数字频率计.
- 格式:ppt
- 大小:2.02 MB
- 文档页数:24
频率计的发展简介一、数字频率计的简介数字式频率计即DFM-Digital Frequencymeter,也称为数字频率表或电子计数器。
它不仅是电子测量和仪器仪表专业领域中测量频率与周期、测量频率比和进行计数、测时的重要仪器,而且比示波器测频更方便、经济得多,特别是现代电子计数器产品与足见和具有多种测量功能的数字式频率计,已广泛应用于计算机系统、通讯广播设备、生产过程自动化测控装置、带有LED、LCD数字显示单元的多种仪器仪表以及诸多的可许技术领域。
可以说,伴随着数字化技术的发展,电子计算机、通讯设备、音频和视频技术进入科研、生产、军事技术和经济生活领域,直至家庭和个人,使得电子计数器和测频手段与上述电子设备耦连为形影不离的技术。
数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器。
它的基本功能是测量正弦信号.方波信号,尖脉冲信号及其他各种单位时间内变化的物理量.频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。
通常情况下计算每秒内待测信号的脉冲个数,此时我们称闸门时间为1秒。
闸门时间也可以大于或小于一秒。
闸门时间越长,得到的频率值就越准确,但闸门时间越长则没测一次频率的间隔就越长。
闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。
本文。
数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率,转速,声音的频率以及产品的计件等等。
因此,数字频率计是一种应用很广泛的仪器,电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路。
数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功能,从而提高系统可靠性和速度。
二、数字频率计的发展在电子技术中,频率是最基本的参数之一,并且与许多点参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
数字频率计毕业论文数字频率计是一种用于测量信号频率的仪器,广泛应用于电子工程、通信工程、无线电技术等领域。
它的原理是通过将输入信号与参考信号进行比较,从而得到信号的频率信息。
本文将从数字频率计的原理、应用以及未来发展方向等方面进行探讨。
一、数字频率计的原理数字频率计的原理基于周期计数法。
它通过将输入信号与参考信号进行比较,并计算两个信号之间的相位差,从而得到信号的频率。
具体来说,数字频率计将输入信号分成若干个周期,并通过计数器记录每个周期的时间。
然后,通过计算每个周期的时间差,即可得到信号的频率。
二、数字频率计的应用数字频率计在电子工程领域有着广泛的应用。
首先,它可以用于测量无线电信号的频率。
在通信工程中,我们经常需要测量无线电信号的频率,以确保信号的稳定性和准确性。
数字频率计能够提供高精度的测量结果,使我们能够更好地了解信号的特性。
其次,数字频率计还可以用于频谱分析。
频谱分析是一种将信号分解成不同频率成分的方法,可以帮助我们了解信号的频率分布情况。
数字频率计可以通过测量信号的频率,为频谱分析提供准确的数据支持,从而帮助我们更好地理解信号的特性。
此外,数字频率计还可以用于音频设备的调试和校准。
在音频工程中,我们经常需要调试和校准音频设备,以确保音频信号的准确性和稳定性。
数字频率计能够提供高精度的频率测量结果,为音频设备的调试和校准提供准确的参考。
三、数字频率计的未来发展方向随着科技的不断发展,数字频率计也在不断演进和改进。
未来,数字频率计有望在以下几个方面得到进一步发展。
首先,数字频率计的测量精度将进一步提高。
随着技术的进步,数字频率计的测量精度将得到进一步提升。
高精度的测量结果将使得我们能够更准确地了解信号的特性,为相关领域的研究和应用提供更可靠的数据支持。
其次,数字频率计的测量范围将进一步扩大。
目前,数字频率计的测量范围通常在几十Hz到几GHz之间。
