平行六面体与长方体
- 格式:ppt
- 大小:1.60 MB
- 文档页数:7
高中几何知识点总结一、空间几何体(一)棱柱、棱锥、棱台1、棱柱:一般地,由一个沿某一方向形成的空间几何体叫做棱柱。
(1)棱柱的底面、侧面、侧棱、表示方法、分类以及侧棱的性质(2)直棱柱、正棱柱、平行六面体的概念2、棱锥:叫做棱锥。
(1)棱锥的底面、侧面、侧棱、表示方法、分类以及侧棱的性质(2)正三棱锥与正四面体的概念3、棱台:叫做棱台。
(1)棱台的上下底面、侧面、侧棱、表示方法、分类以及侧棱的性质(2)正棱台的概念(3)棱台的检验方法(侧棱延长交于一点,上下底面相似且平行)(二)圆柱、圆锥、圆台、球1、旋转面:一般地,一条绕旋转所形成的2、旋转体:叫做旋转体。
3、圆柱、圆锥、圆台:将、、分别绕它的、、、所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台。
(1)圆柱、圆锥、圆台的轴、底面、侧面、母线(2)利用“平移”、“缩”、“截”的方法定义棱柱、棱锥、棱台4、球面:叫做球面。
球体:叫做球体,简称球。
5、圆柱、圆锥、圆台、球的轴截面与旋转面的关系(三)直观图画法1、消点:2、直观图画法步骤:二、点、线、面之间的位置关系1、平面基本性质公理1 如果一条直线上的公理2 如果两个平面有一个公共点,那么他们还有其它公共点,这些公共点的集合是经过这个公共点的一条直线。
公理3 经过的三点,有且只有一个平面。
(2) 线面垂直:如果一条直线与一个平面内的任意一条直线都垂直,称为线面垂直,记作,垂线、垂面、垂足。
(3) 面面平行:如果两个平面没有公共点,那么就说这两个平面平行。
面面垂直:一般地,如果两个平面所成的二面角是直二面角,3、线线关系位置关系相交直线平行直线异面直线共面关系公共点个数4、线面关系位置关系公共点符号表示图形表示直线在平面内直线与平面相交直线与平面平行5、面面关系图形表示6、各类“平行”之间的转化条件线线平行结论如果∥b,b∥c,那么∥c如果∥b,,b,那么∥如果,b,面面平行∩b=P,cβ,如果,如果∥β,如果⊥ ,⊥β,如果∥ ,β,β∩=b,那么∥b 线面平行面面平行如果∥β,垂直关系线线平行∩γ=,β∩γ=b,那么∥b 如果∥β,,那么∥β 如果⊥ ,b⊥ ,那么∥b 线面平行———— b ,∩b=P,∥β,b∥β,那么∥β β∥γ,那么∥γ 那么∥βd β,c∩d=Q,∥c,b∥d,那么∥β7、各类“垂直”之间的转化条件线线垂直结论如果⊥ ,b,那么⊥b 如果三个平面两两垂直,那么它们交线两两垂直如果⊥β——那么⊥β如果⊥ ,β,那么β⊥ ——,如果∥b,⊥c,那么b⊥c 线面垂直面面垂直平行关系线线垂直——线面垂直如果⊥b,⊥c,b,c,b∩c=P,那么⊥ 定义(二面角等于90) 0α∩β=b,,⊥b,如果⊥ ,b∥ ,那么b⊥ 面面垂直——8、立体几何中的“角”(1) 异面直线所成的角:将两异面直线平移得到两相交直线,这两条香蕉直线所成的锐角或直角就是这两条异面直线所成的角。
数学立体几何解题技巧必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。
下面是小编给大家整理的一些数学立体几何解题技巧的学习资料,希望对大家有所帮助。
高考数学答题技巧:立体几何解答立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。
选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。
随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。
从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2、判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
3、两个平面平行的主要性质:(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
第二十一章平行六面体的性质及应用【基础知识】平行六面体是平行四边形的一个三维类比模型,平行四边形的一系列有趣性质可推证到平行六面体中去.平行四边形与三角形有着极为密切的关系,因而平行六面体与四面体也有着极为密切的关系,这些构成了平行六面体一系列既有趣又有重要应用的性质.性质1平行六面体的四条对角线相交于一点,且在这一点互相平分,并称该点为中心.推论称侧面对角线的交点为侧面中心,则相对侧面中心的连线也交于平行六面体的中心,且在这一点互相平分.(见例5)性质2平行六面体所有对角线的平方和等于所有棱的平方和.推论1平行六面体所有侧面对角线的平方和等于其所有(体)对角线平方和的两倍.推论2平行六面体每一侧棱的平方等于与这侧棱共面的两侧面四条面对角线的平方和减去与这侧棱不共面而共端点的两条侧面对角线平方和所得差的四分之一.推论3平行六面体的每一对角线长的平方等于过这条对角线一端点的三条侧面对角线的平方和减去过另一端点的三条棱的平方和.性质3平行六面体的每一对角线长的平方等于共一端点的三条棱长的平方和减去这三条棱中每两条棱长及其所夹角余弦之积的两倍.性质4平行六面体的每一对角线通过与该对角线共端点的三条棱的另一端点构成的三角形截面的重心,且被这三角形截面分成三等分.性质5平行六面体的每个由三条侧面对角线构成的三角形截面面积平方的4倍,等于这截面所截三个侧面面积的平方和减去这三个侧面中每两个侧面面积及其所夹二面角余弦之积的两倍.推论平行六面体的八个由三条侧面对角线构成的三角形截面面积的平方和等于六个侧面面积的平方和. 性质6设平行六面体的全面积为S ,四条对角线长为1AC l 、1A C l 、1BD l 、1BD l 、1B D l ,则111122222AC A C BD B DS l l l l +++≤. 性质7通过平行六面体中心的任何平面,将平行六面体分成体积相等的两部分.推论1以平行六面体任一顶点及这顶点出发的三条棱的端点构成的四面体体积是平行六面体体积的六分之一.推论2以平行六面体任一顶点及这顶点出发的三条侧面对角线端点构成的四面体体积是平行六面体体积的三分之一.性质8平行六面体的体积等于底面积与高的乘积,或任一侧面面积与相对面距离之积. 推论设共一顶点的三条棱长为a 、b 、c ,每两条棱的夹角为α、β、γ,则体积V 为V abc ==若记()12θαβγ=++,则2V =. 性质9()11113/22222124AC A C BD B D V l l l l +++≤;3/26S V ⎛⎫ ⎪⎝⎭≤.推论l 表面积一定的平行六面体中,以正方体之体积为最大.