最新点直线平面之间的位置关系练习题(含答案)
- 格式:doc
- 大小:2.34 MB
- 文档页数:8
空间点、直线、平面之间的位置关系一、选择题1.以下四个命题中①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则点A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面.正确命题的个数是()A.0 B.1 C.2 D.32.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行3.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是()图7-3-74.(2013·揭阳模拟)如图7-3-7,正三棱柱ABC—A1B1C1的各棱长(包括底面边长)都是2,E,F分别是AB,A1C1的中点,则EF与侧棱C1C所成的角的余弦值是()A.55B.255C.12D.25.设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是()A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则AD⊥BC二、填空题图7-3-86.(2013·深圳质检)如图7-3-8是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.7.(2013·韶关模拟)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是________(只填序号).图7-3-98.如图7-3-9所示,在正三棱柱ABC—A1B1C1中,D是AC的中点,AA1∶AB=2∶1,则异面直线AB1与BD所成的角为________.三、解答题图7-3-109.如图7-3-10所示,在正方体ABCD—A1B1C1D1中,E,F分别为CC1,AA1的中点,画出平面BED1F与平面ABCD的交线.图7-3-1110.如图7-3-11所示,在正方体ABCD—A1B1C1D1中,E,F分别为A1A,C1C的中点,求证:四边形EBFD1是菱形.图7-3-1211.如图7-3-12,三棱锥P—ABC中,PA⊥平面ABC,∠BAC=60°,PA=AB=AC=2,E是PC的中点.(1)求异面直线AE和PB所成角的余弦值;(2)求三棱锥A—EBC的体积.解析及答案一、选择题1.【解析】①中显然是正确的;②中若A、B、C三点共线则A、B、C、D、E五点不一定共面.③构造长方体或正方体,如图显然b、c异面故不正确.④中空间四边形中四条线段不共面,故只有①正确.【答案】B2.【解析】若c与a,b都不相交,则c与a,b都平行,则a∥b与a,b异面相矛盾.【答案】C3.【解析】在A图中分别连接PS,QR,易证PS∥QR,∴P,Q,R,S共面;在C图中分别连接PQ,RS,易证PQ∥RS,∴P,Q,R,S共面.在B图中过P,Q,R,S可作一正六边形,故四点共面;D图中PS与QR为异面直线,∴四点不共面,故选D.【答案】D4.【解析】如图,取AC中点G,连FG、EG,则FG∥C1C,FG=C1C;EG∥BC,EG=12BC,故∠EFG即为EF与C1C所成的角,在Rt△EFG中,cos∠EFG=FGFE=25=255.【答案】B5.【解析】由公理1知,命题A正确.对于B,假设AD与BC共面,由A正确得AC与BD共面,这与题设矛盾,故假设不成立,从而结论B正确.对于C,如图,当AB=AC,DB=DC,使二面角A—BC—D的大小变化时,AD与BC不一定相等,故不正确.对于D,如图,取BC的中点E,连接AE,DE,则由题设得BC⊥AE,BC⊥DE.根据线面垂直的判定定理得BC⊥平面ADE,从而AD⊥BC.故D正确.【答案】C二、填空题6.【解析】还原成正四面体知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.【答案】②③④7.【解析】由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行,或异面,故②错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.【答案】①8.【解析】取A1C1的中点D1,连接B1D1,因为D是AC的中点,所以B1D1∥BD,所以∠AB1D1即为异面直线AB1与BD所成的角.连接AD1,设AB=a,则AA1=2a,所以AB1=3a,B1D1=32a,AD1=14a2+2a2=32a.所以cos∠AB1D1=3a2+34a2-94a22×3a×32a=12,所以∠AB1D1=60°.【答案】60°三、解答题9.【解】在平面AA1D1D内,延长D1F,∵D1F与DA不平行,∴D1F与DA必相交于一点,设为P,则P∈D1F,P∈DA.又∵D1F⊂平面BED1F,AD⊂平面ABCD,∴P∈平面BED1F,P∈平面ABCD.又B为平面ABCD与平面BED1F的公共点,连接PB,∴PB即为平面BED1F与平面ABCD 的交线.如图所示.10.【证明】如图所示,取B1B的中点G,连接GC1,EG,∵GB∥C1F,且GB=C1F,∴四边形C1FBG是平行四边形,∴FB∥C1G,且FB=C1G,∵D1C1∥EG,且D1C1=EG,∴四边形D1C1GE为平行四边形.∴GC1∥D1E,且GC1=D1E,∴FB∥D1E,且FB=D1E,∴四边形EBFD1为平行四边形.又∵FB=FD1,∴四边形EBFD1是菱形.11.【解】(1)取BC的中点F,连结EF,AF,则EF∥PB.所以∠AEF就是异面直线AE和PB所成的角或其补角.∵∠BAC=60°,PA=AB=AC=2,PA⊥平面ABC,∴AF=3,AE=2,EF=2,cos∠AEF=2+2-32×2×2=14.(2)因为E是PC中点,所以E到平面ABC的距离为12PA=1,V A—EBC=V E—ABC=13×34×4×1=33.。
点、直线、平面之间的位置关系测试测试题(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行.其中正确的命题是()A.①②B.②④C.①③D.②③答案:B2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是() A.平行B.相交C.平行或相交D.不相交解析:由棱台的定义知,各侧棱的延长线交于一点,所以选B.答案:B3.一直线l与其外三点A,B,C可确定的平面个数是()A.1个B.3个C.1个或3个D.1个或3个或4个解析:当A、B、C共线且与l平行或相交时,确定一个平面;当A、B、C共线且与l 异面时,可确定3个平面;当A、B、C三点不共线时,可确定4个平面.答案:D4.若三个平面两两相交,有三条交线,则下列命题中正确的是()A.三条交线为异面直线B.三条交线两两平行C.三条交线交于一点D.三条交线两两平行或交于一点答案:D5.如图,在△ABC中,∠BAC=90°,P A⊥面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是()A.5 B.8C.10 D.6解析:这些直角三角形是:△P AB,△P AD,△P AC,△BAC,△BAD,△CAD,△PBD,△PCD.共8个.答案:B6.下列命题正确的有()①若△ABC在平面α外,它的三条边所在直线分别交α于P、Q、R,则P、Q、R三点共线.②若三条平行线a、b、c都与直线l相交,则这四条直线共面.③三条直线两两相交,则这三条直线共面.A.0个B.1个C.2个D.3个解析:易知①与②正确,③不正确.答案:C7.若平面α⊥平面β,α∩β=l,且点P∈α,P∉l,则下列命题中的假命题是()A.过点P且垂直于α的直线平行于βB.过点P且垂直于l的直线在α内C.过点P且垂直于β的直线在α内D.过点P且垂直于l的平面垂直于β答案:B8.如右图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM()A.与AC、MN均垂直相交B.与AC垂直,与MN不垂直C.与MN垂直,与AC不垂直D.与AC、MN均不垂直解析:易证AC⊥面BB1D1D,OM⊂面BB1D1D,∴AC⊥OM.计算得OM2+MN2=ON2=5,∴OM⊥MN.答案:A9.(2010·江西高考)如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列四个命题:①过M点有且只有一条直线与直线AB,B1C1都相交;②过M点有且只有一条直线与直线AB,B1C1都垂直;③过M点有且只有一个平面与直线AB,B1C1都相交;④过M点有且只有一个平面与直线AB,B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③解析:将过点M的平面CDD1C1绕直线DD1旋转任意非零的角度,所得平面与直线AB,B1C1都相交,故③错误,排除A,B,D.答案:C10.已知平面α外不共线的三点A、B、C到α的距离相等,则正确的结论是() A.平面ABC必平行于αB.平面ABC必不垂直于αC.平面ABC必与α相交D.存在△ABC的一条中位线平行于α或在α内解析:排除A、B、C,故选D.答案:D11.(2009·广东高考)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④答案:D12.(2009·海南、宁夏高考)如图,正方体ABCD—A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=12,则下列结论错误的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A—BEF的体积为定值D.△AEF的面积与△BEF的面积相等解析:易证AC⊥平面BB1D1D,∴AC⊥BE. ∵EF在直线B1D1上,易知B1D1∥面ABCD,∴EF∥面ABCD,V A-BEF=13×12×12×1×22=224.∴A、B、C选项都正确,由排除法即选D.答案:D二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.已知A、B、C、D为空间四个点,且A、B、C、D不共面,则直线AB与CD的位置关系是________.解析:如图所示:由图知,AB与CD为异面直线.答案:异面14.在空间四边形ABCD的边AB、BC、CD、DA上分别取点E、F、G、H,如果EH、FG相交于一点M,那么M一定在直线________上.答案:BD15.如下图所示,以等腰直角三角形ABC斜边BC上的高AD为折痕.使△ABD和△ACD 折成互相垂直的两个平面,则:(1)BD 与CD 的关系为________. (2)∠BAC =________. 解析:(1)AB =AC ,AD ⊥BC , ∴BD ⊥AD ,CD ⊥AD ,∴∠BDC 为二面角的平面角,∠BDC =90°, ∴BD ⊥DC .(2)设等腰直角三角形的直角边长为a ,则斜边长为2a . ∴BD =CD =22a . ∴折叠后BC =⎝⎛⎭⎫22a 2+⎝⎛⎭⎫22a 2=a . ∴折叠后△ABC 为等边三角形.∴∠BAC =60°. 答案:(1)BD ⊥CD (2)60°16.在正方体ABCD —A ′B ′C ′D ′中,过对角线BD ′的一个平面交AA ′于E ,交CC ′于F ,则①四边形BFD ′E 一定是平行四边形. ②四边形BFD ′E 有可能是正方形.③四边形BFD ′E 在底面ABCD 内的投影一定是正方形. ④平面BFD ′E 有可能垂直于平面BB ′D .以上结论正确的为__________.(写出所有正确结论的编号) 解析:如图所示:∵BE =FD ′,ED ′=BF ,∴四边形BFD ′E 为平行四边形.∴①正确.②不正确(∠BFD ′不可能为直角).③正确(其射影是正方形ABCD ).④正确.当E 、F 分别是AA ′、CC ′中点时正确.答案:①③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如下图,已知ABCD 是矩形,E 是以CD 为直径的半圆周上一点,且面CDE ⊥面ABCD .求证:CE ⊥平面ADE . 证明:⎭⎪⎬⎪⎫面ABCD ⊥面CED ABCD 为矩形⎭⎪⎬⎪⎫⇒AD ⊥面CDE ⇒AD ⊥CE点E 在直径为CD 的半圆上⇒CE ⊥ED 又AD ∩ED =D⇒CE ⊥面ADE .18.(12分)求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形. 已知:如图,三棱锥S —ABC ,SC ∥截面EFGH ,AB ∥截面EFGH . 求证:截面EFGH 是平行四边形. 证明:∵SC ∥截面EFGH ,SC ⊄平面EFGH ,SC ⊂平面ASC ,且平面ASC ∩平面EFGH =GH , ∴SC ∥GH .同理可证SC ∥EF ,∴GH ∥EF . 同理可证HE ∥GF .∴四边形EFGH 是平行四边形.19.(12分)已知正方体ABCD —A 1B 1C 1D 1的棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,如图.(1)求证:MN ∥面BB 1C 1C ; (2)求MN 的长.解:(1)证明:作NP ⊥AB 于P ,连接MP .NP ∥BC ,∴APAB=ANAC=A1MA1B,∴MP∥AA1∥BB1,∴面MPN∥面BB1C1C.MN⊂面MPN,∴MN∥面BB1C1C.(2)NPBC=ANAC=23a2a=13,NP=13a,同理MP=23a.又MP∥BB1,∴MP⊥面ABCD,MP⊥PN.在Rt△MPN中MN=49a2+19a2=53a.20.(12分)(2009·浙江高考)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.解:(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ⊄平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ,DP,因为Q为AB的中点,且AC=BC,所以CQ⊥AB. 因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,因此CQ⊥EB.故CQ⊥平面ABE.由(1)有PQ∥DC,又PQ=12EB=DC,所以四边形CQPD为平行四边形,故DP∥CQ,因此DP⊥平面ABE,∠DAP为AD和平面ABE所成的角,在Rt△DP A中,AD=5,DP=1,sin∠DAP=5 5,因此AD和平面ABE所成角的正弦值为5 5.21.(12分)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD 的中点.求证:(1)直线EF∥面ACD.(2)平面EFC⊥平面BCD.证明:(1)在△ABD中,∵E、F分别是AB、BD的中点,∴EF∥AD.又AD⊂平面ACD,EF⊄平面ACD,∴直线EF∥面ACD.(2)在△ABD中,∵AD⊥BD,EF∥AD,∴EF⊥BD.在△BCD中,∵CD=CB,F为BD的中点,∴CF⊥BD.∵CF∩EF=F,∴BD⊥平面EFC,又∵BD ⊂平面BCD , ∴平面EFC ⊥平面BCD .22.(12分)(2010·安徽文)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB =2EF =2,EF ∥AB ,EF ⊥FB ,∠BFC =90°,BF =FC ,H 为BC 的中点.(1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求四面体B —DEF 的体积.解:(1)证明:设AC 与BD 交于G ,则G 为AC 中点,连接EG ,GH ,由于H 为BC 中点,故GH 綊12AB .又∵EF 綊12AB ,∴EF 綊GH ,∴四边形EFHG 为平行四边形,∴EG ∥FH ,而EG ⊂平面EDB ,FH ⊄平面EDB , ∴FH ∥平面EDB .(2)证明:由于四边形ABCD 为正方形,∴AB ⊥BC , ∵EF ∥AB ,∴EF ⊥BC ,而EF ⊥FB , ∴EF ⊥平面BFC , ∴EF ⊥FH ,∴AB ⊥FH .∵BF =FC ,H 为BC 中点,∴FH ⊥BC , ∴FH ⊥平面ABCD ,∴FH ⊥AC ,∵FH ∥EG ,∴AC ⊥EG . ∵AC ⊥BD ,EG ∩BD =G ,∴AC ⊥平面EDB . (3)∵EF ⊥FB ,∠BFC =90°,∴BF ⊥平面CDEF , ∴BF 是四面体B —DEF 的高, ∵BC =AB =2,∴BF =FC = 2. ∴V B -DEF =13×12×1×2×2=13.。