未来,随着技术的发展,数字频率计的测量范围有望进一步扩大,从而能够满足更广泛的应用需求。
数字频率计±1个字误差的探讨数字频率计是一种广泛应用于电子测量领域的仪器,用于测量电路中的频率。
在实际的应用中,数字频率计的精度是非常重要的,其中误差是一个不可避免的问题。
本文将探讨数字频率计的误差来源及其对精度的影响,以及如何降低误差,提高精度。
一、误差来源数字频率计的误差来源主要有以下几个方面:1. 时钟误差:数字频率计是通过计算时间间隔来计算频率的,因此时钟的精度对频率计的精度有很大影响。
时钟误差可以通过校准时钟来减小。
2. 计数误差:数字频率计的计数器是通过计算电路中的脉冲数来计算频率的,而计数误差是由于计数器的计数精度不够造成的。
计数误差可以通过增加计数器的分辨率来减小。
3. 信号源误差:数字频率计的精度还受到信号源的影响,信号源的稳定性和精度越高,数字频率计的精度就越高。
4. 温度漂移误差:数字频率计的电路元件随着温度的变化会产生漂移,这种漂移会影响数字频率计的精度。
温度漂移误差可以通过控制温度来减小。
二、误差对精度的影响数字频率计的误差对精度的影响是非常显著的,误差越大,精度越低。
例如,如果数字频率计的误差为±1个字,而测量的频率为10MHz,那么误差就是10ppm。
如果误差增加到±10个字,那么误差就是100ppm,这会对测量结果造成很大的影响。
三、如何降低误差,提高精度为了降低数字频率计的误差,提高精度,我们可以采取以下措施:1. 选择高精度的时钟和计数器,以减小时钟误差和计数误差。
2. 使用高精度的信号源,以提高数字频率计的精度。
3. 控制温度,以减小温度漂移误差。
4. 校准数字频率计,以确保其精度符合要求。
5. 采用数字信号处理技术,以提高数字频率计的精度和稳定性。
综上所述,数字频率计的误差是一个不可避免的问题,但是我们可以通过选择高精度的器件、控制温度、校准仪器等措施来减小误差,提高数字频率计的精度和稳定性。
数字频率计数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器,它的基本功能是测量正弦信号、方波信号、尖脉冲信号的频率及其他各种单位时间内变化的物理量,因此,它的用途十分广泛。
一、设计目的掌握数字频率计的设计二、设计内容技术要求:测量频率范围 0-9999 Hz和1Hz-100 KHz。
测量信号方波峰--峰值为3-5V(与TTL兼容)。
闸门时间 10ms,0.1s,1s和10s,脉冲波峰—峰值为3-5V。
三、数字频率计的基本原理数字频率计的原理框图如图所示:它由4个基本单元组成:1.带衰减器的放大整形系统包括从被测信号到衰减放大整形系统此部分。
其中衰减放大整形系统包括衰减器、跟随器、放大器、施密特触发器。
它将正弦波输入信号Vx整形成同频率方波Vo,测试信号通过衰减开关选择输入衰减倍数,衰减器有分压器构成幅值过大的被测信号经过分压器的分压送入后级放大器,以避免波形失真。
由运算放大器构成的射极跟随器起阻抗变换作用,使输入阻抗提高。
系统的整形电路由施密特触发器组成,整形后的方波送到闸门以便计数。
2.石英晶体振荡器及多级分频系统石英晶体振荡器如图振荡频率为4MHz,经过÷4(用74LS47芯片),÷10(用74LS90芯片)等分频器的分频作用,使输出频率的周期范围1us~10s。
根据被测信号的频率大小,通过闸门时基选择开关选择时基。
时基信号经过门控电路得到方波,其正脉宽时间T控制闸门的开放时间。
3.闸门电路闸门电路由与门组成,其开通与否受门控信号的控制,当门控信号为高电平“1”时,闸门开启,为“0”时,闸门关闭。
显然,只有在闸门开启时间内,其产生的脉冲信号送到计数器,计数器开始计数,直到门控信号结束,闸门关闭4.可控制的计数锁存、译码显示系统本系统由计数器、锁存器、译码器、显示器、单稳态触发器组成。
其中计数器按十进制计数。
如果在系统中不接锁存器,则显示器上的数字就会随计数器的状态不停地变化,只有在计数器停止计数时,显示器上的显示数字才能稳定,所以,在计数器后边必须接锁存器。
1.概述数字频率计是通过一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。