推论2在各个侧面面积为定值的平行六面体中,以长方体之体积为最大.性质11由平行六面体的各顶点,至不截此体的一平面所引诸垂线段之和,等于由其对角线之交点至同平面所引垂线段之和的8倍.性质10在平行六面体1111ABCD A B C D -中,截面分别与AB 、AD 、1AA 、1AC 交于0B 、0C 、0A 、0D 各点,则110000AC AA AB AD AC AB AD AA =++u u u u r u u u r u u u r u u u r u u u ur u u u u r u u u u r u u u u r . 下面介绍平行六面体与四面体的密切关系. 1.对应关系作四面体的外接平行六面体,且使四面体的六条棱均成为平行六面体的侧面对角线.此时,四面体与其外接平行六面体是一一对应的.特别地,一个正四面体对应着一个正方体,一个等腰四面体(三对对棱分别相等的四面体)对应着一个长方体,一个两对对棱分别相等的四面体对应着一个直平行六面体,一个对棱均互相垂直的四面体(直角四面体或正三棱锥四面体)对应着一个菱形六面体等等.当四面体的共一顶点的三棱成为平行六面体的共顶点的三棱时,一个四面体对应着四个外接平行六面体,特别地,一个正四面体对应着一个一顶点面角均为60︒的菱形六面体,一个等腰四面体对应着两个一顶点面角之和为180︒的平行六面体等等. 2.隐显关系从本世纪初开始,人们试图将三角形的许多性质引申到四面体——最简单的多面体,事实证明发展四面体的几何学比三角形几何学困难得多,有些提法并不复杂的问题解答起来非常费劲,甚至未能解决.下面的例题将启示我们:四面体某些数量关系的发现及几何特征的显露,借助于其外接平行六面体的性质的运用是一种方便的重要途径.因此,可以说四面体的一些性质可以利其外接平行六面体来显现,平行六面体隐含了四面体的一些重要性质. 【典型例题与基本方法】例1在四面体ABCD 中,AB m =,CD n =,AD p =,BC q =,AC u =,BD u =.若AB 与CD 所成的角为θ,则()()2222cos 2pq u v mn+--=.证明如图211-,作四面体ABCD 的外接平行六面体A DB C AD BC ''''-,使四面体的棱都成为平行六面体的侧面对角线.显然,AB 与CD 所成的角θ就是A B ''与CD 所成的角,于是 ()()2222221/21/24cos 112222m n B D m n B D mn m n θ'+-⎡⎤⎡⎤'+-⎣⎦⎣⎦==⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭ 222222242222A D B D B D A D B D mn mn'''''+--==A'B'C 'D '图21-1DBA C()()22222222222222p q u v A D D D D D B D mn mn+--''''---==. 例2若四面体的六条棱长分别为a 、b 、c 、d 、e 、f ,体积为V ,则有333333a b c d e f +++++≥(Weisenbock 不等式的一种三维推广).证明如图211-,将四面体ABCD 补成平行六面体,则3ABCD V V =平行六面体.设平行六面体共顶点A 的三条棱长为l 、m 、n ,由前面的性质2的推论1,即有()2222222224a b c d e f l m n +++++=++.又由V l m n ⋅⋅平行六面体≤及幂平均值不等式,有113333332222223266a b c d e f a b c d e f ⎛⎫⎛⎫++++++++++ ⎪ ⎪⎝⎭⎝⎭≥.于是()322224212ABCD l m nV ⎡⎤++⎢⎥⎢⎥⎣⎦①()32222222112a b c d e f ⎡⎤=+++++⎢⎥⎣⎦()312233333331612a b c d e f ⎧⎫⎪⎪⎡⎤+++++⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭≤②)333333a b c d e f =+++++.故333333a b c d e f +++++≥.其中等号当且仅当①、②中满足l 、m 、n 互相垂直且l m n ==,即平行六面体为正方体,亦即a b c d e f =====时成立.类似上例,并运用前面的性质5的推论,可证明Weisenbock 不等式的另一种三维推广:若四面体各顶点A 、B 、C 、D 所对的面的面积分别为A S 、B S 、C S 、D S ,体积为V ,则33332A B C D S S S S +++ 例3空间四平面互相平行,相邻两面间距离都是h .今有一正四面体,它的四个顶点分别在这四个面上.求正四面体的棱长.解设正四面体ABCD 的外接正方体为'AC BD A CB D '''-.又设过棱D D '及B C '中点F 的截面为3α,过棱C C '及A D '中点E 的截面为2α,过棱A A ',过棱B B '且与3α、2α平行的平面分别为1α、4α,这样这四个平面即为两相邻距离都相等的互相平行的四平面.又设过A B ''的中点O '与CE 垂直的直线为l ,l 与4α、3α、2α、1α的交点分别为B ''、D ''、C ''、A '',如图21-2(b),则4α、3α、2α、1α两相邻平面间距离为B D ''''、D C ''''、C A ''''.当A C h ''''=时,可求得A E '=,从而A B ''=.这就是我们所要求的正四面体的棱长. 例4四面体ABCD 中,若AB CD ⊥,AC BD ⊥,则AD BC ⊥.(1957年天津市、1979年上海市中学竞赛题)证明如图211-,作四面体ABCD 的外接平行六面体A DB C AD BC ''''-.由平行六面体每一侧面两对角线所夹的角(锐角)的余弦值等于这侧面两相邻棱的平方差的绝对值除以这两条侧面对角线长的乘积,即¼()22cos A D DB A BCD A B CD''-'=''⋅.由AB CD ⊥,则¼()cos cos()0ABCD A B CD ''==撩妹妹?,从而A D DB ''=,即侧面A DB C ''为菱形,同理,由AC BD ⊥.有侧面A CC A ''为菱形,从而侧面A DD A ''也为菱形,故AD BC ⊥. 例5求证四面体的三双对棱中点连线必交于一点,且互相平分.证明如图213-,设E 、F 、G 、H 、M 、N 分别是四面体ABCD 的六条棱的中点.作四面体的外接平行六面体1A C ,则E 、F 、G 、H 、M 、N 分别是其六侧面对角线的交点.在11AAC C Y 中,连EF ,则11EF AA CC ∥∥,且过六面体对角线1A C 的中点O ,同时被O 平分.