第二章点、直线、平面之间的位置关系单元检测(时间:120分钟,满分:150分)一、选择题(本大题共12个小题,每小题5分,共计60分) 1.在空间内,可以确定一个平面的条件是( ). A .两条直线B .三条直线,其中的一条与另外两条直线相交C .三个点D .三条直线,它们两两相交,但不交于同一点 2.下列命题中,正确的是( ).A .平面α内的一条直线和平面β内的无数条直线垂直,则平面α⊥平面βB .过平面α外一点P 有且只有一个平面β和平面α垂直C .直线l ∥平面α,直线l ⊥平面β,则α⊥βD .垂直于同一个平面的两个平面平行3.设P 是△ABC 所在平面α外一点,H 是P 在α内的射影,且P A 、PB 、PC 与α所成的角相等,则H 是△ABC 的( ).A .内心B .外心C .垂心D .重心 4.已知二面角α-l -β的大小为60°,m 、n 为异面直线,且m ⊥α,n ⊥β,则m 、n 所成的角为( ).A .30°B .60°C .90°D .120°5.如图所示,点S 在平面ABC 外,SB ⊥AC ,SB =AC =2,E 、F 分别是SC 和AB 的中点,则EF 的长是( ).A .1C.2D.126.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ). A .若l ⊥m ,m ⊂α,则l ⊥α B .若l ⊥α,l ∥m ,则m ⊥α C .若l ∥α,m ⊂α,则l ∥m D .若l ∥α,m ∥α,则l ∥m 7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则A 1C 1到底面ABCD 的距离为( ).B .18.如图,在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在( ).A .直线AB 上 B .直线BC 上 C .直线AC 上D .△ABC 内部9.已知二面角α-AB -β的平面角是锐角θ,面α内有一点C 到β的距离为3,点C 到棱AB 的距离为4,那么tan θ=( ).A.34B.35C.7D.710.下列命题中错误..的是( ). A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β11.如图所示,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点.将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为( ).A .90°B .60°C .45°D .0°12.如图,若Ω是长方体ABCD —A 1B 1C 1D 1被平面EFGH 截去几何体EFGHB 1C 1后得到的几何体,其中E 为线段A1B 1上异于B 1的点,F 为线段BB 1上异于B 1的点,且EH ∥A 1D 1,则下列结论中不正确...的是( ).A .EH ∥FGB .四边形EFGH 是矩形C .Ω是棱柱D .Ω是棱台二、填空题(本大题共4个小题,每小题4分,共16分)13.如图所示,A ,B ,C ,D 为不共面的四点,E ,F ,G ,H 分别在线段AB ,BC ,CD ,DA 上.(1)如果EH ∩FG =P ,那么点P 在直线__________上; (2)如果EF ∩GH =Q ,那么点Q 在直线__________上.14.已知平面α∥平面β,P 是α、β外一点,过P 点的两条直线AC 、BD 分别交α于A 、B ,交β于C 、D ,且P A =6,AC =9,AB =8,则CD 的长为__________.15.已知菱形ABCD 中,AB =2,∠A =120°,沿对角线BD 将△ABD 折起使二面角A -BD -C 为120°,则点A 到△BCD 所在平面的距离为__________.16.已知m 、n 是直线,α、β、γ是平面,给出下列说法: ①若α⊥β,α∩β=m ,n ⊥m ,则n ⊥α或n ⊥β;②若α∥β,α∩γ=m ,β∩γ=n ,则m ∥n ;③若m 不垂直于α,则m 不可能垂直于α内的无数条直线;④若α∩β=m ,n ∥m 且n α⊄,n β⊄,则n ∥α且n ∥β.其中正确的说法序号是__________.(注:把你认为正确的说法的序号都填上)三、解答题(本大题共6个小题,共计74分)17.(12分)如图所示,已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点.(1)求证:E,F,G,H四点共面;(2)若四边形EFGH是矩形,求证:AC⊥BD.18.(12分)如下图,在三棱锥P-ABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△P AC是直角三角形,∠P AC=90°,∠ACP=30°,平面P AC⊥平面ABC.(1)求证:平面P AB⊥平面PBC;(2)若PC=2,求△PBC的面积.19.(12分)如图是一个棱长为1的正方体的表面展开图,MN和PQ是两条面对角线,请在图(2)的正方体中将MN、PQ画出来,并解答下列问题:(1)MN和PQ所成角的大小;(2)四面体M-NPQ的体积.20.(12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC,E为PC的中点,AD=CD=1,DB=(1)证明:P A∥平面BDE;(2)证明:AC⊥平面PBD;(3)求直线BC与平面PBD所成的角的正切值.21.(12分)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.(1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD CDA=45°,求四棱锥P-ABCD的体积.22.(14分)如图所示,在正方体ABCD—A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成的角的正弦值;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.答案与解析1.答案:D解析:A 错,因为两条直线可能为异面直线,B 与A 相同也不正确,C 错,三点若在同一条直线上不行.2.答案:C解析:A :若α∩β=l ,且α与β不垂直时,在α内有一条直线α⊥l ,则a 也垂直于β内所有与l 平行的直线,故A 错误;B :一本书竖直立在桌面上,过书脊上一点有很多平面与桌面垂直;D :教室内相邻两面墙都与地面垂直,而这两个平面相交,故选C.3.答案:B解析:由题意知Rt △PHA ≌Rt △PHB ≌Rt △PHC ,得HA =HB =HC ,所以H 是△ABC 的外接圆圆心.4.答案:B解析:本题考查二面角的概念,易知m 、n 所成的角与二面角的大小相等,故选B. 5.答案:B解析:取SA 的中点H ,连接EH 、FH .因为SB ⊥AC ,则EH ⊥FH ,在△EFH 中,应用勾股定理得EF 6.答案:B解析:对于A :若l ⊥m ,m ⊂α,则l ⊂α可能成立,l ⊥α不一定成立,A 错误,对于B :若l ⊥α,l ∥m ,则m ⊥α,正确.同理对于C 、D 可判定错误 .7.答案:D解析:如图,AB =1,∠B 1AB =60°,B 1B =A 1A A 1C 1与底面ABCD 的距离即为1A AD. 8.答案:A解析:∵BA ⊥AC ,BC 1⊥AC ,BA ∩BC 1=B ,∴AC ⊥平面ABC 1.∵AC ⊂平面ABC ,∴平面ABC ⊥平面ABC 1,且交线是AB .故平面ABC 1上一点C 1在底面ABC 上的射影H 必在交线AB 上.9.答案:D解析:如图,过C 作CE ⊥β,垂足为E ,作CF ⊥AB , 垂足为F ,连接EF ,则∠CFE =θ为二面角α-AB -β的平面角,且CE =3,CF =4.∴tan CE EF θ====. 10.答案:D解析:A 选项正确,只需α内的直线平行于α与β的交线即平行于β;B 正确,根据面面垂直的判定定理,若α内存在直线垂直于β,则α⊥β;C 正确,设α内a ⊥r ,β内b ⊥r ,α∩β=l ,则a ∥b ,所以a ∥β,根据线面平行的性质定理,所以a ∥l ,所以l ⊥r .D 错误,平面α内可以存在直线平行于交线而不垂直于平面β.11.答案:B解析:将三角形折成三棱锥如图所示,HG 与IJ 为一对异面直线,过点D 分别作HG 与IJ 的平行线,即DF 与AD ,所以∠ADF 即为所求.因此,HG 与IJ 所成角为60°.12.答案:D解析:∵EH ∥A 1D 1,A 1D 1∥B 1C 1,∴EH ∥B 1C 1. ∴EH ∥平面BCGF .∵FG ⊂平面BCGF , ∴EH ∥FG ,故A 对.∵B 1C 1⊥平面A 1B 1BA ,EF ⊂平面A 1B 1BA , ∴B 1C 1⊥EF .则EH ⊥EF .由上面的分析知,四边形EFGH 为平行四边形,故它也是矩形,故B 对.由EH ∥B 1C 1∥FG ,故Ω是棱柱,故C 对,选D. 13.答案:(1)BD (2)AC 解析:(1)若EH ∩FG =P ,那么点P ∈平面ABD ,P ∈平面BCD ,而平面ABD ∩平面BCD =BD ,∴P ∈BD .(2)若EF ∩GH =Q ,则Q ∈平面ABC ,Q ∈平面ACD ,而平面ABC ∩平面ACD =AC ,∴Q ∈AC .14.答案:20或4解析:若P 在α、β的同侧,由于平面α∥平面β,故AB ∥CD ,则PA ABPC CD=,可求得CD =20;若P 在α、β之间,可求得CD =4.15.答案:2解析:设AC ∩BD =O ,则翻折后AO ⊥BD ,CO ⊥BD ,∴∠AOC 即为二面角的平面角,则∠AOC =120°,且AO =1,所以d =1×sin 60°16.答案:②④解析:①中n 可能只与α、β中的一个相交,但不垂直;③m 只要是斜线就有可能.17.证明:(1)如图所示,连接EF ,FG ,GH ,HE ,在△ABD 中,∵E ,H 分别是AB ,AD 的中点.∴EH ∥BD ,同理FG ∥BD ,∴EH ∥FG ,∴E ,F ,G ,H 四点共面. (2)由(1)知EH ∥BD ,同理GH ∥AC .又∵四边形EFGH 是矩形,∴EH ⊥GH ,∴AC ⊥BD . 18.(1)证明:∵平面P AC ⊥平面ABC ,且其交线为AC ,P A ⊥AC ,P A ⊂平面P AC ,∴P A ⊥平面ABC ,∵BC ⊂平面ABC ,∴P A ⊥BC .又∵AB ⊥BC ,AB ∩P A =A ,AB ⊂平面P AB ,P A ⊂平面P AB .∴BC ⊥平面P AB .而BC ⊂平面PBC ,∴平面P AB ⊥平面PBC .(2)解:由(1)得,BC ⊥平面P AB , ∴BC ⊥PB ,即∠PBC =90°,由已知PC =2,得AC 222BC AC ===.在Rt △PBC 中,PB ==.∴Rt △PBC 的面积1122S PB BC ⨯===. 19.解:如图:(1)如图,连接MC 、NC 、MN ,可得PQ ∥NC ,则∠MNC (或其补角)就是异面直线MN 和PQ 所成的角,因为△MNC 是等边三角形,所以∠MNC =60°,即异面直线MN 和PQ 所成的角等于60°.(2)因为正方体的棱长为1,所以V 正方体=1,所以--·1136M NPQ Q PMN MNP V V S MQ ===. 20.(1)证明:连接AC ,设AC ∩BD =H ,连接EH ,在△ADC 中,∵AD =CD ,且DB 平分∠ADC , ∴H 为AC 的中点.又E 为PC 的中点,∴EH ∥P A ,又HE ⊂平面BDE ,PA BDE ⊄平面, ∴P A ∥平面BDE . (2)证明:∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴PD ⊥AC ,由(1)知,BD ⊥AC ,PD ∩BD =D ,∴AC ⊥平面PBD .(3)解:由AC ⊥平面PBD 可知,BH 为BC 在平面PBD 内的射影,∴∠CBH 为直线BC 与平面PBD 所成的角.由AD ⊥CD ,AD =CD =1,DB =可知DH =CH =2,2BH =在Rt △BHC 中,t 13an C CBH H BH ∠==. 即直线BC 与平面PBD 所成的角的正切值为13. 21.(1)证明:因为P A ⊥平面ABCD ,CE ⊂平面ABCD , 所以P A ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又P A ∩AD =A ,所以CE ⊥平面P AD . (2)解:由(1)可知CE ⊥AD . 在Rt △ECD 中,DE =CD ·cos45°=1,CE =CD ·sin45°=1.又因为AB =CE =1,AB ∥CE , 所以四边形ABCE 为矩形.所以·11522·21121ECD ABCD ABCE S S S AB AE CE DE ⨯⨯⨯ 四边形矩形=+=+=+=. 又P A ⊥平面ABCD ,P A =1,所以-1151336·52P ABCD ABCD V S PA ⨯⨯=四棱锥四边形==. 22.解:(1)如图(a)所示,取AA 1的中点M ,连接EM ,BM .因为E 是DD 1的中点,四边形ADD 1A 1为正方形,所以EM ∥AD .又在正方体ABCD —A 1B 1C 1D 1中,AD ⊥平面ABB 1A 1,所以EM ⊥平面ABB 1A 1,从而BM 为直线BE 在平面ABB 1A 1上的射影,∠EBM 为BE和平面ABB 1A 1所成的角.设正方体的棱长为2,则EM =AD =2,3BE =.于是,在Rt △BEM 中,s 23in E EBM M BE ∠==, 即直线BE 和平面ABB 1A 1所成的角的正弦值为23.(a) (b)(2)在棱C 1D 1上存在点F ,使B 1F ∥平面A 1BE .事实上,如图(b)所示,分别取C 1D 1和CD 的中点F ,G ,连接EG ,BG ,CD 1,FG .因A 1D 1∥B 1C 1∥BC ,且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形, 因此D 1C ∥A 1B .又E ,G 分别为D 1D ,CD 的中点,所以EG ∥D 1C ,从而EG ∥A 1B .这说明A 1,B ,G ,E 共面.所以BG ⊂平面A 1BE . 因四边形C 1CDD 1与B 1BCC 1皆为正方形,F ,G 分别为C 1D 1和CD 的中点,所以FG ∥C 1C ∥B 1B ,且FG =C 1C =B 1B .因此四边形B 1BGF 是平行四边形.所以B 1F ∥BG .而11B F A BE ⊄平面,BG ⊂平面A 1BE ,故B 1F ∥平面A 1BE .。