通常是计算每秒内的脉冲个数,也就是我们所称的闸门时间为1秒。
闸门时间不定,但闸门时间影响频率计的准确度,闸门时间越长,得到的频率值就越准确,但闸门时间越长则没测一次频率的间隔就越长。
闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。
数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率,转速,声音的频率以及产品的计件等等。
因此,数字频率计是一种应用很广泛的仪器。
本次课程设计中画图与仿真主要用到了Proteus软件,Proteus是一款电路分析实物仿真系统,可仿真各种电路和IC,元件库齐全,有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器。
具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真,使用和操作起来非常方便。
2.数字频率计原理与框图所谓频率,就是周期性信号在单位时间内变化的次数.若在一定时间间隔t 内测得这个周期性信号的重复变化次数为n,则其频率可表示为nft若在闸门时间1S内计数器计得的脉冲个数为n,则被测信号频率等于nHz。
数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。
它一般由放大整形电路、时基电路、逻辑控制电路、闸门电路、计数器、锁存器、译码器、显示器等几部分组成。
其基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。
通常情况下计算每秒内待测信号的脉冲个数,此时我们称闸门时间为1秒。
计数信号并与锁存信号和清零复位信号共同控制计数、锁存和清零三个状态,然后通过数码显示器件进行显示。
图2-1 数字频率计整体框图2武汉理工大学《数字电子技术》课程设计说明书33.数字频率计的设计3.1 放大整形电路放大整形电路由晶体管 放大器与74LS00等组成,放大器将输入频率为的周期信号如正弦波、三角波等进行放大。
数字频率计安全操作及保养规程数字频率计是一款广泛应用于电力、工业、医疗、机械等领域的便携式计量仪器。
使用数字频率计需要遵守一定的安全操作和保养规程,以确保设备的安全性、稳定性和准确性。
本文将介绍数字频率计的安全操作和保养规程。
安全操作规程1. 操作前在使用数字频率计之前,需先仔细查看仪器的外部是否有明显的损坏。
如有明显的破损或质量问题,务必先进行维修或更换。
同时,需要检查电源线是否连接牢固,各部件是否完好无损。
在检查完毕后才能正常使用。
2. 操作中数字频率计使用时应遵循以下操作:•仔细阅读并按说明书正确操作。
•在仪器运行前,先对要测量的对象进行检查与记录。
确保检测对象的电压、频率、相位等参数在仪器测量范围内。
•长时间使用时,为防止超负荷散热,就需要不时检查仪器的温度,如有异常现象要及时关机停用,待温度恢复后再使用。
•测量过程中不要拆动设备,如未达到测量结果,应先检查设备仪器、线路、测量对象、电源之间是否有错误或不稳定现象,确认设备正常后才能进行下一步操作。
•避免不当操作或强外力撞击。
将频率计放置在平稳的台面上,防止其倾斜或翻倒,避免损坏设备或人员受到伤害。
3. 操作后数字频率计使用完毕后,应遵循以下操作:•关闭电源,然后慢慢拔下电源线。
•将频率计放置在干燥通风的环境中。
•定期清洁仪器及标准件,如有损坏需及时更换。
•长时间不使用时,应将仪器放置于阴凉,干燥的地方,定期拿出使用。
保养规程数字频率计的保养可以做到以下几点:1. 定期清理与保养数字频率计长期使用后,仪表表面会有所污染,专用擦拭巾可以清除表面污染,如果污染非常沉重,可以用清洗液加以擦洗,但要注意在擦洗过后必须立即用清水擦拭干净并保持通风干燥。
2. 安全存放数字频率计不使用时,应将其搁置于阴凉、干燥、通风、无腐蚀性气体的地方。
必要时,可以将其包裹防尘。
不要将仪器长期置放在潮湿、高温、有害气体的环境下。
3. 定期校准数字频率计在长期使用的过程中,可能会出现使用误差。