因六面体的四条对角线共点O ,于是同理可证GH 、MN 过O ,且被O 平分.例6立方体八个顶点中有四个恰是正四面体的顶点.求出立方体的表面积与四面体的表面积之比.(1980年美国中学生竞赛AHSME 第16题) 解设立方体表面积为S ,四面体表面积为0S ,由平行六面体所有三角形截面(三角形的边由六面体侧DEGO 'B"A"C "D "A'B'C 'D (b)(a)D图21-2CF 图21-3G N EH OCDBAC 1A 1D 1B 1MF面对角线组成)面积的平方和等于所有侧面面积的平方和,有2206/4264S S ⎛⎫⎛⎫⋅⋅= ⎪ ⎪⎝⎭⎝⎭,故0/S S =【解题思维策略分析】1.善于将四面体问题转化为平行六面体问题例7若A 、B 、C 、D 表示空间四点,AB 表示A 、B 两点间的距离,AC 表示A 、C 两点间的距离,⋯.证明:222222AC BD AD BC AB CD ++++≥.(第4届美国中学生竞赛题) 证明以空间四边形的边为侧面对角线构造平行六面体,由平行六面体所有侧面对角线的平方和等于所有棱的平方和的两倍及图213-,有222222222111444AC BD AD BC AB CD AD AA A B +++++=++()22242AD AB CD =++故222222AC BD AD BC AB CD ++++≥.当A 、B 、C 、D 共面时,10AD =,上式取等号.此时,可看作是压扁了的四面体.例8在四面体ABCD 中,BDC ∠是直角,由D 到ABC △所在的平面的垂线的垂足H 是ABC △的垂心,证明:()()22226AB BC CA AD BD CD ++++≤.(IMO 12-试题)证明如图214-,平行六面体1111AC BD B D AC -为四面体ABCD 的外接平行六面体.由题设,D 到ABC △所在的平面的垂线的垂足是ABC △的垂心,知这个四面体的对棱互相垂直,又BDC ∠是直角,即知四面体ABCD 的三面角D ABC -是直三面角,故此平行六面体为长方体.由()2222AD BD CD ++()()()222222AD BD BD CD CD AD =+++++222AB BC AC =++.故()()22222263AD BD CD AB BC AC ++=++222222AB BC CA AB BC BC CA AB CA +++⋅+⋅+⋅≥ ()2AB BC CA =++.例9若a 、b 、c 是四面体共顶点的三条棱的长,α、β、γ,是这三条棱组成的面角,ω是这三个面角和的一半,则四面体的体积为:13V abc =四面体证明如图21-4,设DA a =,DB b =,DC c =,BDC α∠=,ADC β∠=, ADB γ∠=.由平行六面体CDBC 1A 1D 1B 1图21-4H的体积公式()V abc S A =⋅平行六面体,其中()S A= 有16V V =四面体平行六面体1=3abc 2.善于构造平行六面体解答有关问题例10已知a 、b 、c +∈R ,且2221a b c ++=3a b c +++>.证明由2221a b c ++=3a b c +++>.参见图212- (a),构作长方体AB '.设对角线1AB '=,AD a '=,AC b '=,AA c '=,则A B ''=B C '',B D ''=.在A AB ''△中,A A A B B A ''''+>,即1c >.同理,1b >1a +>. 以上三式相加,即证.例11锐角α.β、γ满足222sin sin sin 1αβγ++=,求证:π3π24αβγ<++<. 证明构造长方体D AC B DA CB ''''-,参见图212- (a),使其长、宽、高分别为sin D A α'=,sin AC β'=,sin C C γ'=,则1AB D C ''==,D B A α''∠=,C B A β''∠=,C D C γ''∠=,且AB BA '>.sin sin sin D A D AD B A D BA B A BA α'''''∴=∠=<=∠', sin sin sin AC AC C B A C BA B A BAβ'''''=∠=<=∠'.从而D BA α'<∠,C BA β'<∠. 1π2D BA C BA αβ''∴+<∠+∠=.同理,π2βγ+<,π2αγ+<,即3π4αβγ++<. 设B A '与D C '相交于O ,则知2D OA α'∠=,2AOC β'∠=,2C OC γ'∠=.由于三面角的任意两个面角的和大于第三个面角,则 22D OA AOC D OC αβ'''+=∠+∠>∠.()2πD OC C OC αβγ''∴++=∠+∠=. 故π3π24αβγ<++<. 3.注意特殊平面体的性质的运用例12正方体1111ABCD A B C D -的棱长为1,求正方体底面ABCD 内切圆周上的点与过顶点1A 、C 和1B 的圆周上的点之间的最小距离.(第19届全苏奥林匹克题)解如图215-,考察两个圆周分别在以正方体的对称中心为球心的两个同心球面上,即与正方体各棱都)上,这两个球面上的点之间的最小距离是它们的半径之差12d =.如果两圆周上各有一点恰好在球心O 发出的同一射线上,那么d 即为最小值.考察在以O为位似比的变换下,小球面变为大球面,而小球面上的圆周的象集为大球面上的圆周.注意到ABCD 的内切圆1O e 与线段BD 的交点E 和F 在该位似变换下的象在平面1AB C 的两侧(因11145O OF BB O ∠=︒>∠,故射线OF 不与平面1AB C 相交),因此,1O e 的象集(圆周)将与过顶点A ,C 和1B 的圆周相交.设一交点为N ,而N 的原象为M ,那么M ,N 之间的距离就是考察的两圆周上的点之间的距离的最小值,其值为12d =.【模拟实战】习题A1.在正方体1111ABCD A B C D -中,O 是面ABCD 的中心,1O 是面11ADD A 的中心.求异面直线1D O 与1BO 所成角的余弦值.2.已知空间一个平面与一个正方体的12条棱的夹角都等于口α,求α的值.3.能否用一个平面去截一个正方体,使得截面为五边形?进一步,截面是否为正五边形?4.设一个平面截棱长为1的正方体1111ABCD A B C D -,过顶点1C ,交1A D 1中点于E ,1A A 距A 较近的一个三等分点于F ,AB 于G ,BC 于H .求截面1C EFGH 的周长.5.已知一个平面截棱长为1的正方体所得截面是—个六边形.证明:此六边形周长≥. 6.正三棱锥S ABC -的侧棱与底面边长相等,如果E ,F 分别为SC ,AB 的中点,那么异面直线EF 与SA 所成的角等于多少?