高一数学点直线平面之间的地位关系强化演习题一.选择题1.已知平面α外不共线的三点,,A B C 到α的距离都相等,则准确的结论是( )A. 平面ABC 必平行于αB. 平面ABC 必与α订交C. 平面ABC 必不垂直于αD. 消失ABC ∆的一条中位线平行于α或在α内2.给出下列关于互不雷同的直线l.m.n 和平面α.β.γ的三个命题: ①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β; ②若α∥β,l ⊂α,m ⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n. 个中真命题的个数为( )A.3B.2 C3.假如一条直线与一个平面垂直,那么,称此直线与平面组成一个“正交线面临”.在一个正方体中,由两个极点肯定的直线与含有四个极点的平面组成的“正交线面临”的个数是( )(A )48 (B )18 (C )24 (D )364. 已知二面角l αβ--的大小为060,m n 、为异面直线,且m n αβ⊥⊥,,则m n 、所成的角为( )(A )030 (B )060 (C )090 (D )0120 5.如图,点P 在正方形ABCD 地点的平面外,PD⊥平面ABCD,PD =AD,则PA 与BD 所成角的度数为( )A.30°B.45°C.60°D.90°7.设m .n 是两条不合的直线,α.β是两个不合的平面.考核下列命题,个中准确的命题是( )A .βαβα⊥⇒⊥⊂⊥n m n m ,,B .n m n m ⊥⇒⊥βαβα//,,//C .n m n m ⊥⇒⊥⊥βαβα//,,D .ββαβα⊥⇒⊥=⊥n m n m ,,8.设A.B.C.D 是空间四个不合的点,鄙人列命题中,不准确...的是( )A .AC 与BD 共面,则AD 与BC 共面B .若AC 与BD 是异面直线,则AD 与BC 是异面直线C .若AB =AC ,DB =DC ,则AD =BC D .若AB =AC ,DB =DC ,则AD ⊥BC9.若l 为一条直线,αβγ,,为三个互不重合的平面,给出下面三个命题:①αγβγαβ⊥⊥⇒⊥,;②αγβγαβ⊥⇒⊥,∥;③l l αβαβ⊥⇒⊥,∥. 个中准确的命题有( )A .0个B .1个C .2个D .3个10.如图,在正三棱锥P —ABC 中,E.F 分离是PA.AB 的中点,∠CEF=90°,若AB =a,则该三棱锥的周全积为( ) A.2233a + B.2433a + C.243a D.2436a + 11.如图,正三棱柱111ABC A B C -的各棱长都为2,E F 、分离为AB.A 1C 1的中点,则EF 的长是( )(A )2 (B )3 (C )5 (D )712.若P 是平面α外一点,则下列命题准确的是( )(A )过P 只能作一条直线与平面α订交 (B )过P 可作很多条直线与平面α垂直(C )过P 只能作一条直线与平面α平行 (D )过P 可作很多条直线与平面α平行13.对于随意率性的直线l 与平面α,在平面α内必有直线m ,使m 与l ( )(A )平行 (B )订交 (C )垂直 (D )互为异面直线14.对于平面α和共面的直线m .,n 下列命题中真命题是( )(A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n(C )若,m n αα⊂∥,则m ∥n (D )若m .n 与α所成的角相等,则m ∥n15.关于直线m .n 与平面α.β,有下列四个命题:① 若//m α,//n β且//αβ,则//m n ;② 若m α⊥,n β⊥且αβ⊥,则m n ⊥; ③ 若m α⊥,//n β且//αβ,则m n ⊥;④ 若//m α,n β⊥且αβ⊥,则//m n . 个中真命题的序号式( )A .①②B .③④C .①④D .②③16.给出下列四个命题:①垂直于统一向线的两条直线互相平行②垂直于统一平面的两个平面互相平行平③若直线12,l l 与统一平面所成的角相等,则12,l l 互相行④若直线12,l l 是异面直线,则与12,l l 都订交的两条直线是异面直线 个中假命题...的个数是( )(A )1 (B )2 (C )3 (D )417.如图平面α⊥平面β, ,,A B AB αβ∈∈与两平面α.β所成的角分离为4π和6π.过A.B 分离作两平面交线的垂线,垂足为'A .B ',若AB=12,则''A B =( )(A )4 (B )6 (C )8 (D )A'B'A B βα18.已知正四棱锥S ABCD-中,23SA=,那么当该棱锥的体积最大时,它的高为()A.1 B.3C. 2 D.319.已知三棱锥S ABC-中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为()A.34B5C.7D.3420.有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连可以或许焊接成一个三棱锥形的铁架,则a的取值规模是()A.(62B.(1,22C.6262D.(0,22)21.在半径为R的球内有一内接正三棱锥,它的底面三个极点正好都在统一个大圆上,一个动点从三棱锥的一个极点动身沿球面活动,经由其余三点后返回,则经由的最短旅程是()A.2RπB.73RπC.83RπD.76Rπ22.已知,,,S A B C是球O概况上的点,SA ABC⊥平面,AB BC⊥,1SA AB==,2BC=则球O的概况积等于()A.4πB.3πC.2πD.π23.将半径都为1的4个钢球完整装入外形为正四面体的容器里,这个正四面体的高的最小值为( )A .3263+ B .2+263C .4+263D .43263+24.如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H,则以下命题中,错误的命题是( ) A.点H 是△A 11D 111所成角为45°二.填空题1.多面体上,位于统一条棱两头的极点称为相邻的,如图,正方体的一个极点A 在平面α内,其余极点在α的同侧,正方体上与极点A 相邻的三个极点到α的距离分离为1,2和4,P 是正方体的其余四个极点中的一个,则P 到平面α的距离可能是:①3; ②4; ③5; ④6; ⑤7以上结论准确的为______________.(写出所有准确结论的编号..)2.平行四边形的一个极点A 在平面α内,其余极点在α的同侧,已知个中有两个极点到α的距离分离为1和2 ,那么剩下的一个极点到平面α的距离可能是:①1; ②2; ③3; ④4;以上结论准确的为______________.(写出所有准确结论的编号..)3.如图,在正三棱柱111ABC A B C -中,所有棱长均为1,则点1B 到平面1ABC 的距离为 .4.已知,,A B C 三点在球心为O ,半径为R 的球面上,AC BC ⊥,且AB R =,那么,A B 两点的球面距离为 ,球心到平面ABC 的距离为______________.5.如图,在正三棱柱111C B A ABC -中,1=AB .若二面角1C AB C --的大小为 60,ABC Dα则点C 到平面1ABC 的距离为______________.6.如图(同理科图),在正三棱柱111ABC A B C -中,1AB =.若二面角1C AB C --的大小为60,则点1C 到直线AB 的距离为 .7.(如图,在6题上)正四面体ABCD 的棱长为l,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影组成的图形面积的取值规模是____________.8.如图,矩形ABCD 中,DC=3,AD=1,在DC 上截取DE=1,将△ADE 沿AE 翻折到D 1点,点D 1在平面ABC 上的射影落在AC 上时,二面角D 1—AE —B 的平面角的余弦值是 .9.若一条直线与一个正四棱柱各个面所成的角都为α,则cos α=_____.10.已知正四棱椎的体积为12,地面的对角线为26,则正面与底面所成的二面角为____________.11.m n 、是空间两条不合直线,αβ、是空间两条不合平面,下面有四个命题: ①,;m n m n αβαβ⊥⇒⊥, ②,,;m n m n αβαβ⊥⊥⇒ ③,,;m n m n αβαβ⊥⇒⊥ ④,,;m m n n ααββ⊥⇒⊥ 个中真命题的编号是 (写出所有真命题的编号).12.如图,已知三棱锥S -ABC 中,底面ABC 为边长等于2的等边三角形,SA ⊥底面ABC ,SA =3,那么直线SB 与平面SAC 所成角的正弦值为________. 三.解答题:13.如图,正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =4,点E 在C 1C上且C1E=3EC.(1)证实A1C⊥平面BED;(2)求二面角A1-DE-B的正切值..在正△ABC中,E.F.P分离是AB.AC.BC边上的点,知足AE∶EB=CF∶FA=CP∶PB=1∶2〔如图(1)〕.将△AEF沿EF折起到△A1EF的地位,使二面角A1-EF-B成直二面角,贯穿连接A1B.A1P〔如图(2)〕.(1)求证:A1E⊥平面BEP;(2)求直线A1E与平面A1BP所成角的大小;(3)求二面角B-A1P-F的余弦值.一.选择题1.D 2.C 3.D 4.B 5.C 7.B8.C 9.C 10.B 11.C 12.D 13.C 14.C15.D 16.D 17.B18.C;19.D;20.A;21.B;22.A;23.B;二.填空题1.①③④⑤ 2.①③ 3.217 4.13Rπ32R5.34 6.3 7.21[,]428. 32-9.63 10.3π 11.①,② 12.3913解法二:(1)证实:如图,贯穿连接B1C1C是A1C在面BCC1B1内的射影,在矩形BCC1B1中,B1B=C1C=4,BC=B1C1=2,C1E=3,EC=1.因为211==B B BC BC CE 且∠B 1BC =∠BCC 1=90°, 所以△BB 1C∽△BCE.所以∠BB 1C =∠CBE.所以由互余可得∠BFC =90°.所以BE⊥B 1C.所以BE⊥A 1C;由四边形ABCD 为正方形,所以BD⊥AC. 所以BD⊥A 1C 且BD∩BE=B. 所以A 1C⊥平面BDE.(2)贯穿连接OE,由对称性知必交A 1C 于G 点,过G 点作GH⊥DE 于点H,贯穿连接A 1H.由(1)的结论,及三垂线定理可得,∠GHA 1就是所求二面角的平面角,依据已知数据,盘算3651=G A , 在Rt△DOE 中,1530=GH ,所以55tan 11==∠GHGA GHA . 故二面角A 1DEB 的大小为55arctan . 解法一:无妨设正△ABC 的边长为3.(1)证实:在图(1)中,取BE 的中点D,贯穿连接DF. ∵AE∶EB=CF∶FA=1∶2, ∴AF=AD =2.而∠A=60°, ∴△ADF 是正三角形. 又AE =DE =1,∴EF⊥AD. 在图(2)中,A 1E⊥EF,BE⊥EF,∴∠A 1EB 为二面角A 1-EF-B 的平面角. 由题设前提知此二面角为直二面角,∴A 1E⊥BE.又BE∩EF=E,∴A 1E⊥平面BEF, 即A 1E⊥平面BEP.(2)在图(2)中,∵A 1E 不垂直于A 1B, ∴A 1E 是平面A 1BP 的斜线. 又A 1E⊥平面BEP,∴A 1E⊥BP.从而BP 垂直于A 1E 在平面A 1BP 内的射影(三垂线定理的逆定理). 设A 1E 在平面A 1BP 内的射影为A 1Q,且A 1Q 交BP 于点Q,则 ∠EA 1Q 就是A 1E 与平面A 1BP 所成的角,且BP⊥A 1Q. 在△EBP 中,∵BE=BP =2,∠EBP=60°, ∴△EBP 是等边三角形.∴BE=EP. 又A 1E⊥平面BEP,∴A 1B =A 1P. ∴Q 为BP 的中点,且3=EQ . 又A 1E =1,在Rt△A 1EQ 中,3tan 11==∠EA EQQ EA , ∴∠EA 1Q =60°.∴直线A 1E 与平面A 1BP 所成的角为60°.(3)在图(3)中,过F 作FM⊥A 1P 于点M,贯穿连接QM.QF.(3)∵CF=CP =1,∠C=60°, ∴△FCP 是正三角形.∴PF=1.又PQ =21BP =1, ∴PF=PQ.①∵A 1E⊥平面BEP,EQ =EF =3, ∴A 1F =A 1Q.∴△A 1FP≌△A 1QP. 从而∠A 1PF =∠A 1PQ.②由①②及MP 为公共边知△FMP≌△QMP, ∴∠QMP=∠FMP=90°,且MF =MQ. 从而∠FMQ 为二面角B-A 1P-F 的平面角. 在R t△A 1QP 中,A 1Q =A 1F =2,PQ =1, ∴51=P A . ∵MQ⊥A 1P, ∴55211=•=P A PQ Q A MQ . ∴552=MF . 在△FCQ 中,FC =1,QC =2,∠C=60°, 由余弦定理得3=QF . 在△FMQ 中,872cos 222-=•-+=∠MQ MF QF MQ MF FMQ .∴二面角B-A 1P-F 的大小为87arccos -π.。
