选D. [点评] 对于D 有,a 2+b 2=(a +b )2-2ab =16-2ab ≥16-2×4=8,∴1a 2+b 2≤18.2.(2011·辽宁铁岭六校联考)设a >0,点集S 的点(x ,y )满足下列所有条件:①a2≤x ≤2a ;②a2≤y ≤2a ;③x +y ≥a ;④x +a ≥y ;⑤y +a ≥x .则S 的边界是一个有几条边的多边形( ) A .4 B .5 C .6 D .7[答案] C[解析] 作出不等式组表示的平面区域如图可知,它是一个六边形.3.(2011·山东潍坊一中期末)设a ,b 是两个实数,且a ≠b ,①a 5+b 5>a 3b 2+a 2b 3,②a 2+b 2≥2(a -b -1),③a b +ba>2.上述三个式子恒成立的有( )A .0个B .1个C .2个D .3个[答案] B[解析] ①a 5+b 5-(a 3b 2+a 2b 3)=a 3(a 2-b 2)+b 3(b 2-a 2)=(a 2-b 2)(a 3-b 3)=(a -b )2(a +b )(a 2+ab +b 2)>0不恒成立;(a 2+b 2)-2(a -b -1)=a 2-2a +b 2+2b +2=(a -1)2+(b +1)2≥0恒成立;a b +b a >2或a b +ba<-2,故选B.4.(2011·巢湖质检)二元一次不等式组⎩⎪⎨⎪⎧x +y ≤2x ≥0y ≥0所表示的平面区域与圆面x 2+(y -2)2≤2相交的公共区域的面积为( )A.π8 B.π4 C.π2 D .π [答案] B[解析] 画出可行域如图△OAB ,它与圆面相交的公共区域为扇形BEF ,∵∠OBA =π4,圆半径为2,∴扇形面积为S =12×π4×(2)2=π4.5.(2011·辽宁沈阳二中检测)已知⎩⎪⎨⎪⎧x -y ≤0x +y ≥0y ≤a ,若Z =x +2y 的最大值是3,则a 的值是( )A .1B .-1C .0D .2[答案] A[解析] 画出可行域如图,∵z =x +2y 的最大值为3,∴y =-x 2+z2经过可行域内的点A (a ,a )时,z 取到最大值3,∴a +2a =3,∴a =1.6.(2011·福州市期末)已知实数x ,y 满足⎩⎪⎨⎪⎧x ≥1y ≤2x -y ≤0,则x +y 的最小值为( )A .2B .3C .4D .5[答案] A[解析] 画出可行域如图,令u =x +y ,则当直线y =-x +u 经过点A (1,1)时,u 取最小值2,故选A.7.(2011·蚌埠二中质检)已知M 是△ABC 内的一点,且AB →·AC →=23,∠BAC =30°,若△MBC ,△MCA 和△MAB 的面积分别为12,x ,y ,则1x +4y的最小值是( )A .20B .18C .16D .9[答案] B[解析] 由条件知,AB →·AC →=|AB →|·|AC →|·cos ∠BAC =32|AB →|·|AC →|=23,∴|AB →|·|AC →|=4,∴S △ABC =12|AB →|·|AC →|·sin30°=1,∴x +y +12=1,∴x +y =12(x >0,y >0),∴1x +4y =2⎝⎛⎭⎫1x +4y (x +y )=2⎝⎛⎭⎫5+y x +4x y ≥18,等号在y x =4x y ,即y =2x 时成立,∴x +y =12,∴x =16,y =13时,1x +4y取最小值18.8.(2011·陕西宝鸡质检)“x ≥3”是“(x -2)x 2-2x -3≥0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分与不必要条件[答案] A[解析] 由(x -2)x 2-2x -3≥0(※)得,x ≤-1或x ≥3,∴x ≥3时,※式成立,但(※)式成立时,不一定有x ≥3,故选A.9.(2011·辽宁铁岭六校联考)已知A 、B 是△ABC 的两个内角,若p sin A <sin(A +B ),q :A ∈⎝⎛⎭⎫0,π2,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A[解析] sin A <sin(A +B ),即sin A <sin C ,∴a <c ,∴A <C ,∴A ∈⎝⎛⎭⎫0,π2,但当A ∈⎝⎛⎭⎫0,π2时,未必有sin A <sin C ,如A =π3,B =5π12,C =π4时不满足sin A <sin(A +B ).10.