图21-5C1A B7.已知111ABC A B C -是直三棱柱,90BAC ∠=︒,点1D ,1F 分别是11A B ,11B C 的中点.若1AB CA AA ==,求1BD 与1CF 所夹角的余弦值.8.已知ABCD 是边长为4的正方形,E ,F 分别是AB ,AD 的中点,GC ⊥面ABCD ,且2GC =.求点B 到面EFG 的距离.9.在四面体SABC 中,已知SA BC a ==,SC AB b ==,SB AC c ==,求此四面体的体积. 10.在四面体1234A A A A 中,相应对棱中点的三条连线分别为1m ,2m ,3m ,顶点i A 所对侧面的重心为i G ,其四面体体积记为V ,则(Ⅰ)1233m m m V ⋅⋅≥;(Ⅱ)421412716i j i i i j i A A AG =-∑∑≤≤≤≥(Ⅲ)421i i i AG =∑ 11.已知α,β,γ是锐角,且222cos cos cos 1αβγ++=.求证:(Ⅰ)tan tan tan αβγ⋅⋅≥ (Ⅱ)3ππ4αβγ<++<. 12.已知0a >,0b >,0c >,且1a b c ++=.习题B1.有一立方体,中心和边长为a b c <<的长方体的对称中心重合,诸界面与长方体各界面平行,求立方体的棱长,使得它与长方体的并的体积减去它与长方体的交的体积的差最小.(1979年捷克竞赛题) 2.证明:在棱长为a 的立方体内部可以作两个棱长为a 的正四面体,使得它们没有公共点.(1983年民主德国竞赛题)。
典型例题一 棱柱例1 设有四个命题:①底面是矩形的平行六面体是长方体;②棱长都相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A .1B .2C .3D .4分析:命题①是假命题.因为底面是矩形的直平行六面体才是长方体.底面是矩形,侧棱不垂直于底面,这样的四棱柱仍是斜平行六面体;命题②是假命题.底面是菱形,底面边长与棱长相等的直四棱柱不是正方体; 命题③是假命题.因为有两条侧棱垂直于义面一边不能推出侧棱与底面垂直. 命题④是真命题,如图所示,平行六面体1111-D C B A ABCD 中所有对角线相等,对角面11BDD B 是平行四边形,对角线D B BD 11=,所以四边形11BDD B 是矩形,即BD BB ⊥1,同理四边形11ACC A 是矩形,所以AC AA ⊥1,由11//BB AA 知⊥1BB 底面ABCD ,即该平行六面体是直平行六面体.故选A .说明:解这类选择题的关键在于理清各种棱柱之间的联系与区别,要紧扣底面形状及侧棱与底面的位置关系来解题.下面我们列表来说明平行四边形与平行六面体的性质的“类比”,由此,我们可以发现立体几何与平面几何许多知识是可以进行类比的.见表典型例题二 例2 如图,正四棱柱1111-D C B A ABCD 中,对角线81=BD ,1BD 与侧面C C BB 11所成角为 30,求:(1)1BD 与底面ABCD 所成角;(2)异面直线1BD 与AD 所成角;(3)正四棱柱的全面积.分析:正四棱柱是一种特殊的长方体,它的两底面ABCD 、1111D C B A 是正方形,长方体中有比较多的线面垂直关系,而线面垂直关系往往是解决立体几何问题的关键条件.题中无论是已知线面成角,还是求线面成角,都要把它们转化为具体的角,落实线面成角,先要找线面垂直关系.异面直线1BD 与AD 所成角通过11//D A AD ,落实为具体的B D A 11∠.正四棱柱各个面都是矩形,求面积只要用矩形面积公式.解:(1)在正四棱柱C A 1中,∵⊥11C D 面C C BB 11,∴11BC D ∠是B D 1与侧面C C BB 11所成角,即 3011=∠BC D .∵ 81=BD ,∴ 411=C D ,341=BC ,∵ 1111D C B A 是正方形,∴41111==C D C B ,⊥D D 1平面ABCD ,∴ BD D 1∠是B D 1与底面ABCD 所成角,在Rt △DB D 1中,2411==D B BD ,81=BD , ∴22cos 11==∠BD BD BD D ,∴ 451=∠BD D , 即1BD 与底面ABCD 所成角为 45.(2)∵11//D A AD ,∴B D A 11∠是1BD 与AD 所成角(或补角). ∵⊥11A D 平面B B AA 11,∴ B A A D 111⊥,Rt △B D A 11中,411=D A ,81=BD , ∴21cos 11=∠B D A ,∴ 6011=∠B D A , 即异面直线AD 与1BD 所成角为 60.(3)Rt △11C BB 中,411=C B ,341=BC .∴ 241=BB ,∴ ()()12232244244442+=⨯+⨯+⨯=全S .说明:长方体是一种特殊的棱柱,充分感受其中丰富的线面垂直、线线垂直关系是灵活解题的关键,各种垂直关系是解决立体几何中证明和计算的重要条件.典型例题三例3 如图,已知长方体1111-D C B A ABCD 中,棱长51=AA ,12=AB ,求直线11C B 与平面11BCD A 的距离.分析:求直线到平面的距离,首先要找直线上的点到平面的垂线,而找平面的垂线的一个很有用的思路是,找平面内一条直线与某一平面垂直,这里我们不难看出,长方体中有⊥CB 平面11BB AA ,这样,只要作B A H B 11⊥,又有CB H B ⊥1,得到⊥H B 1平面11A BCD .解:长方体1AC 中,有⊥BC 平面11BB AA ,过1B 作B A H B 11⊥于H ,又有H B BC 1⊥,∴ ⊥H B 1平11A BCD ,即H B 1是11C B 到平面11BCD A 的距离.在Rt △11A BB 中,由已知可得,51=BB ,1211=B A ,∴ 131=B A ,∴13601=H B . 即H B 1是11C B 到平面11BCD A 的距离为1360. 说明:长方体中有棱与面的线面垂直关系,正方体除此之外,还有对角线与对角面的线面垂直关系,比如,求正方体1AC 中,11C A 与面BD C 1所成角.这里,要找11C A 与BD C 1所成角,必须找1A 到平面BD C 1的垂线,因为⊥BD 面C C AA 11,在对角面1AC 内,过1A 作11OC H A ⊥于H ,则H A BD 1⊥,所以⊥H A 1面BD C 1,可以得到O C A 11∠为11C A 与面BD C 1所成角,在对角面C C AA 11中可计算2arctan 11=∠O C A .典型例题四例4 如图,已知直三棱柱1111-D C B A ABCD 中,AC AB =,F 为侧棱1BB 上一点,a BC BF 2==,a FB =1.