空间点、直线、平面之间的位置关系测试题(含答案)空间点、直线、平面之间的位置关系测试题1.已知平面α内有无数条直线都与平面β平行,那么正确的选项是()A。
α∥βB。
α与β相交C。
α与β重合D。
α∥β或α与β相交2.两条直线a,b满足a∥b,b⊥平面α,则a与平面α的关系是()A。
a∥αB。
a与α相交C。
a与α不相交D。
a⊥α3.对于命题:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③垂直于同一直线的两直线平行;④垂直于同一平面的两直线平行。
其中正确的个数有(。
)A。
1个B。
2个C。
3个D。
4个4.经过平面外两点与这个平面平行的平面()A。
只有一个B。
至少有一个C。
可能没有D。
有无数个5.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有()A。
3条B。
4条C。
5条D。
6条6.a,b是两条异面直线,下列结论正确的是()A。
过不在a,b上的任一点P,可作一个平面与a,b平行B。
过不在a,b上的任一点P,可作一条直线与a,b相交C。
过不在a,b上的任一点P,可作一条直线与a,b都平行D。
过a可以并且只可以作一平面与b平行7.m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A。
若m‖α,n‖α,则m‖nB。
若α⊥γ,β⊥γ,则α‖βC。
若m‖α,m‖β,则α‖βD。
XXX⊥α,n⊥α,则m‖n8.如图1,正四面体ABCD的棱长均为a,且AD⊥平面α于A,点B,C,D均在平面α外,且在平面α同一侧,则点B到平面α的距离是()A。
a/2B。
a/3C。
a/23D。
2a/39.如图2,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是A。
PB⊥ADB。
平面PAB⊥平面PBCC。
直线BC∥平面PAED。
直线PD与平面ABC所成的角为45°10.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A。
空间点、直线、平面之间的位置关系建议用时:45分钟一、选择题1.下列命题中,真命题的个数为()①如果两个平面有三个不在一条直线上的公共点,那么这两个平面重合;②两条直线可以确定一个平面;③空间中,相交于同一点的三条直线在同一平面内;④若M∈α,M∈β,α∩β=l,则M∈l.A.1B.2C.3D.4B[根据公理2,可判断①是真命题;两条异面直线不能确定一个平面,故②是假命题;在空间,相交于同一点的三条直线不一定共面(如墙角),故③是假命题;根据平面的性质可知④是真命题.综上,真命题的个数为2.] 2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直A[由BC AD,AD A1D1知,BC A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,则A1B与EF相交.] 3.a,b,c是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥cC[对于A,B,D,a与c可能相交、平行或异面,因此A,B,D不正确,根据异面直线所成角的定义知C正确.]4.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外A[如图,因为EF⊂平面ABC,而GH⊂平面ADC,且EF和GH相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P必在直线AC上.]5.如图所示,在底面为正方形,侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为()A.15 B.25C.35 D.45D[连接BC1,易证BC1∥AD1,则∠A1BC1即为异面直线A1B与AD1所成的角.连接A1C1,由AB=1,AA1=2,则A1C1=2,A1B=BC1=5,在△A1BC1中,由余弦定理得cos∠A1BC1=5+5-22×5×5=4 5.]二、填空题6.已知AE是长方体ABCD-EFGH的一条棱,则在这个长方体的十二条棱中,与AE异面且垂直的棱共有条.4[作出长方体ABCD-EFGH.在这个长方体的十二条棱中,与AE异面且垂直的棱有:GH、GF、BC、CD.共4条.]7.已知在四面体ABCD中,E,F分别是AC,BD的中点.若AB=2,CD =4,EF⊥AB,则EF与CD所成角的度数为.30°[如图,设G为AD的中点,连接GF,GE,则GF,GE分别为△ABD,△ACD的中位线.由此可得GF∥AB,且GF=12AB=1,GE∥CD,且GE=12CD=2,∴∠FEG或其补角即为EF与CD所成的角.又∵EF⊥AB,GF∥AB,∴EF⊥GF.因此,在Rt△EFG中,GF=1,GE=2,sin∠GEF=GFGE=12,可得∠GEF=30°,∴EF与CD所成角的度数为30°.]8.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC 的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是.②③④[如图,把平面展开图还原成正四面体,知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE与MN垂直,故②③④正确.]三、解答题9.已知空间四边形ABCD(如图所示),E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且CG=13BC,CH=13DC.求证:(1)E,F,G,H四点共面;(2)三直线FH,EG,AC共点.[证明](1)连接EF,GH,因为E,F分别是AB,AD的中点,所以EF∥BD.又因为CG =13BC ,CH =13DC , 所以GH ∥BD , 所以EF ∥GH ,所以E ,F ,G ,H 四点共面.(2)易知FH 与直线AC 不平行,但共面,所以设FH ∩AC =M , 所以M ∈平面EFHG ,M ∈平面ABC . 又因为平面EFHG ∩平面ABC =EG , 所以M ∈EG ,所以FH ,EG ,AC 共点.10.如图所示,在三棱锥P -ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值. [解] (1)S △ABC =12×2×23=23, 三棱锥P -ABC 的体积为V =13S △ABC ·P A =13×23×2=43 3.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE 是异面直线BC 与AD 所成的角(或其补角).在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.1.在正三棱柱ABC-A1B1C1中,AB=2BB1,则AB1与BC1所成角的大小为()A.30°B.60°C.75°D.90°D[将正三棱柱ABC-A1B1C1补为四棱柱ABCD-A1B1C1D1,连接C1D,BD,则C1D∥B1A,∠BC1D为所求角或其补角.设BB1=2,则BC=CD=2,∠BCD =120°,BD=23,又因为BC1=C1D=6,所以∠BC1D=90°.]2.在正方体ABCD-A1B1C1D1中,M,N分别为棱CC1,A1D1的中点,则异面直线A1B与MN所成的角为()A.30°B.45°C.60°D.90°A[如图,取C1D1的中点P,连接PM,PN,CD1.因为M为棱CC1的中点,P为C1D1的中点,所以PM∥CD1,所以PM∥A1B,则∠PMN是异面直线A1B与MN所成角的平面角.设AB=2,在△PMN中,PM=PN=2,MN=6,则cos∠PMN=2+6-22×2×6=32,即∠PMN=30°.故选A.]3.如图所示,在四面体ABCD中作截面PQR,若PQ与CB的延长线交于点M,RQ与DB的延长线交于点N,RP与DC的延长线交于点K.给出以下命题:①直线MN⊂平面PQR;②点K在直线MN上;③M,N,K,A四点共面.其中正确结论的序号为.①②③[由题意知,M∈PQ,N∈RQ,K∈RP,从而点M,N,K∈平面PQR.所以直线MN⊂平面PQR,故①正确.同理可得点M,N,K∈平面BCD.从而点M,N,K在平面PQR与平面BCD的交线上,即点K在直线MN上,故②正确.因为A∉直线MN,从而点M,N,K,A四点共面,故③正确.]4.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值.[解](1)由已知可求得正方形ABCD的面积S=4,所以四棱锥O-ABCD的体积V=13×4×2=83.(2)如图,连接AC,设线段AC的中点为E,连接ME,DE,又M为OA中点,∴ME∥OC,则∠EMD(或其补角)为异面直线OC与MD所成的角,由已知可得DE=2,EM=3,MD=5,∵(2)2+(3)2=(5)2,即DE2+EM2=MD2,∴△DEM为直角三角形,且∠DEM=90°,∴tan∠EMD=DEEM=23=63.∴异面直线OC与MD所成角的正切值为6 3.5.如图,平面ABEF⊥平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠F AB=90°,BC 12AD,BE12F A,G,H分别为F A,FD的中点.(1)求证:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?[解](1)证明:由题设知,FG=GA,FH=HD,所以GH 12AD.又BC 12AD,故GH BC.所以四边形BCHG是平行四边形.(2)C,D,F,E四点共面.理由如下:由BE 12F A,G是F A的中点知,BE GF,所以EF BG.由(1)知BG∥CH,所以EF∥CH,故EC,FH共面.又点D在直线FH上,所以C,D,F,E四点共面.1.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD =m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.32 B.22C.33 D.13A[根据平面与平面平行的性质,将m,n所成的角转化为平面CB1D1与平面ABCD的交线及平面CB1D1与平面ABB1A1的交线所成的角.设平面CB1D1∩平面ABCD=m1.∵平面α∥平面CB1D1,∴m1∥m.又平面ABCD∥平面A1B1C1D1,且平面CB1D1∩平面A1B1C1D1=B1D1,∴B1D1∥m1.∴B1D1∥m.∵平面ABB1A1∥平面DCC1D1,且平面CB1D1∩平面DCC1D1=CD1,同理可证CD1∥n.因此直线m与n所成的角即直线B1D1与CD1所成的角.在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形,故直线B1D1与CD1所成角为60°,其正弦值为3 2.]2.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为()A.15 B.56C.55 D.22C[如图,在长方体ABCD-A1B1C1D1的一侧补上一个相同的长方体EFBA-E1F1B1A1.连接B1F,由长方体性质可知,B1F∥AD1,所以∠DB1F为异面直线AD1与DB1所成的角或其补角.连接DF,由题意,得DF=12+(1+1)2=5,FB1=12+(3)2=2,DB1=12+12+(3)2= 5.在△DFB1中,由余弦定理,得DF2=FB21+DB21-2FB1·DB1cos∠DB1F,即5=4+5-2×2×5×cos∠DB1F,∴cos∠DB1F=5 5.]11。
第二章 《点、直线、平面之间的位置关系》一、选择题1. 给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题: ①若不共面与则点m l m A A l m ,,,∉=⋂⊂αα;②若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③若m l m l //,//,//,//则βαβα;④若.//,//,//,,,βαββαα则点m l A m l m l =⋂⊂⊂ 其中为假命题的是A .①B .②C .③D .④2.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则βα||;②若α⊂m ,α⊂n ,β||m ,β||n ,则βα||;③若βα||,α⊂l ,则β||l ;④若l =βα ,m =γβ ,n =αγ ,γ||l ,则m ||其中真命题的个数是A .1B .2C .3D .43.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若βαβα//,,则⊥⊥m m ;②若βααβγα//,,则⊥⊥; ③若βαβα//,//,,则n m n m ⊂⊂;④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂。