(2011·巢湖市质检)定义在R 上的函数f (x )对∀x 1,x 2∈R ,(x 1-x 2)[f (x 1)-f (x 2)]<0,若函数f (x +1)为奇函数,则不等式f (1-x )<0的解集为( )A .(1,+∞)B .(0,+∞)C .(-∞,0)D .(-∞,1) [答案] C[解析] 由条件知f (x )在R 上单调递减,∵f (x +1)为奇函数,∴f (1)=0,∴不等式f (1-x )<0化为f (1-x )<f (1),∴1-x >1,∴x <0.[点评] 如果F (x )定义域为R ,F (x )为奇函数,则必有F (0)=0,∵F (x )=f (x +1)为奇函数,∴有F (0)=f (1)=0.11.(2011·北京朝阳区期末、山东日照调研)若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( )A .913B .313 C.72 D.74[答案] D[解析] 作出平面区域A 如图,当a 从-2到1连续变化时,动直线y =-x +a 从l 1变化到l 2,扫过A 中的那部分平面区域为四边形EOFG ,其面积S =S △OBE -S △FGB =12×2×2-12×1×12=74.12.(2011·宁夏银川一中检测)设f (x )=x 3+x ,x ∈R ,当0≤θ≤π2时,f (m sin θ)+f (1-m )>0恒成立,则实数m 的取值范围是( )A .(0,1)B .(-∞,0)C .(-∞,12)D .(-∞,1)[答案] D[解析] ∵f (x )=x 3+x 为奇函数且在R 上为增函数,∴不等式f (m sin θ)+f (1-m )>0,即f (m sin θ)>f (m -1),即m sin θ>m -1在⎣⎡⎦⎤0,π2上恒成立.当m >0时,即sin θ>m -1m 恒成立,只要0>m -1m 即可,解得0<m <1;当m =0时,不等式恒成立;当m <0时,只要sin θ<m -1m 恒成立,只要1<m -1m,只要0>-1,这个不等式恒成立,此时m <0.综上可知:m <1.[点评] 这里函数性质是隐含在函数解析式中的,其目的是考查考生是否有灵活使用函数性质简捷地解决问题的思想意识.在不等式的恒成立问题中要善于使用参数分类的方法解决问题,本题的解析是对参数取值进行分类,也可以直接使用分离参数的方法求解,即m sin θ>m -1可以化为(1-sin θ)m <1,当θ=π2时,m ∈R ;当θ≠π2时,m <11-sin θ=f (θ),只要m <f (θ)min 即可,即只要m <1即可.综合两种情况得到m <1.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(文)(2011·重庆南开中学模拟)不等式2x 2-x <4的解集是________. [答案] (-1,2)[解析] 不等式化为2x 2-x <22, ∴x 2-x <2,∴-1<x <2.(理)(2011·甘肃天水一中期末)不等式x -2x 2-4x +3<0的解集为________.[答案] (-∞,1)∪(2,3)[解析] 不等式化为(x -2)(x -1)(x -3)<0,由数轴穿根法易得x <1或2<x <3. 14.(文)(2011·江西南昌调研)函数f (x )=x 2-9log 2(x -1)的定义域为________.[答案] [3,+∞) [解析] 由⎩⎪⎨⎪⎧x 2-9≥0x -1>0x -1≠1得⎩⎪⎨⎪⎧x ≥3或x ≤-3x >1x ≠2,∴x ≥3. (理)(2011·咸阳市模拟)已知函数f (x )=⎩⎪⎨⎪⎧1 x ≥0-1 x <0,则不等式(x +1)f (x )<x 的解集是________.[答案] ⎝⎛⎭⎫-12,0 [解析] 不等式(x +1)f (x )<x 化为⎩⎪⎨⎪⎧x ≥0x +1<x或⎩⎪⎨⎪⎧x <0-(x +1)<x ,∴-12<x <0.15.