(1)若D 为BC 的中点,E 为AD 上不同于A 、D 的任一点,求证:1FC EF ⊥;(2)若a B A 311=,求1FC 与平面B B AA 11所成角的大小.分析:E 点在AD 上变化,EF 为平面ADF 内变化的一组相交直线(都过定点F ),要证明F C 1与EF 垂直,必有⊥F C 1平面ADF .求1FC 与平面11A ABB 所成角的关键是找1C 到面11A ABB 的垂线,从而落实线面成角,直三棱柱中,侧棱⊥1AA 平面111C B A 给找点1C 到面1AB 的垂线创造了方便的条件.解:(1)∵AC AB =,且D 是BC 的中点,∴BC AD ⊥,又∵ 直三棱柱中⊥1BB 平面ABC ,∴1BB AD ⊥,∴ ⊥AD 平面C C BB 11,∴F C AD 1⊥.在矩形C C BB 11中,a BC BF 2==,a F B =1, ∴a DF 5=,a FC 51=,a DC 101=,∴21212DC FC DF =+,∴ 901=∠DFC ,即DF FC ⊥1,∴⊥1FC 平面ADF ,∴EF FC ⊥1.(2)过1C 作111B A H C ⊥于H ,∵⊥1AA 平面C B A 11,∴H C AA 11⊥,∴⊥H C 1平面B B AA 11,连接FH ,FH C 1∠是F C 1与平面1AB 所成角.在等腰△ABC 中,a AC AB 3==,a BC 2=,∴a AD 22=,在等腰△111C B A 中,由面积相等可得,a a H C 22231⨯=⨯, ∴a H C 3241=,又a F C 51=, 在Rt △HF C 1中,15104sin 1=∠FH C , ∴15104arcsin 1=∠FH C ,即F C 1与平面1AB 所成角为15104arcsin . 说明:由于点E 在AD 上变化,给思考增加了难度,但仔细思考,它又提供了解题的突破口,使得线线垂直成为了1CF 与一组直线垂直.本题的证明还有一个可行的思路,虽然E 在AD 上变化,但是由于⊥AD 平面C C BB 11,所以E 点在平面1BC 上的射影是定点D ,EF 在平面1BC 上射影为定直线DF ,使用三垂线定理,可由DF F C ⊥1,直接证明EF F C ⊥1.三垂线定理是转化空间线线垂直为平面内线线垂直的一个有力工具,再看一个例子,正方体1AC 中,O 是底面ABCD 的中心,E 是11B A 上动点,F 是1DD 中点,求AF 与OE 所成角.我们取AD 中点G ,虽然E 点变化,但OE 在面1AD 上射影为定直线G A 1,在正方形D D AA 11中,易证AF B A ⊥1,所以,OE AF ⊥,即AF 与OE 所成角为 90.典型例题五例5 如图,正三棱柱111-C B A ABC 的底面边长为4,侧棱长为a ,过BC 的截面与底面成 30的二面角,分别就(1)3=a ;(2)1=a 计算截面的面积.分析:要求出截面的面积,首先必须确定截面的形状,截面与底面成30的二面角,如果a 较大,此时截面是三角形;但是如果a 较小,此时截面与侧棱不交,而与上底面相交,截面为梯形.解:截面与侧棱1AA 所在直线交于D 点,取BC 中点E ,连AE 、DE ,△ABC 是等边三角形,∴BC AE ⊥,∵⊥1AA 平面ABC ,∴BC DE ⊥.∴DEA ∠为截面与底面所成二面角的平面角,∴30=∠DEA .∵等边△ABC 边长为4,∴32=AE .在Rt △DAE 中,2tan =∠=DEA AE DA .(1)当3=a 时,D 点在侧棱1AA 上,截面为△BCD ,在Rt △DAE 中,422=+=AE AD DE , ∴8442121=⨯⨯=⋅=∆DE BC S BCD . (2)当1=a 时,D 点在1AA 延长线上,截面为梯形BCMN ,∵2=AD ,11=AA ∴MN 是△DBC 的中位线, ∴684343=⨯==∆DBC BCMN S S 梯形. 说明:涉及多面体的截面问题,都要经过先确定截面形状,再解决问题的过程,本例通过改变侧棱长而改变了截面形状,我们也可以通过确定侧棱长,改变截面与底面成角而改变截面形状.典型例题六例6 斜三棱柱111-C B A ABC 中,平面⊥C C AA 11底面ABC ,2=BC ,32=AC ,90=∠ABC ,C A AA 11⊥,且C A AA 11=.(1)求1AA 与平面ABC 所成角;(2)求平面11ABB A 与平面ABC 所成二面角的大小;(3)求侧棱1BB 到侧面C C AA11的距离. 分析:按照一般思路,首先转化条件中的面面垂直关系,由C A A A 11=,取AC 的中点D ,连D A 1,则有AC D A ⊥1,从而有⊥D A 1平面ABC ,在此基础上,A A 1与底面所成角以及平面11ABB A 与底面所成二面角都能方便地找到,同时⊥D A 1底面ABC 也为寻找B 点到面C C AA 11的垂线创造了条件.解:(1)取AC 的中点D ,连接D A 1,∵C A A A 11=,∴AC D A ⊥1,∵平面⊥C C AA 11底面ABC ,∴⊥D A 1底面ABC ,∴AC A 1∠为A A 1与底面ABC 所成角.∵C A AA 11=且C A AA 11⊥,∴451=∠AC A .(2)取AB 中点E ,则BC DE //,∵ 90=∠ABC ,∴AB CB ⊥,∴AB DE ⊥.连E A 1,∵⊥D A 1底面ABC ,∴E A 1在平面ABC 上射影为DE ,∴AB E A ⊥1,∴ED A 1∠为侧面B A 1与底面ABC 所成二面角的平面角.在等腰Rt △AC A 1中,32=AC ,∴31=D A .在Rt △ABC 中,2=BC ,∴1=DE .在Rt △DE A 1中,3tan 11==∠DED A ED A , ∴ 601=∠ED A ,即侧面B B AA 11与底面ABC 所成二面角的大小为 60.(3)过B 作AC BH ⊥于H ,∵⊥D A 1底面ABC ,∴BH D A ⊥1,∴⊥BH 平面C C AA 11,在Rt △ABC 中,32=AC ,2=BC ,∴22=AB , ∴632=⋅=AD BC AB BH ,即1BB 到平面C C AA 11的距离为632. 说明:简单的多面体是研究空间线面关系的载体,而线面垂直关系又是各种关系中最重要的关系,立体几何中的证明与计算往往都与线面垂直发生联系,所以在几何体中发现并使用线面垂直关系往往是解题的关键.典型例题七例7 斜三棱柱111-C B A ABC 的底面△ABC 是直角三角形, 90=∠C ,cm 2=BC ,1B 在底面上的射影D 恰好是BC 的中点,侧棱与底面成 60角,侧面B B AA 11与侧面C C BB 11所成角为 30,求斜棱柱的侧面积与体积.