其中真命题是A .①和②B .①和③C .③和④D .①和④4.已知直线n m l 、、及平面α,下列命题中的假命题是A .若//l m ,//m n ,则//l n .B .若l α⊥,//n α,则l n ⊥.C .若l m ⊥,//m n ,则l n ⊥.D .若//l α,//n α,则//l n .5.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是 A .BC ∥平面PDF B .DF ⊥平面PAEC .平面PDF ⊥平面ABCD .平面PAE ⊥平面ABC 6.有如下三个命题:①分别在两个平面内的两条直线一定是异面直线; ②垂直于同一个平面的两条直线是平行直线;③过平面α的一条斜线有一个平面与平面α垂直. 其中正确命题的个数为A .0B .1C .2D .3 7.下列命题中,正确的是 A .经过不同的三点有且只有一个平面 B .分别在两个平面内的两条直线一定是异面直线 C .垂直于同一个平面的两条直线是平行直线D .垂直于同一个平面的两个平面平行8.已知直线m 、n 与平面βα,,给出下列三个命题:①若;//,//,//n m n m 则αα ②若;,,//m n n m ⊥⊥则αα ③若.,//,βαβα⊥⊥则m m其中真命题的个数是 A .0 B .1 C .2 D .3 9.已知a 、b 、c 是直线,β是平面,给出下列命题: ①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是 A .1 B .2 C .3 D .4 10.过三棱柱任意两个顶点的直线共15条,其中异面直线有A .18对B .24对C .30对D .36对 11.正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C的中点.那么,正方体的过P 、Q 、R 的截面图形是A .三角形B .四边形C .五边形D .六边形 12.不共面的四个定点到平面α的距离都相等,这样的平面α共有A .3个B .4个C .6个D .7个 13.设γβα、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是A .l m l ⊥=⋂⊥,,βαβαB .γβγαγα⊥⊥=⋂,,mC . αγβγα⊥⊥⊥m ,,D .αβα⊥⊥⊥m n n ,,14.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么A .①是真命题,②是假命题B . ①是假命题,②是真命题C . ①②都是真命题D .①②都是假命题 15.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等;④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β, 其中,可以判定α与β平行的条件有A .1个B .2个C .3个D .4个二、填空题1.已知平面βα,和直线m ,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//.(i )当满足条件 时,有β//m ;(ii )当满足条件 时,有β⊥m (填所选条件的序号)2.在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号) 3.下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥. ②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥. ③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥. 其中,真命题的编号是____________.(写出所有真命题的编号)4.已知m 、n 是不同的直线,,αβ是不重合的平面,给出下列命题:①若//,,,m n αβαβ⊂⊂则//m n②若,,//,//,m n m n αββ⊂则//αβ③若,,//m n m n αβ⊥⊥,则//αβ④m 、n 是两条异面直线,若//,//,//,//,m m n n αβαβ则//αβ上面命题中,真命题的序号是____________(写出所有真命题的序号)5. 已知m 、n 是不同的直线,,αβ是不重合的平面,给出下列命题:① 若//m α,则m 平行于平面α内的任意一条直线② 若//,,,m n αβαβ⊂⊂则//m n③若,,//m n m n αβ⊥⊥,则//αβ④若//,m αβα⊂,则//m β上面命题中,真命题的序号是____________(写出所有真命题的序号)6.连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号) ①菱形 ②有3条边相等的四边形 ③梯形 ④平行四边形 ⑤有一组对角相等的四边形三、计算题1. 如图1所示,在四面体P —ABC 中,已知PA=BC=6,PC=AB=10,AC=8,PB=342.F 是线段PB 上一点,341715=CF ,点E 在线段AB 上,且EF ⊥PB. (Ⅰ)证明:PB ⊥平面CEF ; (Ⅱ)求二面角B —CE —F 的大小.2. 已知正三棱锥ABC P -的体积为372,侧面与底面所成的二面角的大小为 60。
数学 空间点、直线平面之间的位置关系[基础题组练]1.已知异面直线a ,b 分别在平面α,β内,且α∩β=c ,那么直线c 一定( ) A .与a ,b 都相交B .只能与a ,b 中的一条相交C .至少与a ,b 中的一条相交D .与a ,b 都平行2.已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是( ) A .空间四边形 B .矩形 C .菱形D .正方形3.已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.(2019·广州市高中综合测试(一))在四面体ABCD 中,E ,F 分别为AD ,BC 的中点,AB =CD ,AB ⊥CD ,则异面直线EF 与AB 所成角的大小为( )A.π6B.π4C.π3D.π25.已知棱长为a 的正方体ABCD A ′B ′C ′D ′中,M ,N 分别为CD ,AD 的中点,则MN 与A ′C ′的位置关系是_________.6.给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a 与平面β内的一条直线b 相交,则α与β相交; ③若一条直线和两条平行线都相交,则这三条直线共面; ④若三条直线两两相交,则这三条直线共面. 其中真命题的序号是________.7.如图,在正方体ABCD A 1B 1C 1D 1中,O 为正方形ABCD 的中心,H 为直线B 1D 与平面ACD 1的交点.求证:D 1、H 、O 三点共线.8.在正方体ABCD A 1B 1C 1D 1中, (1)求AC 与A 1D 所成角的大小;(2)若E ,F 分别为AB ,AD 的中点,求A 1C 1与EF 所成角的大小.1.如图所示,平面α∩平面β=l ,A ∈α,B ∈α,AB ∩l =D ,C ∈β,C ∉l ,则平面ABC 与平面β的交线是( )A .直线ACB .直线ABC .直线CD D .直线BC 2.在正三棱柱ABC A 1B 1C 1中,|AB |=2|BB 1|,则AB 1与BC 1所成角的大小为( )A.π6B.π3C.5π12D.π23.(2019·长沙模拟)如图,在三棱柱ABC A ′B ′C ′中,点E ,F ,H ,K 分别为AC ′,CB ′,A ′B ′,B ′C ′的中点,G 为△ABC 的重心.从K ,H ,G ,B ′四点中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为________.4.如图,已知圆柱的轴截面ABB 1A 1是正方形,C 是圆柱下底面弧AB 的中点,C 1是圆柱上底面弧A 1B 1的中点,那么异面直线AC 1与BC 所成角的正切值为________.5.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.6.(综合型)如图,E ,F ,G ,H 分别是空间四边形ABCD 各边上的点,且AE ∶EB =AH ∶HD =m ,CF ∶FB =CG ∶GD =n .(1)证明:E ,F ,G ,H 四点共面;(2)m ,n 满足什么条件时,四边形EFGH 是平行四边形? (3)在(2)的条件下,若AC ⊥BD ,试证明:EG =FH .【参考答案】1.已知异面直线a ,b 分别在平面α,β内,且α∩β=c ,那么直线c 一定( ) A .与a ,b 都相交B .只能与a ,b 中的一条相交C .至少与a ,b 中的一条相交D .与a ,b 都平行解析:选C.若c 与a ,b 都不相交,则c 与a ,b 都平行,根据公理4,知a ∥b ,与a ,b 异面矛盾.2.已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是( ) A .空间四边形 B .矩形 C .菱形 D .正方形解析:选B.如图所示,易证四边形EFGH 为平行四边形. 因为E ,F 分别为AB ,BC 的中点, 所以EF ∥AC . 又FG ∥BD ,所以∠EFG 或其补角为AC 与BD 所成的角. 而AC 与BD 所成的角为90°,所以∠EFG =90°,故四边形EFGH 为矩形.3.已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析:选A.若直线a ,b 相交,设交点为P ,则P ∈a ,P ∈b .又a ⊂α,b ⊂β,所以P ∈α,P ∈β,故α,β相交.反之,若α,β相交,则a ,b 可能相交,也可能异面或平行.故“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.4.(2019·广州市高中综合测试(一))在四面体ABCD 中,E ,F 分别为AD ,BC 的中点,AB =CD ,AB ⊥CD ,则异面直线EF 与AB 所成角的大小为( )A.π6B.π4C.π3D.π2解析:选B.取BD 的中点O ,连接OE ,OF ,因为E ,F 分别为AD ,BC 的中点,AB =CD ,所以EO ∥AB ,OF ∥CD ,且EO =OF =12CD ,又AB ⊥CD ,所以EO ⊥OF ,∠OEF 为异面直线EF 与AB 所成的角,由△EOF 为等腰直角三角形,可得∠OEF =π4,故选B.5.已知棱长为a 的正方体ABCD A ′B ′C ′D ′中,M ,N 分别为CD ,AD 的中点,则MN 与A ′C ′的位置关系是________________________________________________________.解析:如图,由题意可知MN ∥AC .又因为AC ∥A ′C ′, 所以MN ∥A ′C ′.答案:平行6.给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a 与平面β内的一条直线b 相交,则α与β相交; ③若一条直线和两条平行线都相交,则这三条直线共面; ④若三条直线两两相交,则这三条直线共面. 其中真命题的序号是________.解析:①正确,因为直线在平面外即直线与平面相交或直线平行于平面,所以最多有一个公共点.②正确,a ,b 有交点,则两平面有公共点,则两平面相交.③正确,两平行直线可确定一个平面,又直线与两平行直线的两交点在这两平行直线上,所以过这两交点的直线也在平面内,即三线共面.④错误,这三条直线可以交于同一点,但不在同一平面内.答案:①②③7.如图,在正方体ABCD A 1B 1C 1D 1中,O 为正方形ABCD 的中心,H 为直线B 1D 与平面ACD 1的交点.求证:D 1、H 、O 三点共线.证明:如图,连接BD ,B 1D 1, 则BD ∩AC =O , 因为BB 1綊DD 1,所以四边形BB 1D 1D 为平行四边形, 又H ∈B 1D , B 1D ⊂平面BB 1D 1D , 则H ∈平面BB 1D 1D ,因为平面ACD 1∩平面BB 1D 1D =OD 1, 所以H ∈OD 1.即D 1、H 、O 三点共线. 8.在正方体ABCD A 1B 1C 1D 1中, (1)求AC 与A 1D 所成角的大小;(2)若E ,F 分别为AB ,AD 的中点,求A 1C 1与EF 所成角的大小. 解:(1)如图,连接B 1C ,AB 1,由ABCD A 1B 1C 1D 1是正方体,易知A 1D ∥B 1C ,从而B 1C 与AC 所成的角就是AC 与A 1D 所成的角.因为AB 1=AC =B 1C , 所以∠B 1CA =60°.即A 1D 与AC 所成的角为60°.(2)连接BD ,在正方体ABCD A 1B 1C 1D 1中,AC ⊥BD ,AC ∥A 1C 1. 因为E ,F 分别为AB ,AD 的中点, 所以EF ∥BD ,所以EF ⊥AC . 所以EF ⊥A 1C 1.即A 1C 1与EF 所成的角为90°.[综合题组练]1.如图所示,平面α∩平面β=l ,A ∈α,B ∈α,AB ∩l =D ,C ∈β,C ∉l ,则平面ABC 与平面β的交线是( )A .直线ACB .直线ABC .直线CDD .直线BC解析:选C.由题意知,D ∈l ,l ⊂β,所以D ∈β, 又因为D ∈AB ,所以D ∈平面ABC , 所以点D 在平面ABC 与平面β的交线上. 又因为C ∈平面ABC ,C ∈β,所以点C 在平面β与平面ABC 的交线上, 所以平面ABC ∩平面β=CD .2.在正三棱柱ABC A 1B 1C 1中,|AB |=2|BB 1|,则AB 1与BC 1所成角的大小为( ) A.π6 B.π3 C.5π12D.π2解析:选D.将正三棱柱ABC A 1B 1C 1补为四棱柱ABCD A 1B 1C 1D 1,连接C 1D ,BD ,则C 1D ∥B 1A ,∠BC 1D 为所求角或其补角.设|BB 1|=2,则|BC |=|CD |=2,∠BCD =120°,|BD |=23,又因为|BC 1|=|C 1D |=6,所以∠BC 1D =π2.3.(2019·长沙模拟)如图,在三棱柱ABC A ′B ′C ′中,点E ,F ,H ,K 分别为AC ′,CB ′,A ′B ′,B ′C ′的中点,G 为△ABC 的重心.从K ,H ,G ,B ′四点中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为________.解析:取A ′C ′的中点M ,连接EM ,MK ,KF ,EF ,则EM 綊12CC ′綊KF ,得四边形EFKM 为平行四边形,若取点K 为P ,则AA ′∥BB ′∥CC ′∥PF ,故与平面PEF 平行的棱超过2条;因为HB ′∥MK ,MK ∥EF ,所以HB ′∥EF ,若取点H 或B ′为P ,则平面PEF 与平面EFB ′A ′为同一平面,与平面EFB ′A ′平行的棱只有AB ,不符合题意;连接BC ′,则EF ∥A ′B ′∥AB ,若取点G 为P ,则AB ,A ′B ′与平面PEF 平行.答案:G4.如图,已知圆柱的轴截面ABB 1A 1是正方形,C 是圆柱下底面弧AB 的中点,C 1是圆柱上底面弧A 1B 1的中点,那么异面直线AC 1与BC 所成角的正切值为________.解析:取圆柱下底面弧AB 的另一中点D ,连接C 1D ,AD , 因为C 是圆柱下底面弧AB 的中点, 所以AD ∥BC ,所以直线AC 1与AD 所成角等于异面直线AC 1与BC 所成角,因为C 1是圆柱上底面弧A 1B 1的中点,所以C 1D ⊥圆柱下底面,所以C 1D ⊥AD , 因为圆柱的轴截面ABB 1A 1是正方形, 所以C 1D =2AD ,所以直线AC 1与AD 所成角的正切值为2, 所以异面直线AC 1与BC 所成角的正切值为 2.答案:25.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.解:(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.6.(综合型)如图,E ,F ,G ,H 分别是空间四边形ABCD 各边上的点,且AE ∶EB =AH ∶HD =m ,CF ∶FB =CG ∶GD =n .(1)证明:E ,F ,G ,H 四点共面;(2)m ,n 满足什么条件时,四边形EFGH 是平行四边形? (3)在(2)的条件下,若AC ⊥BD ,试证明:EG =FH . 解:(1)证明:因为AE ∶EB =AH ∶HD ,所以EH ∥BD . 又CF ∶FB =CG ∶GD ,所以FG ∥BD .所以EH ∥FG . 所以E ,F ,G ,H 四点共面.(2)当EH ∥FG ,且EH =FG 时,四边形EFGH 为平行四边形. 因为EH BD =AE AE +EB =m m +1,所以EH =m m +1BD .同理可得FG =n n +1BD ,由EH =FG ,得m =n .故当m =n 时,四边形EFGH 为平行四边形.(3)证明:当m =n 时,AE ∶EB =CF ∶FB ,所以EF ∥AC ,又EH ∥BD ,所以∠FEH 是AC 与BD 所成的角(或其补角),因为AC ⊥BD ,所以∠FEH =90°,从而平行四边形EFGH 为矩形,所以EG =FH .。