(文)(2011·厦门期末)不等式组⎩⎪⎨⎪⎧x -2y -2≤02x +y +1≥0所确定的平面区域为D ,则该平面区域D 在圆x 2+(y +1)2=4内的面积是________.[答案] π[解析] 如图,直线x -2y -2=0和直线2x +y +1=0的斜率依次为k 1=12,k 2=-2,∵k 1k 2=-1,∴两直线互相垂直,故所求面积为S =14×π×22=π.[点评] 若两直线不垂直,可先写出两直线的方向向量,利用向量求得两直线夹角,再求面积.(理)(2011·浙江宁波八校联考)已知x ,y 满足⎩⎪⎨⎪⎧x ≥1x +y ≤4ax +by +c ≤0且目标函数z =2x +y 的最大值为7,最小值为1,则a +b +ca=________.[答案] -2[分析] 作出直线x =1和x +y =4,画出不等式组⎩⎪⎨⎪⎧x ≥1x +y ≤4表示的平面区域为图中阴影部分,由于目标函数z =2x +y 最大值为7,最小值为1,∴y =-2x +1及y =-2x +7分别与直线x =1及x +y =4的交点为最优解,故此二点必在直线ax +by +c =0上.[解析] 由⎩⎪⎨⎪⎧x =1y =-2x +1得A (1,-1),由⎩⎪⎨⎪⎧x +y =4y =-2x +7得B (3,1),直线AB :y +11+1=x -13-1,即x -y -2=0,此直线即ax +by +c =0,比较系数得a 1=b -1=c-2=a +b +c -2,∴a +b +ca=-2. 16.(2011·豫南九校联考)若a ,b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥(a +b )2x +y,当且仅当a x =b y 时上式取等号.利用以上结论,可以得到函数f (x )=2x +91-2x (x ∈(0,12))的最小值为________.[答案] 25[解析] 依据给出的结论可知f (x )=42x +91-2x ≥(2+3)22x +(1-2x )=25等号在22x =31-2x ,即x =15时成立. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(2011·四川广元诊断)已知x ∈[0,1]时,不等式x 2cos θ-x (1-x )+(1-x )2sin θ>0恒成立,试求θ的取值范围.[解析] 由题意知:x =0或x =1时,原不等式成立 即sin θ>0,cos θ>0,∴θ在第一象限,∵x ∈(0,1)时,x 2cos θ+(1-x )2sin θ≥2x (1-x )sin θcos θ, ∴原不等式成立,只须 2x (1-x )sin θcos θ-x (1-x )>0 注意到x (1-x )>0,∴2sin θcos θ>1 ∴sin2θ>12∴k π+π12<θ<k π+5π12,∴θ的取值范围应是⎝⎛⎭⎫k π+π12,k π+5π12,k ∈Z . 18.(本小题满分12分)(文)(2011·厦门期末质检)某人要建造一间地面面积为24m 2、墙高为3m ,一面靠旧墙的矩形房屋.利用旧墙需维修,其它三面墙要新建,由于地理位置的限制,房子正面的长度x (单位:m)不得超过a (单位:m)(其平面示意图如下).已知旧墙的维修费用为150元/m 2,新墙的造价为450元/m 2,屋顶和地面的造价费用合计为5400元(不计门、窗的造价).(1)把房屋总造价y (单位:元)表示成x (单位:m)的函数,并写出该函数的定义域; (2)当x 为多少时,总造价最低?最低总造价是多少?[解析] (1)依题意得:y =3x (150+450)+24x ×2×3×450+5400=1800⎝⎛⎭⎫x +36x +5400(0<x ≤a ) (2)y =1800⎝⎛⎭⎫x +36x +5400≥1800×2x ·36x+5400=21600+5400=27000 当且仅当x =36x,即x =6时取等号若a >6时,则x =6总进价最低,最低总造价是27000元. 