分析:1B 在底面ABC 上射影D 为BC 中点,提供了线面垂直⊥D B 1平面ABC ,另外又有 90=∠C ,即BC AC ⊥,又可以得到⊥AC 平面C C BB 11,利用这两个线面垂直关系,可以方便地找到条件中的线面角以及二面角的平面角.解:∵1B 在底面ABC 上,射影D 为BC 中点.∴⊥D B 1平面ABC .∴BD B 1∠为侧棱B B 1与底面ABC 所成角,即 601=∠BD B ,∵ 90=∠C ,即BC AC ⊥,又D B AC 1⊥,∴⊥AC 平面C C BB 11,过A 作B B AE 1⊥于E ,连接CE ,则B B CE 1⊥.∴AEC ∠是侧面B B AA 11与侧面B B CC 11所成二面角的平面角,∴30=∠AEC ,在直角△CEB 中,∵ 60=∠CEB ,2=BC ,∴3=CE , 在直角△ACE 中,∵30=∠CEA ,3=CE ,∴130tan == EC AC ,22==AC AE , 在直角△DB B 1中, 601=∠BD B ,121==BC BD , ∴221==BD BB ,360sin 11== BB D B . ∴侧面积为111AA AC BB AE BB CE S ⋅+⋅+⋅=侧()()()2cm 3322332123+=⨯+=⨯++=. 体积为311cm 33212121=⨯⨯⨯=⋅⋅=⋅=∆D B BC AC D B S V ABC . 说明:本例中△ACE 是斜棱柱的一个截面,而且有侧棱与该截面垂直,这个截面称为斜棱柱的直截面,我们可以用这个截面把斜棱柱分成两部分,并且用这两部分拼凑在一个以该截面为底面的直棱柱,斜棱柱的侧面积等于该截面周长乘以侧棱长,体积为该截面面积乘以侧棱长.典型例题八例8 如图所示,在平行六面体1111D C B A ABCD -中,已知a AD AB 2==,a AA =1,又︒=∠=∠=∠6011AB A DAB AD A .(1)求证:1AA ⊥截面C D B 11;(2)求对角面11ACC A 的面积.分析:(1)由题设易证111D B AA ⊥,再只需证C B AA 11⊥,即证11CD CC ⊥.而由对称性知,若C B CC 11⊥,则11CD CC ⊥,故不必证111D B AA ⊥.(2)关键在于求对角面的高.证明:(1)∵a AD C B 211==,a A A CC ==11,︒=∠=∠60111AD A C C B , ∴在C C B 11∆中,由余弦定理,得2213a C B =.再由勾股定理的逆定理,得C B C C 11⊥.同理可证:11CD C C ⊥.∴C C 1⊥平面C D B 11.又A A C C 11//,∴1AA ⊥平面C D B 11.解:(2)∵AD AB =,∴平行四边形ABCD 为菱形.AC 为BAD ∠的平分线. 作O A 1∴⊥平面AC 于O ,由AB A AD A 11∠=∠,知AC O ∈.作AB M A ⊥1于M ,连OM ,则AB OM ⊥. 在AM A Rt 1∆中,a A A AM 2160cos 1=︒⋅=, 在AOM Rt ∆中,330sec a AM AO =︒⋅=. 在AO A Rt 1∆中,a AO A A O A 322211=-=. 又在ABC ∆中,由余弦定理,得a AC 32=. ∴212211a O A AC S ACC A =⋅=.说明:本题解答中用到了教材习题中的一个结论——经过一个角的顶点引这个角所在平面的斜线.如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.另外,还有一个值得注意的结论就是:如果一个角所在平面外一点到角的两边所在直线的距离相等,那么这一点在平面上的射影在这个角的平分线所在的直线上.典型例题九例9 如图所示,已知:直三棱柱111C B A ABC -中,︒=∠90ACB ,︒=∠30BAC ,1=BC ,61=AA ,M 是1CC 的中点. 求证:M A AB 11⊥.分析:根据条件,正三棱柱形状和大小及M 点的位置都是确定的,故可通过计算求出M A 1与1AB 两异面直线所成的角.因为C C C B 111⊥,1111C A C B ⊥,所以11C B ⊥侧面C C AA 11.1AC 是斜线1AB 在平面C C AA 11的射影,设1AC 与M A 1的交点为D ,只需证得︒=∠901MDC 即可.证明:∵C C C B 111⊥,1111C A C B ⊥,C C 1与11C A 交于点1C ,∴11C B ⊥面C C AA 11.∵M 为1CC 的中点,∴262111==C C MC . 在111B C A Rt ∆中,︒=∠30111C A B ,∴221111==C B B A ,311=C A .在M C A Rt 11∆中, ()22332622211211=+⎪⎪⎭⎫ ⎝⎛=+=C A MC M A . 在11C AA Rt ∆中,33622211211=+=+=C A AA AC . 又1MDC ∆∽DA A 1∆且21=MC AA ∶,∴22122331311=⨯==M A MD , 13313111=⨯==AC D C . 在1MDC ∆中,23122122212=+⎪⎭⎫ ⎝⎛=+D C MD , 2326221=⎪⎪⎭⎫ ⎝⎛=M C , ∴︒=∠901DM C ,11AC M A ⊥,∴11AB M A ⊥.说明:证明两直线垂直,应用三垂线定理或逆定理是重要方法之一.证明过程中的有关计算要求快捷准确,不可忽视.本题证明两异面直线垂直,也可用异面直线所成的角,在侧面C C AA 11的一侧或上方一个与之全等的矩形,平移M A 1或1AB ,确定两异面直线所成的角,然后在有关三角形中通过计算可获得证明.典型例题十例10 长方体的全面积为11,十二条棱长度之和为24,求这个长方体的一条对角线长. 分析:要求长方体对角线长,只要求长方体的一个顶点上的三条棱的长即可.解:设此长方体的长、宽、高分别为x 、y 、z ,对角线长为l ,则由题意得: ⎩⎨⎧=++=++②①24)(411)(2z y x zx yz xy由②得:6=++z y x ,从而由长方体对角线性质得:5116)(2)(22222=-=++-++=++=zx yz xy z y x z y x l .∴长方体一条对角线长为5.说明:(1)本题考查长方体的有关概念和计算,以及代数式的恒等变形能力.在求解过程中,并不需要把x 、y 、z 单个都求出来,而要由方程组的①②从整体上导出222z y x ++,这需要同学们掌握一些代数变形的技巧,需要有灵活性.(2)本题采用了整体性思维的处理方法,所谓整体性思维就是在探究数学问题时,应研究问题的整体形式,整体结构或对问题的数的特征、形的特征、结构特征作出整体性处理.