空间点、直线、平面之间的位置关系测试题、选择题(本大题共12题,每小题5分,共60分)4. 经过平面外两点与这个平面平行的平面A •只有一个B •至少有一个C •可能没有D •有无数个5. 过三棱柱ABC A1B1C1的任意两条棱的中点作直线,其中与平面ABB i A平行的直线共有()A. 3条B. 4 条C.5 条D. 6条6. a , b是两条异面直线,,下列结论正确的是()A.过不在a, b上的任一-占八、P,可作一个平面与a, b平行B.过不在a, b上的任一-占八、P,可作一条直线与a, b相交C.过不在a, b上的任一-占八、P,可作一条直线与a, b都平行D.过a可以并且只可以作一平面与b平行是三个不同平面,下列命题中正确的是(B.若,,则ID.若m ,n ,则mil nF列结论正确的是10•点P在正方形ABCD所在平面外,PD丄平面ABCD , PD=AD ,则PA与BD所成角的度数为( )A. 30°B.45°C. 60°D. 90°11.已知二面角的大小为50°, P为空间中任意一点,则过点P且与平面和平面所成的角都是250的直线的条数为()A. 2B. 3C. 4D. 58.如图1, 正四面体ABCD的棱长均为a,且AD平面于A,点B, C, D均在平面且在平面同一侧,则点B到平面的距离是()A aB a、、2a _3aA. — C . D .—2323外,A. a/32. 两条直线A.a //3. 对于命B .a与B相交C.a与B重合 D . a/3或a与B相交a, b满足a / b, b ,则a与平面的关系是()B.a与相交C.a与不相交D. a①平行于冋一直线的两个平面平行;②平行于冋一平面的两个平面平行;③垂直于同一直线的两直线平行;④垂直于同一平面的两直线平行A. 1 个B. 2 个C. 3 个D. 4 个7. m,n是两条不同直线,,A.若mil ,n II ,则mil n图19.如图2,已知六棱锥P ABCDEF的底面是正六边形,图2PA 平面ABC, PA 2AB ,则A. PB AD B .平面PAB 平面PBCC.直线BC //平面PAED.直线PD与平面ABC所成的角为451.已知平面a内有无数条直线都与平面B平行,那么(.其中正确的个数有()12.在正四棱柱 ABCD AB i C i D i 中,顶点 B 到对角线BD ,和到平面 ABCD i 的距离分别为h 和d ,则下列命题中正确的是()A. 若侧棱的长小于底面的边长,则B. 若侧棱的长小于底面的边长,则C. 若侧棱的长大于底面的边长,则D. 若侧棱的长大于底面的边长,则、填空题(本大题共4小题,每小题5分,共20分)13. 如图3,A ABC 和厶DBC 所在两平面互相垂直,且 AB=BC=BD=a, / CBA= / CBD=120 ° ,则AD 与平面BCD 所成的角为.14. 在正方体 ABCD — A 1B 1C 1D 1中,E 为DD 1的中点,贝U BD 1与过点A , E ,C 的平面的位置关系是 __________ .15. 若一个n 面体有m 个面是直角三角形,则称这个n 面体的直度为 m ,则在长方体 ABCDn—A| B 1C 1D 1中,四面体 A ABC 的直度为.16.,表示平面,I 表示既不在 内也不在内的直线,存在以下三个事实:①I 丄;②I // ;③丄.若以其中两个为条件,另一个为结论,构成命题,其中正确命题的个数为 ________ 个.三、解答题(本大题共6小题,共70分)17.如图4,在正三棱柱 ABC A 1B 1C 1中,点D 是棱BC 的中点.求证:-的取值范围为 d-的取值范围为 d-的取值范围为 d-的取值范围为 d(0,1)(1)AD GD ;⑵ A1 B // 平面ADC1.18. 如图5,已知三棱柱ABC ABG的侧棱与底面垂直,BAC 90°, M , N 分别是AB1, BC 的中点.(1)证明:ABAC1;(2)判断直线MN和平面ACGA的位置关系,并加以证明.C19.如图6,在正方体ABCD ABQQ!中,E , F分别为棱AD , AB的中点.⑴求证:平面CAA i C i丄平面CB1D1 ;(2)如果AB 1,一个动点从点F出发在正方体的表面上依次经过棱BB1, B1C1, C1D1, D1D , DA上的点,最终又回到点F ,指出整个路线长度的最小值并说明理由•20. 如图7,四棱锥S—ABCD的底面是边长为2a的菱形,且细钢管•考虑到钢管的受力和人的舒适度等因素,设计小凳应满足:①凳子高度为30cm,②三根细钢管相交处的节点O与凳面三角形ABC重心的连线垂直于凳面和地面•(1)若凳面是边长为20cm的正三角形,三只凳脚与地面所成的角均为45°,确定节点O分细钢管上下两段的比值(精确到0.01);(2)若凳面是顶角为120°的等腰三角形,腰长为24cm,节点O分细钢管上下两段之比为 2 :3 .确定三根细钢管的长度(精确到0.1 cm)22. 如图9所示,在边长为12的正方形AAA'A1中,点B,C在线段AA'上,且AB= 3,BC=4,作BB//AA 1,分别交AA'、AA'于点B1,P,作CC//AA 1,分别交A1A1',AA'于点C,Q 将该正方形沿BB,CG折叠,使得A'A1'与AA1重合,构成如图10所示的三棱柱ABC-A1BO.(1 )在三棱柱ABC- ABC中,求证:AB丄平面BCCB1;(2)求平面APQ将三棱柱ABC- A1B1C1分成上、下两部分几何体的体积之比.图9 C1 Q CSA SC 2a SB SD ..2a,点E是SC上的点,且SE a(0(1 )求证:对任意的(2)若SC 平面BED,(0,2],都有BD AE ;求直线SA与平面BED所成角的大小21. 某厂根据市场需求开发折叠式小凳,如图8所示.凳面为三角形的尼龙布,凳脚为三根31,所以2 3,2112~-1,所以一 2 d14.BD 1 //平面 二、填空题提示:13.作AO 丄CB 的延长线,连接 13. 45AECOD 15.1 16.2则OD 即为AD 在平面BCD 上的射影,空间点、直线、平面之间的位置关系测试题一、选择题 1~6 DCBCDD 7~12 DAECBC提示3对于①平行于同一直线的两个平面平行,反例为:把一支笔放在打开的课本之间; ②是对的,③是错的;④是对的5.取 AC,BC,B i C i ,AC i 中点 E,F,M,N ,直线分别为 EF, MN , EN, EM , FM , FN 都与平 面ABB i A i 平行.6. 如图所示,在直线a 上任取一点 P,过P 作b '// b ,则a n b ' =P.那么a 与b '确定一个平面a .因为b / b ' , b ' a, b a,所以b //a . 所以过a 可以作一个平面a 与 b 平行.假设还可作一平面B 与 b 平行,则anp =a , b //a, b 〃B,所以a // b. 这与a 、b 异面相矛盾,即假设不成立 .所以只有一个平面a . 综上所述,过a 有且只有一个平面与 b 平行.故选D. 7.m,n 均为直线,其中 m,n 平行 ,m,n 可以相交也可以异面,故 A 不正确;m , n 丄a 则同垂直于一个平面的两条直线平行;选 D&取AD 的中点 M 易证 AD 平面BCM ,故平面 BCM //平面 ,平面BCMa到平面 的距离为-,即为B 到平面 的距离.29. 因AD 与AB 不相互垂直,排除A ;作AGPB 于G ,因平面PAB平面ABCDEF 而AG 在平面 ABCDE 上的射影在 AB 上,而 AB 与BC 不相 互垂直,故排除B ;由BC // EF ,而EF 是平面PAE 的斜线,故排除C, 故选择D.10. 将图形补成一个正方体如图,则 PA 与BD 所成角等于BC 与BD所成角即/ DBC .在等边三角形 DBC 中,/ DBC =60°即PA 与BD 所成角为60°12.设底面边长为1 ,侧棱长为(0),过 B 1 作 B 1HBD 1, B 1G A 1B .在 Rt BB 1D 1 中, 3D 2, B 1D. 2 2,由三角形面积关系得hB 1HB 1D 1 BB 1 B 1D设在正四棱柱中,由于 BC AB,BC BB 1 , 所以BC 平面AA 1B 1B ,于是BC B 1G ,所以B 1G平面ABCD 1,故B 1G为点B 到平面 A BCD 1 的距离,在 Rt A 1B 1B 中,又由三角形面积关系得A 1B 1 BB 1AB于是21因为 AO=OD = wa,所以/ ADO=45° .14.连接AC , BD 相交于一点 O ,连接OE , AE , EC.因为四边形ABCD 为正方形,所以 DO = BO.而DE = D I E ,所以EO 为厶DD i B 的中位线, 所以EO // D i B,所以BD i //平面AEC.15.本题主要考查空间的垂直关系,由图形得四面体A ABC 的每个面都是直角三角形,m 4 所以 1 . n 416. 由①② ③、①③ 三、解答题17.证明:(1)因为三棱柱 ABC A 1B 1C 1是正三棱柱,所以 C 1C 又AD 平面ABC ,所以C 1C AD .又点D 是棱BC 的中点,且 ABC 为正三角形,所以 因为BC I C 1C C ,所以AD 平面BCC 1B 1 , 又因为DC 1 平面BCC 1B 1,所以AD C 1D .⑵连接A .C 交AC 1于点E ,再连接DE .因为四边形 A 1ACC 1为矩形,所以E 为A 1C 的中点, 又因为D 为BC 的中点,所以ED//AB .由条件 BAC 90°,即 AC AB ,且 AC ? CC 1 C ,所以 AB 平面 ACC 1A 1 . 又AG 平面ACGA ,所以AB AC 1 .(2) MN //平面ACC 1A ,证明如下: 设AC 的中点为D ,连接DN , AQ .因为D , 1 N 分别是AC , BC 的中点,所以DN // - AB . 2又AM =1A 1B 1 , A 1B 1 〃 AB ,所以 AM 〃 DN .2 所以四边形 ADNM 是平行四边形•所以 AD // MN .因为AQ 平面ACC 1A 1 , MN 平面ACGA ,所以MN //平面ACGA .②是正确命题,由②③不能得到①平面ABC ,AD BC .又AB 平面ADC 1, ED 平面ADC 1,所以A 1 B //平面ADC 1 . 18.证明:⑴因为CG平面ABC ,又AB 平面ABC ,所以CC 1AB .19. (1)证明:因为在正方体 AG 中,AA 丄平面A i BQD ,而BD 丄 B i D .又因为在正方形 A i B C i D 中,AQ 丄B i D ,所以B i D 丄平面 CAAO . 又因为B i D 平面OBD ,所以平面 OAAO 丄平面 CBD .⑵ 最小值为3 ■■一 2 •如图,将正方体六个面展开成平面图形,从图中F 到F ,两点之间线段最短,而且依次经过棱 BB ,B i O ,O D ,D D, DA 上的中点,所求的最小值为 3 2 • 20解:(i )连结BD ,AO ,设BD 与AO 交于O.由底面是菱形,得 BD AC.QSB SD ,O 为 BD 中点, BD SQ又 AO SO Q , BD 面 SAO.又 AE 面 SAO , BD AE.(2)取 SO 的中点 F ,连结 QF ,QE ,SA//QF.QF 与平面EDB 所成的角就是SA 与平面EDB 所成的角.设细钢管上下两段之比为.已知凳子高度为30.则OH 上—.1因为节点Q 与凳面三角形 ABC 重心的连线与地面垂直,且凳面与地面平行 .所以 QBH 就是QB 与平面ABC 所成的角,亦即 QBH 45°.因为 BH QH ,所以竺^3,解得"厂0.63.39 2 3即节点Q 分细钢管上下两段的比值约为 0.63.Q SC 平面 BED , FE 面 BED , E 为垂足,EQF 为所求角在等腰CSB 中,SOBO 2a,SB 、2a得底边SB 上的高为CH平面ABQD ,所以AA iSO BE SB CH所以在Rt BES 中,SE7 2 1-a a,EF4 2所以1 1 a a a2 2在 Rt FEQ 中,QF a, sin EQF里即直线SA 与平面BED 所成角为一.QF 262 i .解:(门设厶ABC 的重心为 H ,连结QH .由题意,得BH20 3 3(2)设B i20°,所以AB BO 24,AO 24 3.设厶ABC的重心为H,则BH 8, AH 8 7 , 由节点0分细钢管上下两段之比为2:3,可知0H 12.设过点A, B, C的细钢管分别为AA,BB,CC,c c - _则AA CC -OA .0H 2 AH 210.37 60.8,2 2- - 2 ____ 2 —BB -OB OH BH 10.13 36.1,2 2所以对应于A, B, C三点的三根细钢管长度分别为60.8cm, 36.1cm和60.8cm.22. (1)证明:在正方形AAA'A 1中,因为A'C = AA' - AB- BC=-,所以三棱柱ABO ABC的底面三角形ABC的边AC= 5.因为AB= 3, BC= 4,所以AB+ BC= AC.所以AB1BC因为四边形AA'A1'A1为正方形,BB//AA1,所以AB丄BB1.而BCH BB1= B, BC平面BCCB , BB 平面BCCB,所以AB丄平面BCC&.⑵解:因为AB丄平面BCCB,所以AB为四棱锥A- BCQP勺高.因为四边形BCQP为直角梯形,且BNAB= 3, CQ= AB+ BC= 7,1所以梯形BCQP勺面积为S BCQ^2(BP + CQ)X BC= 20.1所以四棱锥A- BCQP勺体积V A- BCQ7 -S BCQ就AB= 20.3由(1),知BB 丄AB BB 丄BC 且ABA BC= B, AB 平面ABC BC 所以BB丄平面ABC所以三棱柱ABC- ABC为直棱柱.所以三棱柱ABC- A BQ 的体积为V A BC-A B1 C =S^ABC X BB = 72.故平面APQ将三棱柱ABC- ABC分成上、下两部分的体积之比为平面ABC72 —20 13 20 = "5.。