一、总体设计思想1.基本原理数字频率计是用数字显示被测信号频率的仪器,是测量周期信号的频率的。
我们这里要求的是对峰峰值3~5V的方波进行测频。
说到原理,我们应该从什么是频率说起。
所谓频率,就是周期性信号在单位时间(1秒) 内变化的次数。
但是我们既然用到数字测频器,并且用LED显示出来,最好是起到简便的作用,因此如果我们能在给定的单位时间(例如1秒)或其他时间内对信号波形计数,并将计数结果用LED显示出来,就能知道被测信号的频率。
因此,可以将时钟信号先经过分频器把信号的时间脉冲调整成单位时间脉冲,也就是标准秒信号。
这样方便与下面的控制与测频。
然后把被测信号以及刚刚获得的标准秒信号都经过控制电路,设置控制电路的目的是检测是否这两个脉冲信号能否成功送入计数器计数。
而计数器的作用是对输入脉冲计数。
这样我们就有时间脉冲的记录,然后在经过数据锁存器,设置数据锁存器的目的是为了锁定刚刚计数器所记录下来的结果,这样才会有稳定的输出,否则将会造成计数器的结果丢失。
紧接着连接一个显示译码器主要是把信号通过译码器转换成为显示器能够识别的码制,最后则是通过LED显示我们的最终结果。
2.设计框图根据这次课程设计的要求:设计一个数字频率计,测量频率范围:1~100kHz。
频率的LED数字显示。
测量信号方波峰峰值3~5V。
我设计了如下的总体设计框图。
主要是针对我的设计的基本原理也就是先将时钟信号先经过分频器,再把被测信号以及刚刚获得的标准秒信号都经过控制电路,接着是计数器,然后是数据锁存器,数据译码器,最后是LED 显示器。
二、设计步骤和调试过程 1、总体设计电路这次课程设计的要求是设计一个数字频率计,测量频率范围:1~100kHz 。
频率的LED 数字显示。
测量信号方波峰峰值3~5V 。
所以我先将时钟信号先经过分频器把信号的时间脉冲调整成单位时间脉冲,也就是标准秒信号。
这样方便与下面的控制与测频。
然后把被测信号以及刚刚获得的标准秒信号都经过控制电路,设置控制电路的目的是被测信号计数检测是否这两个脉冲信号能否成功送入计数器计数。
数字频率计设计报告数字频率计是一种用于测量信号频率的仪器,广泛应用于电子领域。
本文将针对数字频率计的原理、工作方式以及应用进行详细介绍。
一、引言数字频率计是一种基于数字信号处理技术的测量仪器,它能够精确地测量信号的频率。
它广泛应用于通信、无线电、音频和视频等领域,对于各种信号的频率测量具有重要意义。
二、原理数字频率计的测量原理基于信号的周期性特征。
当一个信号通过数字频率计时,它会被转换成数字信号,并通过计数器进行计数。
通过计数器的计数结果和时间基准的参考值进行比较,就可以得到信号的频率。
三、工作方式数字频率计的工作方式通常分为两种:直接计数法和间接计数法。
1. 直接计数法:该方法直接对信号进行计数,通过计数器对信号的脉冲进行计数,并将计数结果进行处理得到频率值。
这种方法简单直接,但对于高频率信号的计数精度较低。
2. 间接计数法:该方法通过将信号的频率分频至低频范围内进行计数。
通过将高频信号分频后再进行计数,可以提高测量的精度。
四、应用数字频率计在各个领域都有广泛的应用,以下是一些常见的应用场景:1. 通信领域:数字频率计在通信系统中被用于测量信号的载波频率,确保信号的稳定传输。
同时,数字频率计还可以用于频率偏移的测量,以评估通信系统的性能。
2. 无线电领域:数字频率计被用于测量无线电频率,对于射频信号的测量具有重要意义。
它可以用于无线电台站的调试和维护,以确保无线电信号的质量和稳定性。
3. 音频和视频领域:数字频率计在音频和视频设备的校准和测试中被广泛应用。
它可以测量音频和视频信号的频率,以确保音频和视频设备的正常工作。
4. 科学研究领域:数字频率计在科学研究中也起到了重要的作用。
比如,在天文学研究中,数字频率计可以用于测量天体的射电信号频率,从而研究宇宙的演化和结构。
五、总结数字频率计作为一种精确测量信号频率的仪器,在电子领域中有着广泛的应用。
本文从原理、工作方式和应用等方面对数字频率计进行了详细介绍。
等精度数字频率计测量方式:一、测频原理所谓“频率”,确实是周期性信号在单位时刻转变的次数。