整体思维的含义很广,根据问题的具体要求,需对代数式作整体变换,或整体代入,也可以对图形作出整体处理.典型例题十一例11 如图,长方体1111D C B A ABCD -中,a AB =,b BC =,c BB =1,并且0>>>c b a .求沿着长方体的表面自A 到1C 的最短线路的长.分析:解本题可将长方体表面展开,可利用在平面内两点间的线段长是两点间的最短距离来解答.解:将长方体相邻两个展开有下列三种可能,如图.三个图形甲、乙、丙中1AC 的长分别为:ab c b a c b a 2)(22222+++=++bc c b a c b a 2)(22222+++=++ac c b a b c a 2)(22222+++=++∵0>>>c b a ,∴0>>>bc ab ab . 故最短线路的长为bc c b a 2222+++.说明:(1)防止只画出一个图形就下结论,或者以为长方体的对角线2221c b a AC ++=是最短线路.(2)解答多面体表面上两点间,最短线路问题,一般地都是将多面体表面展开,转化为求平面内两点间线段长.典型例题十二例12 设直平行六面体的底面是菱形,经下底面的一边及与它相对的上义面的一边的截面与底面成︒60的二面角,面积为Q ,求直平行六面体的全面积.分析:如图,由于⊥'DD 面AC .作出截面与底面所成的二面角的平面角HD D '∠后,因DH D Rt '∆中︒=∠60'HD D ,可分别求出D D '、DH 和H D '的值.又上下底面的边长是相等的,便可进一步求出全面积.解:设平行六面体为''''D C B A ABCD -,过D 作AB DH ⊥,H 为垂足,连结H D '. ∵⊥'DD 平面ABCD ,∴AB H D ⊥',︒=∠60'HD D , ∴H D D D ''23=,H D DH '21=. 又在菱形ABCD 中,有CD BC AB AD ===,∴截面''D ABC 的面积为:Q AB H D S =⋅='1.侧面''DCC D 的面积为:Q AB H D AB D D DC D D S 2323'''2=⋅=⋅=⋅= 底面ABCD 的面积为:Q AB H D AB DH S 2121'3=⋅=⋅=. 所以Q S S S )132(2432+=+=全.典型例题十三例13 设有三个命题:甲:底面是平行四边形的四棱柱是平行六面体;乙:底面是矩形的平行六面体是长方体;丙:直四棱柱是直平行六面体.以上命题中,真命题的个数是( ).A .0B .1C .2D .3解:甲命题是真命题,因为它就是平行六面体的定义;乙命题不是真命题,因为平行六面体的侧棱不一定垂直于底面;丙命题也不是真命题,因为四棱柱的底面不一定是平行四边形.∴应选B .说明:要认真搞清平行六面体、直平行六面体、长方体等特殊四棱柱的有关概念及性质.典型例题十四例14 如图,ABC C B A -111是直三棱柱,︒=∠90BCA ,点1D 、1F 分别是11B A 、11C A的中点.若1CC CA BC ==,则1BD 与1AF 所成角的余弦值是( ). A .1030 B .21 C .1530 D .1015解:可将异面直线所成角转化为相交直线的角,取BC 的中点E ,并连结1EF 、EA . ∵11FD BC 21BE =, ∴11//BD EF ,∴A EF 1∠是1BD 与1AF 所成角.设a BC 2=,则a CC 21=,a CA 2=. ∴a AB 22=,a AF 51=,a AE 5=,a D B B B BD EF 62112111=+==. ∴1030652)5()6()5(2cos 22211221211=⨯⨯-+=⨯⨯-+=∠a a a a a EF AF AE EF AF A EF ∴应选A .说明:本题主要考查棱柱的性质,以及两条异面直线所成的角、勾股定理、余弦定理等内容:对运算能力和空间想象能力也有较高的要求.典型例题十五例15 如图,已知ABC C B A -111是正三棱柱,D 是AC 的中点.(1)证明://1AB 平面1DBC ;(2)假设11BC AB ⊥,求以1BC 为棱,1DBC 与1CBC 为面的二面角α的度数.(1)证明:∵ABC C B A -111是正三棱柱,∴四边形11BCC B 是矩形.连结C B 1交1BC 于E ,则E 是C B 1的中点.连结DE .∵D 、E 分别是AC 、C B 1的中点,∴1//AB DE .又⊄1AB 平面1DBC ,⊂DE 平面1DBC ,. ∴//1AB 平面1DBC .(2)解:作BC DF ⊥于F ,则⊥DF 平面C C BB 11,连结EF 则EF 是ED 在平面C C BB 11上的射影.∵11BC AB ⊥又ED AB //1.∴1BC ED ⊥.根据三垂线定理的逆定理,得1BC EF ⊥.从而DEF ∠是二面角C BC D --1的平面角,即α=∠DEF ,设1=AC ,则21=DC ∵ABC ∆是正三角形,∴在DCF Rt ∆中,有 4360sin =︒=DC DF ,4160cos =︒=DC CF 取BC 的中点G ,∵EC EB =,∴BC EG ⊥.在BEF Rt ∆中,FG BF EF ⋅=2 而43=-=FC BC BF ,41=GF , ∴41432⋅=EF ,∴43=EF , ∴在DEF Rt ∆中,14343tan ===∠EF DF DEF . ∴︒=∠45DEF ,即︒=45α.45.从而所求二面角的大小为说明:(1)纵观近十年高考题,其中解答题大多都是以多面体进行专利权查,解答此类题,有些同学往往忽略或忘记了多面体的性质,从而解题时,思维受阻.今后要引以为戒.(2)本题考查空间的线面关系,正棱柱的概念和性质,空间想象能力、逻辑思维能力和运算能力.本题涉及到的知识面宽,有一定的深度,但入手不难,逐渐加深;逻辑推理和几何计算交织为一体;正三棱柱放倒,与课本习题不同,加强了对空间想象能力的考查;在解答过程中,必须添加适当的辅助线,不仅考查了识图,而且考查了作图.本题是一道综合性试题,较深入和全面地考查了各种数学能力,正确解答本题,要求同学们有较高的数学素质.。