第二章点、直线、平面之间的位置关系单元测试时间:90分钟满分:150分班级姓名学号得分123456789101112一选择题 (每题5分总分60分)1.下列命题:①如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一个平面相交,那么这条直线与平面内的无数条直线异面;③过平面外一点有且只有一条直线与平面平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个平面.其中正确的个数为()A.0 B.1 C.2 D.32。
在空间中,下列命题正确的是()A。
垂直于同一条直线的两直线平行 B。
平行于同一条直线的两个平面平行C.垂直于同一平面的两个平面平行 D。
垂直于同一平面的两条直线平行3。
分别和两条异面直线平行的两条直线的位置关系是()A.一定平行B。
一定相交C.一定异面D.相交或异面4。
如图,用符号语言可表示为( )A。
α∩β=m,n⊂α,m∩n=A B。
α∩β=m,n∈a,m∩n=AC。
α∩β=m,n⊂α,A⊂m,A⊂n D。
α∩β=m,n∈a,A∈m,A∈n5.下列命题中正确的个数是()①一个平面长4米,宽2米;②2个平面重叠在一起比一个平面厚;③一个平面的面积是25平方米;④将一个平面内的一条直线延长,它就会伸出这个平面.A.0 B.1 C.2 D.36.下列选项中,一定能得出直线m与平面α平行的是( )A.直线m在平面α外 B.直线m与平面α内的两条直线平行C.平面α外的直线m与平面内的一条直线平行 D.直线m与平面α内的一条直线平行7.PA垂直于正方形ABCD所在平面,连接PB、PC、PD、AC、BD,则下列垂直关系正确的是()①平面PAB⊥平面PBC②平面PAB⊥平面PAD③平面PAB⊥平面PCD④平面PAB⊥平面PACA。
①② B.①③ C.②③ D.②④8.已知三条相交于一点的线段PA PB PC、、在同一平面内,P在平面ABC外,PH 平、、两两垂直,且A B C面ABC于H,则垂足H是ABC△的( )A.外心 B.内心 C.垂心D.重心9.六棱柱的表面中,互相平行的平面最多有( )A。
点、线、面的位置关系● 知识梳理 (一).平面公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。
公理2:不共线...的三点确定一个平面. 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面.公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线 (二)空间图形的位置关系1.空间直线的位置关系:相交,平行,异面1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。
1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线;1.4异面直线所成的角:(1)范围:(]0,90θ∈︒︒;(2)作异面直线所成的角:平移法.2.直线与平面的位置关系: 包含,相交,平行3.平面与平面的位置关系:平行,相交(三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点.②判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭③性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭ 2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。
范围:[]0,90θ∈︒︒ 3.面面平行:①定义://αβαβ=∅⇒;②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b ab O a b ααααβ⊂=⇒判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥⇒.③面面平行的性质:(1)////a a αββα⎫⇒⎬⊂⎭;(2)////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭(四)垂直关系(包括线面垂直,面面垂直)1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。
《必修2》第二章“点、直线、平面之间的位置关系”测试题一、选择题:(本大题共10个小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符号题目要求的)1.假设直线l 不平行于平面α,那么以下结论成立的是( )A.α内所有的直线都与l 异面B.α内不存在与l 平行的直线C.α内所有的直线都与l 相交D.直线l 与平面α有公共点 2. 给出以下命题:(1)和直线a 都相交的两条直线在同一个平面内; (2)三条两两相交的直线在同一平面内; (3)有三个不同公共点的两个平面重合; (4)两两平行的三条直线确信三个平面. 其中正确命题的个数是( ) A .0B .1C .2D .33.空间四边形ABCD 中,假设AB AD AC CB CD BD =====,那么AC 与BD 所成角为( )A.030B.045C.060D.090 4.给出以下命题:(1)直线l 与平面α不平行,那么l 与平面α内的所有直线都不平行; (2)直线l 与平面α不垂直,那么l 与平面α内的所有直线都不垂直; (3)异面直线,a b 不垂直,那么过直线a 的任何平面与直线b 都不垂直; (4)假设直线a 和b 共面,直线b 和c 共面,那么a 和c 共面 其中错误命题的个数为( )A.0B.1C.2D.35.正方体1111ABCD A B C D -中,与对角线1AC 异面的棱有( )条 A.3 B.4 C.6 D.86. 点P 为ABC ∆所在平面外一点,PO ⊥平面ABC ,垂足为O ,假设PA PB PC ==,那么点O 是ABC ∆的( )BA.内心B.外心C.重心D.垂心 7.如图长方体中,AB AD ==1CC = AB CD A 1B 1C 1D 11C BD C --的大小为( )A .300B.450C.600D.9008.已知直线,,a b c 及平面,αβ,以下命题正确的选项是( )A.假设,,,a b c a c b αα⊂⊂⊥⊥,则c α⊥B.假设,//b a b α⊂ ,那么//a αC.假设//,a b ααβ=,那么//a b D.假设,a b αα⊥⊥,那么//a b9.平面α与平面β平行的条件能够是( )A.α内有无穷多条直线与β平行;B.直线l //α,l //βC.直线m α⊂,直线n β⊂,且m //β,n //αD.α内的任何直线都与β平行 10. 如图是正方体的平面展开图,那么在那个正方体中:①BM 与ED 平行. ②CN 与BE 是异面直线.③CN 与BM 成60˚角. ④DM 与BN 垂直.以上四个命题中,正确命题的序号是( ) A.①②③ B.②④ C.③④D.②③④二、填空题:(本大题共5个小题,每题5分,共25分)11.已知两条相交直线a ,b ,a α平面∥则b 与α的位置关系是 .12.空间四边形ABCD 中,E ,F ,G ,H 别离是AB ,BC ,CD ,DA 的中点,假设AC BD a ==,且AC与BD 所成的角为90,那么四边形EFGH 的面积是 . 13.如图,ABC 是直角三角形,90ABC ∠=,P A ⊥平面ABC ,此图形中 有 个直角三角形.14.已知a b ,是一对异面直线,且a b ,成70角,P 为空间必然点, 那么在过P 点的直线中与a b ,所成的角都为70的直线有 条.15.已知平面αβ//,P 是平面αβ,外的一点,过点P 的直线m 与平面αβ,别离交于A C ,两点,过点P 的直线n 与平面αβ,别离交于B D ,两点,假设698PA AC PD ===,,,那么BD 的长为 。
数学必修二空间点、直线、平面的位置关系学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 如图,平面不能用( )表示.A.平面αB.平面ABC.平面ACD.平面ABCD2. 已知m,n,l为三条不同的直线,α,β,γ为三个不同的平面,则下列命题中正确的是()A.若m⊥l,n⊥l,则m // nB.若m // α,n // α,则m // nC.若m⊥α,n⊥α,则m // nD.若α⊥γ,β⊥γ,则α // β3. 对于不同点A、B,不同直线a、b、l,不同平面α,β,下面推理错误的是()A.若A∈a,A∈β,B∈a,B∈β,则a⊂βB.若A∈α,A∈β,B∈α,B∈β,则α∩β=直线ABC.若l⊄α,A∈l,则A∉αD.a∩b=Φ,a不平行于b,则a、b为异面直线4. 若点B在直线b上,b在平面β内,则B、b、β之间的关系可记作()A.B∈b∈βB.B∈b⊂βC.B⊂b⊂βD.B⊂b∈β5. 直线a、b为两异面直线,下列结论正确的是()A.过不在a、b上的任何一点,可作一个平面与a、b都平行B.过不在a、b上的任一点,可作一直线与a、b都相交C.过不在a、b上任一点,可作一直线与a、b都平行D.过a可以并且只可以作一个平面与b平行6. 如图所示,平面α∩平面β=l,点A,B∈α,点C∈β,直线AB∩l=R.设过A,B,C三点的平面为γ,则β∩γ=()A.直线ACB.直线BCC.直线CRD.以上均不正确7. 一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的关系是()A.相等B.互补C.相等或互补D.不确定8. 若点P为两条异面直线a,b外的任意一点,则下列说法一定正确的是( )A.过点P有且仅有一条直线与a,b都平行B.过点P有且仅有一条直线与a,b都垂直C.过点P有且仅有一条直线与a,b都相交D.过点P有且仅有一条直线与a,b都异面9. 在正方体ABCD−A1B1C1D1中,E为棱CC1上一点且CE=2EC1,则异面直线AE与A1B所成角的余弦值为()A.√1144B.√1122C.3√1144D.√111110. 空间中,如果一个角的两边和另一个角的两边分别对应平行,那么这两个角的大小关系为()A.相等B.互补C.相等或互补D.互余11. 在棱长为2的正方体ABCD−A1B1C1D1中,异面直线AB和CC1的距离为________.12. 如图所示是一个正方体的表面展开图,A,B,C均为棱的中点,D是顶点,则在正方体中,异面直线AB和CD的夹角的余弦值为________.13. 如果一条直线不在平面内,那么这条直线与这个平面的位置关系是________.14. 已知a // β,a⊂α,α∩β=b,则a和b的位置关系是________.15. 设a、b为两条直线,α、β为两个平面,有下列四个命题:①若a⊂α,b⊂β,且a // b,则α // β;②若a⊂α,b⊂β,且a⊥b,则α⊥β;③若a // α,b⊂α,则a // b;④若a⊥α,b⊥α,则a // b;其中正确命题的序号为________.16. 设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).17. 在空间直角坐标系O−xyz中,经过A(1, 0, 2),B(1, 1, −1),C(2, −1, 1)三个点的平面方程为________.18. 如图,在三棱柱ABC−A1B1C1中,D、E、F分别是A1B1、BC、B1C1的中点,则平面DEF与平面ACC1A1的位置关系是________.19. 如图,正方体的底面与正四面体的底面在同一平面α上,且AB // CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.20. 给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直;③垂直干同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中真命题是________(写出所有真命题的序号)21. 已知直线a,b,c,且a∩b=A,a∩c=B,b和c异面,试画出图形表示它们之间的关系.22. 举几对既不相交也不平行的直线的例子.23. 如图,已知E,F,G,H分别是空间四边形(四条线段首尾相接,且连接点不在同一个平面内,所组成的空间图形叫空间四边形)各边AB,AD,CB,CD上的点,且直线EF和HG交于点P,求证:点B,D,P在同一条直线上.24. 如图,过直线l外一点P,作直线a,b,c分别交直线l于点A,B,C,求证:直线a、b、c共面.25. 如图,已知E、F分别是正方体ABCD−A1B1C1D1的棱AA1和棱CC1上的中点,求证:四边形EBFD1是菱形.26. 在正方体ABCD−A1B1C1D1中,底面ABCD是正方形,若AC1=3,BC1=√5,则异面直线BC1与AD所成的角的正切值为________.27. 在长方体ABCD−A1B1C1D1中,E为DD1的中点.(1)判断BD1与平面AEC的位置关系,并证明你的结论.(2)若AB=BC=√3,CC1=2,求异面直线AE、BD1所成的角的余弦值.28. 如图,长方体ABCD−A1B1C1D1中,AB=AD=2,AA1=3,求异面直线A1B与B1C夹角的余弦值.29. 如图,已知长方体的长宽都是4cm,高为2cm.(1)求BC与A′C′,A′D与BC′所成角的余弦值;(2)求AA′与BC,AA′与CC′所成角的大小.30. 