电子计数器是严格依照f =N/T的概念进行测频,其对应的测频原理方框图和工作时刻波形如图1 所示。
从图中能够看出测量进程:输入待测信号通过脉冲形成电路形成计数的窄脉冲,时基信号发生器产生计数闸门信号,待测信号通过闸门进入计数器计数,即可取得其频率。
假设闸门开启时刻为T、待测信号频率为fx,在闸门时刻T内计数器计数值为N,那么待测频率为:fx = N/T假设假设闸门时刻为1s,计数器的值为1000,那么待测信号频率应为1000Hz 或1.000kHz,现在,测频分辨力为1Hz。
图1 测频原理框图和时刻波形二、方案设计2.1整体方案设计等频率计测频范围1Hz~100MHz,测频全域相对误差恒为百万分之一,故由此系统设计提供100MHz作为标准信号输入,被测信号从tclk端输入,由闸门操纵模块进行自动调剂测试频率的大小所需要的闸门时刻,如此能够精准的测试到被测的频率,可不能因闸门开启的时刻快慢与被测频率信号转变快慢而阻碍被测频率信号致使误差过大,被测信号输入闸门操纵模块后,在闸门操纵模块开始工作时使encnt端口输出有效电平,encnt有效电平作用下使能标准计数模块(cnt模块)和被测计数模块(cnt模块),计数模块开始计数,直到encnt 从头回到无效电平,计数模块就将所计的数据送到下一级寄放模块,在总操纵模块的作用下,将数据进行load(锁存),然后寄放器里的数据会自动将数据送到下一模块进行数据处置,最后送到数码管或液晶显示屏(1602)进行被测信号的数据显示。
PIN_84VCCreset INPUTPIN_31VCCtclk INPUTcnt_time 100Signed IntegerParameter Value Typeclken_1kHztclkclrloadencntcnt_eninst4cnt_w idth32Signed IntegerParameter Value Typeclkclrencntout[cnt_width-1..0]cntinst1cnt_w idth32Signed IntegerParameter Value Typeclkclrencntout[cnt_width-1..0]cntinst2cnt_w idth32Signed IntegerParameter Value Typeclken_1kHzclrlock_endata[cnt_width-1..0]regout[cnt_width-1..0]bcnt_reginst3cnt_w idth32Signed IntegerParameter Value Typeclken_1kHzclrlock_endata[cnt_width-1..0]regout[cnt_width-1..0]tcnt_reginst5clken_1kHzresetenencntclr_cntlockclr_regload_encntcontrolinst6clken_1kHzresetclearreset_cntinst16被测频率信号输入闸门信号控制器100M标准频率信号计数器被测频率信号计数器100M标准频率数据寄存被测信号频率数据寄存复位模块闸门、计数、寄存的总控制模块clk_100MHztclk1loadclk_100MHzen_1kHzclk_100MHzen_1kHzen_1kHzclk_100MHzloaden_1kHzclk_100MHzclk_100MHzen_1kHzset_f ashion[4]tclk1reset1cnt_numb[31..0]cnt_numt[31..0]两路数据送到下一级进行数据处理2.2理论分析采纳等精度测量法,其测量原理时序如图1所示从图1中能够取得闸门时刻不是固定的值,而是被测信号的整周期的倍数,即与被测信号同步,因此,不存在对被测信号计数的±1 误差,可取得:变形后可得:对上式进行微分,可得:由于 dn=± 1 ,因此可推出:从式(5)能够看出:测量误差与被测信号频率无关,从而实现了被测频带的等精度测量;增大T或提高fs能够提高测量精度;标准频率误差为dfs/fs,因为晶体的稳固度很高,再加上FPGA核心芯片里集成有PLL锁相环可对频率进一步的稳固,标准频率的误差能够进行校准,校准后的标准误差即能够忽略。