D'C'B'A'DC BA平行六面体与长方体一、课题:平行六面体与长方体二、教学目标:1.掌握平行六面体、长方体、正方体的概念及性质;2.会利用平行六面体、长方体的性质解决有关长度与角度问题.三、教学重点、难点:平行六面体、长方体的概念及性质. 四、教学过程: (一)复习:1.凸多面体的概念,棱柱的概念; 2.平行六面体的概念. (二)新课讲解:1.平行六面体、长方体、正方体把学过的平行六面体与棱柱对照知:底面是平行四边形的四棱柱是平行六面体.侧棱与底 面垂直的平行六面体叫直平行六面体,底面是矩形的直平行六面体长方体,棱长都相等的 长方体叫正方体.2.平行六面体、长方体的性质定理:平行六面体的对角线交于一点,求证:对角线,,,AC BD CA DB ''''相交于一点,且在点O 处互相平分.证明:设O 是AC '的中点,则11()22AO AC AB AD AA ''==++, 设,,P M N 分别是,,BD CA DB '''的中点,同理:1()2AP AB AD AA '=++,1()2AM AB AD AA '=++,1()2AN AB AD AA '=++,所以,,,,O P M N 四点重合,定理得证.定理:长方体的一条对角线长的平方等于一个顶点上的三条棱长的平方和. 已知:长方体AC '中,AC '是一条对角线,求证:2222AC AB AD AA ''=++. 证明:∵AC AB AD AA ''=++,∴2||()()AC AB AD AA AB AD AA '''=++⋅++,∵AB AD ⊥,AB AA '⊥,AA AD '⊥,∴2||AC AB AB AD AD AA AA '''=⋅+⋅+⋅222||||||AB AD AA '=++,即2222AC AB AD AA ''=++.(三)例题分析:例1.如图平行六面体ABCD A B C D ''''-中,,3A AB A AD BAD π''∠=∠∠=,,AB AD a AA b '===,求对角面BB D D ''的面积.解:∵BD AD AB =-,∴()AA BD AA AD AB ''⋅=⋅-,∵A AB A AD ''∠=∠,,AB AD a AA b '===,H OA'D'C'B'DCBA∴()(cos cos )0AA BD AA AD AB ab A AB A AD ''''⋅=⋅-=∠-∠=, ∴AA BD '⊥,∵//AA DD '',∴DD BD '⊥,所以,对角面BB D D ''是矩形,它的面积是BD BB ab '⨯=.例2.已知:正四棱柱ABCD A B C D ''''-的底面边长为2(1)求二面角B AC B '--的大小;(2)求点B 到平面AB C '的距离。
直平行六面体与长方体的区别咱们今天来聊聊一个数学小问题——直平行六面体和长方体的区别。
你别看这两个名字听起来像是啥高大上的专业词汇,实际上它们跟咱们生活中的东西有得一拼。
说白了,这两个东西不过是形状差不多的“盒子”,只是它们的差别可大了去了。
要是你看得懂这两个词,接下来听我给你唠唠,保证让你对这俩形状清楚得很,绝对能从中学到点儿东西。
先从名字说起。
直平行六面体,听起来就有点“吓人”是吧?不过呢,说白了,它就是一个六面体——六个面组成的立体。
你要是真的想弄明白这玩意儿,不妨想想你的手机、电视、甚至是冰箱,差不多就是这个形状。
可是,咱们还得知道这直平行六面体有点儿特殊。
它的每个面都是平行的,啥意思呢?就是说,每一对相对的面都在同一平面上。
简单点儿说,就是它的两个对面板,永远保持“亲密无间”,像是一对老朋友,形影不离。
好啦,这时候你就得知道一个非常关键的点——直平行六面体的棱,必须是平行的。
你看,那些看似简单的直线,如果在这形状里走得“歪”了,立刻就不对劲了。
所以,它那叫做“直平行”。
不过,说实话,这东西听起来有点儿费劲,可能也就是因为这么复杂的定义才让人一听就晕头转向的原因吧。
我们来看看长方体,这名字你听着是不是有点熟悉?没错,长方体就是我们日常见得最多的那种盒子。
是的,就是你每天用来装书的盒子、放在家里堆衣服的箱子,甚至你放电脑的桌面,那其实都可以算是长方体。
它看起来没那么复杂,面都是长方形,每个角都是直角,四个角之间就像个拼图拼得恰到好处,稳稳的。
长方体的每个面,基本上就是两条长边和两条短边组成的,咱们俗称“长”和“宽”,从侧面看就是个简单的矩形。
大家总觉得长方体就只是个“简单”的形状,其实它就是平行六面体的一个“专门版”,所有的面是矩形,没有弯曲没有不规则的形状。
要不怎么说,它是个简单直接又不容忽视的“小能手”呢!这俩形状到底有什么区别呢?大家别着急,接下来慢慢说。
长方体其实是直平行六面体的一种特殊情况。
初中数学棱柱的知识点总结棱柱棱柱:有两个面相互平行,其余各面都是四边形,并且每相邻两个多边形的公共边都相互平行,由这些面所围成的多面体叫做棱柱。
棱柱用表示底面各顶点的字母来表示。
棱柱的底面:棱柱中两个相互平行的面,叫做棱柱的底面。
棱柱的侧面:棱柱中除两个底面以外的其余各个面都叫做棱柱的侧面。
棱柱的侧棱:棱柱中两个侧面的公共边叫做棱柱的侧棱。
棱柱的形成方式棱柱是由一个由直线构成的平面沿着不平行于此平面的直线整体平移而形成的。
棱柱的顶点在棱柱中,侧面与底面的公共顶点叫做棱柱的顶点。
棱柱的对角线:棱柱中不在表面同一平面上的两个顶点的连线叫做棱柱的对角线。
棱柱的高:棱柱的'两个底面的距离叫做棱柱的高。
棱柱的对角面:棱柱中过不相邻的两条侧棱的截面叫做棱柱的对角面。
棱柱的分类斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱,画斜棱柱时,一般将侧棱画成不与底面垂直。
直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。
画直棱柱时,应将侧棱画成与底面垂直。
正棱柱:底面是正多边形的直棱柱叫做正棱柱。
平行六面体:底面是平行四边形的棱柱。
直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。
长方体:底面是矩形的直棱柱叫做长方体。
棱柱具有以下性质性质1)棱柱的各个侧面都是平行四边形,全部的侧棱都平行且相等;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形。
2)棱柱的两个底面与平行于底面的截面是对应边相互平行的全等多边形。
3)过棱柱不相邻的两条侧棱的截面都是平行四边形。
4)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。
知识要领总结:棱柱是由一个由直线构成的平面沿着不平行于此平面的直线整体平移而形成的。
1.平行六面体的体积公式是什么?
答:平行六面体的体积: (V)=底面积x 高体积=直截面面积x棱长。
平行六面体是指由六个平行四边形所围成的多面体。
平行六面体分为斜平行六面体和直平行六面体两种。
六个面都是矩形的平行六面体是长方体,六个面都是正方形的是立方体。
体积,几何学专业术语。
当物体占据的空间是二维空间时,所占空间的大小叫做该物体的体积。
体积的国际单位制是立方米。
-维空间物件(如线)及二维空间物件(如正方形)都是零体积的。