当a ≤6时,则y ′=1800⎝⎛⎭⎫1-36x 2 ∴当0<x <6时,y ′<0,故函数y =1800⎝⎛⎭⎫x +36x +5400在(0,a ]上是减函数, ∴当x =a 时,y 有最小值,即最低总造价为1800⎝⎛⎭⎫a +36a +5400元 答:当a >6时,x =6总造价最低,最低总造价是27000元;当a ≤6时,x =a 总造价最低,最低总造价为1800⎝⎛⎭⎫a +36a +5400元. (理)(2011·宁夏银川一中模拟)在交通拥挤地段,为了确保交通安全,规定机动车相互之间的距离d (米)与车速v (千米/小时)需遵循的关系是d ≥12500a v 2(其中a (米)是车身长,a 为常量),同时规定d ≥a2.(1)当d =a2时,求机动车车速的变化范围;(2)设机动车每小时流量Q =1000va +d ,应规定怎样的车速,使机动车每小时流量Q 最大.[分析] (1)把d =a 2代入d ≥12500a v 2,解这个关于v 的不等式即可;(2)根据d 满足的不等式,以最小车距代替d ,求此时Q 的最值即可.[解析] (1)由a 2=12500a v 2得,v =252,∴0<v ≤25 2.(2)由v ≤252时,Q =1000v32a ,Q 是v 的一次函数,v =252时,Q 最大为5000023a ,当v >252时,Q =1000a ⎝⎛⎭⎫1v +v 2500≤25000a , ∴当v =50时Q 最大为25000a.[点评] 本题中对车距d 有两个限制条件,这两个条件是在不同的车速的情况下的限制条件,解题中容易出现的错误是不能正确的使用这两个限制条件对函数的定义域进行分类,即在车速小于或等于252时,两车之间的最小车距是a2,当车速大于252时,两车之间的最小车距是12500a v 2.19.(本小题满分12分)(文)设函数f (x )=x (e x -1)-ax 2. (1)若a =12,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围. [解析] (1)a =12时,f (x )=x (e x -1)-12x 2,f ′(x )=e x -1+xe x -x =(e x -1)(x +1).当x ∈(-∞,-1)时,f ′(x )>0;当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0. 故f (x )在(-∞,1],[0,+∞)上单调递增,在[-1,0]上单调递减. (2)f (x )=x (e x -1-ax ).令g (x )=e x -1-ax ,则g ′(x )=e x -a .若a ≤1,则当x ∈(0,+∞)时,g ′(x )>0,g (x )为增函数,而g (0)=0,从而当x ≥0时g (x )≥0,即f (x )≥0.当a >1,则当x ∈(0,ln a )时,g ′(x )<0,g (x )为减函数,而g (0)=0,从而当x ∈(0,ln a )时g (x )<0,即f (x )<0.综合得a 的取值范围为(-∞,1].(理)设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间及极值;(2)求证:当a >ln2-1且x >0时,e x >x 2-2ax +1.[解析] (1)解:由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R . 令f ′(x )=0,得x =ln2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (f (x )在x =ln2处取得极小值,极小值为f (ln2)=e ln 2-2ln2+2a =2(1-ln2+a ).(2)证明:设g (x )=e x -x 2+2ax -1,x ∈R ,于是g ′(x )=e x -2x +2a ,x ∈R .由(1)知当a >ln2-1时,g ′(x )最小值为g ′(ln2)=2(1-ln2+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增.于是当a >ln2-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0.即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.20.(本小题满分12分)(2011·黄冈市期末)已知函数f (x )=2-x x +1. (1)证明:函数f (x )在(-1,+∞)上为减函数;(2)是否存在负数x 0,使得f (x 0)=3x 0成立,若存在求出x 0;若不存在,请说明理由.[解析] (1)任取x 1,x 2∈(-1,+∞),且x 1<x 2,∵f (x 1)-f (x 2)=2-x 1x 1+1-2-x 2x 2+1=3x 2-3x 1(x 1+1)(x 2+1)>0, ∴函数f (x )在(-1,+∞)上为减函数. (2)不存在假设存在负数x 0,使得f (x 0)=3x 0成立,则∵x 0<0,∴0<3x 0<1,即0<f (x 0)<1,∴0<2-x 0x 0+1<1, ∴⎩⎪⎨⎪⎧ -1<x 0<2-2x 0+1x 0+1<0⇒⎩⎪⎨⎪⎧-1<x 0<2x 0<-1或x 0>12 ⇒12<x 0<2与x 0<0矛盾, 所以不存在负数x 0,使得f (x 0)=3x 0成立.[点评] (2)可另解如下:f (x )=-1+3x +1,由x 0<0得:f (x 0)<-1或f (x 0)>2但0<3x 0<1,所以不存在. 21.(本小题满分12分)(2011·北京市朝阳区期末)已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图像过点(-1,0),且方程f (x )=0有且只有一个实数根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围;(3)若F (x )=⎩⎪⎨⎪⎧f (x ) x >0,-f (x ) x <0,当mn <0,m +n >0,a >0,且函数f (x )为偶函数时,试判断F (m )+F (n )能否大于0?[解析] (1)∵f (-1)=0,∴a -b +1=0.∵方程f (x )=0有且只有一个实数根,∴Δ=b 2-4a =0.∴b 2-4(b -1)=0.∴b =2,a =1.∴f (x )=(x +1)2.(2)∵g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1=⎝⎛⎭⎫x -k -222+1-(k -2)24. 所以当k -22≥2或k -22≤-2时, 即k ≥6或k ≤-2时,g (x )是单调函数.(3)f (x )为偶函数,所以b =0.所以f (x )=ax 2+1.所以F (x )=⎩⎪⎨⎪⎧ax 2+1 x >0,-ax 2-1 x <0. 因为mn <0,不妨设m >0,则n <0.又因为m +n >0,所以m >-n >0.所以|m |>|-n |.此时F (m )+F (n )=f (m )-f (n )=am 2+1-an 2-1=a (m 2-n 2)>0.所以F (m )+F (n )>0.22.(本小题满分12分)已知函数f (x )=x 3+bx 2+cx +d 的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为6x -y +7=0.(1)求函数y =f (x )的解析式;(2)求函数y =f (x )的单调区间.[解析] (1)由f (x )的图象经过P (0,2),知d =2,所以f (x )=x 3+bx 2+cx +2.所以f ′(x )=3x 2+2bx +c .由在M (-1,f (-1))处的切线方程为6x -y +7=0,∴f ′(-1)=6,且-6-f (-1)+7=0,即f (-1)=1,所以⎩⎪⎨⎪⎧ 3-2b +c =6,-1+b -c +2=1.即⎩⎪⎨⎪⎧2b -c =3,b -c =0.解得b =c =-3. 故所求的解析式是f (x )=x 3-3x 2-3x +2.(2)因为f ′(x )=3x 2-6x -3,令3x2-6x-3=0,即x2-2x-1=0,解得x1=1-2,x2=1+ 2.当x<1-2或x>1+2时,f′(x)>0,当1-2<x<1+2时,f′(x)<0,故f(x)=x3-3x2-3x+2在(-∞,1-2)内是增函数,在(1-2,1+2)内是减函数,在(1+2,+∞)内是增函数.。