已知m,n是两条不同直线,α,β,γ是三个不同平面(1)若α⊥γ,β⊥γ,则α // β;(2)若m // α,m // β,则α // β;(3)若m // α,n // α,则m // n;(4)若m⊥α,n⊥α,则m // n.上述命题中正确的为________.31. 如图,已知ABCD是空间四边形,AB=AD,CB=CD,求证:BD⊥AC.32. 已知三条直线a、b、c,若这三条直线两两相交,且交点分别为A、B、C,试判断这三条直线是否共面.33. 如图,△ABC中,∠ABC=90∘,SA⊥平面ABC,E、F分别为点A在SC、SB上的射影.(1)求证:BC⊥SB;(2)求证:EF⊥SC.34. 三棱柱ABC−A1B1C1中,侧棱与底面垂直,∠ABC=90∘,AB=BC=BB1=2,M,N分别是AB,A1C的中点.(Ⅰ)求证:MN // 平面BCC1B1;(Ⅱ)求证:MN⊥平面A1B1C.35. 如图所示的一块木料中,棱BC平行于面A′C′.(1)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(写出画法步骤,并在图中画出)(2)说明所画的线与平面AC的位置关系.36. 直线a // b,a与平面α相交,判定b与平面α的位置关系,并证明你的结论.37. 如图,在四棱锥P−ABCD中,有同学说平面PAD∩平面PBC=P,这句话对吗?请说明理由.38.(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1, 2, 3, 4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1, 2, 3, 4),求该正四面体A1A2A3A4的体积.39. 如图,a,b是异面直线,A,C与B,D分别是a,b上的两点,直线a // 平面a,直线b // 平面a,AB∩a=M,CD∩a=N,若AM=BM,求证:CN=DN.40. 如图,已知平面α、β,且α∩β=l.设梯形ABCD中,AD // BC,且AB⊂α,CD⊂β.求证:AB,CD,l共点(相交于一点).参考答案与试题解析数学必修二空间点、直线、平面的位置关系一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】平面的概念、画法及表示【解析】利用平面的表示方法,对每个选项逐一判断即可.【解答】解:A.平面可用希腊字母α,β,γ表示,故A正确;B.平面不可用平行四边形的某条边表示,故B错误;C.平面可用平行四边形的对角的两个字母表示,故C正确;D.平面可用平行四边形的顶点表示,故D正确.故选B.2.【答案】C【考点】空间中直线与平面之间的位置关系空间中平面与平面之间的位置关系【解析】根据空间线面位置关系的情况举出反例判断或根据性质说明.【解答】对于A,当l⊥α,m⊂α,n⊂α时,显然有m⊥l,n⊥l,单m与n可能平行,也可能相交,故A错误.对于B,若α // β,m⊂β,n⊂β,则m // α,n // α,但m,n可能平行也可能相交,故B错误.对于C,由线面平行的性质“垂直于同一个平面的两条直线平行“可知C正确.对于D,当三个平面α,β,γ两两垂直时,显然结论错误.3.【答案】C【考点】平面的基本性质及推论【解析】在A中,由直线a上有两个点A,B都在β内,知a⊂β;在B中,由不同点A、B分别是两个不同平面α,β的公共点,知α∩β=直线AB;在C中,由l⊄α,A∈l,知A有可能是l与α的交点;在D中,因a∩b=Φ,a不平行于b,知a、b为异面直线.【解答】解:在A中,∵直线a上有两个点A,B都在β内,∴a⊂β,故A正确;在B中,∵不同点A、B分别是两个不同平面α,β的公共点,∴α∩β=直线AB,故B正确;在C中,∵l⊄α,A∈l,∴A有可能是l与α的交点,故C错误;在D中,∵a∩b=Φ,a不平行于b,∴a、b为异面直线,故D正确.故选C.4.【答案】B【考点】平面的概念、画法及表示【解析】由题意,点B在直线b上,b在平面β内,点与面之间的关系是属于关系,线与面之间的关系是包含关系,由此三者之间的关系易得【解答】解:由题意,点B在直线b上,b在平面β内,则B、b、β之间的关系可记作B∈b⊂β故选B5.【答案】D【考点】异面直线的判定【解析】若此点与直线a确定一平面β恰好与直线b平行,可得a⊂β,可判断A的真假;结合空间中直线关系的定义及几何特征,可判断B的真假;依据平行公理,即可判断C的真假;由公理2及其推论,我们可以判断D的真假.【解答】解:A中:若此点与直线a确定一平面β恰好与直线b平行,此时直线a在已知平面上,并非与已知平面平行,故A错误;B中:由①可得,当此点在β平面上时,结论B不成立;C中:若存在这样的直线l,则l // a,l // b,有平行公理知,必有a // b,与已知矛盾,故C错误;D中:在直线a上取A、B点,过A、B分别作直线c、d与直线b平行,c、d可确定平面α,即b平行于α,此时a在α平面上,故D正确;故答案为D6.【答案】C【考点】平面的基本性质及推论【解析】此题暂无解析【解答】解:由题意知,∵AB∩l=R,平面α∩平面β=l,∴ R ∈l ,l ⊂β,R ∈AB ,∴ R ∈β.又∵ A ,B ,C 三点确定的平面为γ,∴ C ∈γ,AB ⊂γ,∴ R ∈γ.又∵ C ∈β,∴ C ,R 是平面β和γ的公共点,∴ β∩γ=CR .故选C .7.【答案】D【考点】平行公理【解析】根据题意,可在正方体中,举例说明,得到答案【解答】如图所示,在正方体ABCD −A 1B 1C 1D 1中,二面角D −AA 1−F 与二面角D 1−DC −A 的两个半平面分别对应垂直,但是这两个二面角既不相等,也不互补,所以这两个二面角不一定相等或互补..AB例如:开门的过程中,门所在平面及门轴所在墙面分别垂直于地面与另一墙面,但门所在平面与门轴所在墙面所成二面角的大小不定,而另一二面角却是90∘,所以这两个二面角不一定相等或互补.8.【答案】B【考点】异面直线的判定【解析】A 通过反证法可以判定;B 由异面直线公垂线的唯一性可以判定;C 、D 利用常见的图形举出反例即可.【解答】解:设过点P 的直线为n ,且{n//a,n//b,, ∴ a // b ,这与a ,b 异面矛盾,选项A 错误;∵ 异面直线a ,b 有唯一的公垂线,∴ 过点P 与公垂线平行的直线有且只有一条,选项B 正确;如图所示的正方体中,设AD 为直线a ,A′B′为直线b ,若点P 在P 1点处,则无法作出直线与两直线都相交, ∴ 选项C 错误;如图所示的正方体中,若P 在P 2点,则由图中可知直线CC′及D′P 2均与a ,b 异面, ∴ 选项D 错误.故选B .9.【答案】B【考点】异面直线及其所成的角【解析】本题考查建立适当的空间直角坐标系,利用向量方法求解即可.【解答】解:建立如图所示空间直角坐标系,如图,设正方体棱长为1,则A(0,0,0),E (1,1,23),A 1(0,0,1),B(1,0,0),∴ AE →=(1,1,23),A 1B →=(1,0,−1),∴ cos <AE →,A 1B →>=AE →⋅A 1B →|AE||A 1B|=1−2 3√12+12+(23)2⋅√12+(−1)2=√1122.故选B.10.【答案】C【考点】平行公理【解析】根据等角定理:如果一个角的两边和另一个角的两边分别对应平行并且方向相同,那么这两个角的相等,从而易知本题答案.【解答】解:根据等角定理:如果一个角的两边和另一个角的两边分别对应平行并且方向相同,那么这两个角的相等.本题的条件是:一个角的两边和另一个角的两边分别对应平行,由于没有指出角的对应两边的方向情况,故两个角可能相等或互补.故选C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】2【考点】空间中直线与直线之间的位置关系【解析】由题意,异面直线AB和CC1的距离为BC,即可得出结论.【解答】解:由题意,异面直线AB和CC1的距离为BC=2.故答案为:2.12.【答案】√105【考点】异面直线及其所成的角【解析】建立空间坐标系,分别求出两条异面直线的方向向量,利用向量的夹角公式即可得出.【解答】解:如图所示,建立空间坐标坐标系.取正方体的棱长为2.则B(1, 2, 0),A(2, 2, 1),D(2, 0, 2),C(2, 1, 0).∴ BA →=(1, 0, 1),CD →=(0, −1, 2).∴ cos <BA →,CD →>=|BA →|⋅|CD →|˙=2√2⋅√5=√105. ∴ 异面直线AB 和CD 的夹角的余弦值为√105. 故答案为:√105. 13. 【答案】平行或相交【考点】空间中直线与平面之间的位置关系【解析】利用直线与平面的位置关系求解.【解答】解:∵ 直线与平面的位置关系有三种:平行、相交或直线在平面内,∴ 如果一条直线不在平面内,那么这条直线与这个平面的位置关系是平行或相交.故答案为:平行或相交.14.【答案】平行【考点】空间中直线与直线之间的位置关系【解析】根据线面平行的性质定理判断出a // b .【解答】解:∵ a // β,a ⊂α,α∩β=b ,∴ 由线面平行的性质定理得,a // b ,故答案为:平行.15.【答案】④【考点】空间中平面与平面之间的位置关系空间中直线与直线之间的位置关系【解析】根据空间中面面平行的判定方法,面面垂直的判定方法,线面平行的性质及线面垂直的性质,我们对已知中四个结论逐一进行判断即可得到结论.【解答】解:若a⊂α,b⊂β,且a // b,则α与β可能平行与可能相交,故①错误;若a⊂α,b⊂β,且a⊥b,则α与β可能平行与可能相交,故②错误;若a // α,b⊂α,则a与b可能平行与可能异面,故③错误;若a⊥α,b⊥α,则a // b,故④正确;故答案为:④16.【答案】①③④⇒②(或②③④⇒①)【考点】空间中平面与平面之间的位置关系空间中直线与平面之间的位置关系【解析】分析本题中的条件,四个条件取三个,有四种组合,由于本题是一开放式题答案不唯一,故选取其一即可.【解答】解:观察发现,①③④⇒②与②③④⇒①是正确的命题,证明如下:证①③④⇒②,即证若m⊥n,n⊥β,m⊥α,则α⊥β,因为m⊥n,n⊥β,则m⊂β或m // β,又m⊥α故可得α⊥β,命题正确;证②③④⇒①,即证若n⊥β,m⊥α,α⊥β,则m⊥n,因为m⊥α,α⊥β则m⊂β或m // β,又m⊥α故可得m⊥n,命题正确.故答案为:①③④⇒②(或②③④⇒①).17.【答案】4x+3y+z=6【考点】平面的概念、画法及表示【解析】设过A、B、C三点的平面方程为Ax+By+Cz=D,把点的坐标代入方程求得A、B、C的值,从而求得平面方程.【解答】设过A(1, 0, 2),B(1, 1, −1),C(2, −1, 1)三点的平面方程为Ax+By+Cz=D,则A+2C=D①,A+B−C=D②,2A−B+C=D③,由①②③组成方程组,解得A=2D3,B=D2,C=D6;∴2D3x+D2y+D6z=D,化简得4x+3y+z=(6)18.【答案】平行【考点】空间中平面与平面之间的位置关系【解析】根据面面平行的判定定理,判断两个平面平行即可.【解答】解:因为D、E、F分别是A1B1、BC、B1C1的中点,所以BD // A1C1,BE // C1C,所以BD // 面A1B1C1,BE // 面A1B1C1,因为DB∩BE=E,所以平面DEF // ACC1A1.故答案为:平行.19.【答案】4【考点】平面的基本性质及推论【解析】判断EF与正方体表面的关系,即可推出正方体的六个面所在的平面与直线EF相交的平面个数即可.【解答】由题意可知直线EF与正方体的左右两个侧面平行,与正方体的上下底面相交,前后侧面相交,所以直线EF与正方体的六个面所在的平面相交的平面个数为4.20.【答案】②④【考点】平面的基本性质及推论【解析】利用两个平面平行的判断判断出①错;利用两个平面垂直的判断判断出②对;利用垂直于同一条直线的直线的位置关系判断出③错;利用两个平面垂直的性质判断出④对.【解答】解:对于①,若一个平面内的两条相交直线与另一个平面都平行,那么这两个平面相互平行,故①错对于②,若一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直是两个平面垂直的判断定理,故②对对于③,垂直干同一直线的两条直线相互平行、相交或异面,故③错.对于④,若两个平面垂直,那么一个平面内与它们的交线垂直的直线与另一个平面也垂直.故④对故答案为:②④.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】∵ a ∩b =A ,a ∩c =B ,b 和c 异面,∴ 画图表示如下:.【考点】异面直线的判定【解析】根据直线a ,b ,c 的关系,画出图形即可.【解答】∵ a ∩b =A ,a ∩c =B ,b 和c 异面,∴ 画图表示如下:.22.【答案】既不相交也不平行的直线是异面直线,如图,在正方体A 1B 1C 1D 1−ABCD 中,AB 和A 1D 1,B 1C 1都构成异面直线,BC 和A 1B 1,C 1D 1→都构成异面直线.【考点】异面直线的判定【解析】可知,既不相交也不平行的直线是异面直线,可画出一个正方体,找出几对上面的异面直线即可.【解答】既不相交也不平行的直线是异面直线,如图,在正方体A 1B 1C 1D 1−ABCD 中,AB 和A 1D 1,B 1C 1都构成异面直线,BC 和A 1B 1,C 1D 1→都构成异面直线.23.【答案】证明:∵ E ,F ,G ,H 分别是空间四边形ABCD 各边AB ,AD ,CB ,CD 上的点, ∴ 由公理一,得EF ⊂平面ABD ,GH ⊂平面CBD ,∵ 面ABD ∩面CBD =BD ,直线EF 和HG 交于点P ,∴ 由公理三得P ∈BD ,∴ 点B ,D ,P 在同一条直线上..【考点】平面的基本性质及推论【解析】由公理一,得EF⊂平面ABD,GH⊂平面CBD,由公理三得P∈BD,由此能证明点B,D,P在同一条直线上..【解答】证明:∵E,F,G,H分别是空间四边形ABCD各边AB,AD,CB,CD上的点,∴由公理一,得EF⊂平面ABD,GH⊂平面CBD,∵面ABD∩面CBD=BD,直线EF和HG交于点P,∴由公理三得P∈BD,∴点B,D,P在同一条直线上..24.【答案】证明:设直线l与l外一点P确定的平面为α,则P∈平面α,又A∈直线l,∴A∈平面α;又P∈直线a,A∈直线a,∴直线a⊂平面α;同理直线b⊂平面α,直线c⊂平面α,∴直线a、b、c共面.【考点】平面的基本性质及推论【解析】先设直线l与l外一点P确定一个平面α,再证明直线a⊂平面α,同理得出直线b、c⊂平面α即可.【解答】证明:设直线l与l外一点P确定的平面为α,则P∈平面α,又A∈直线l,∴A∈平面α;又P∈直线a,A∈直线a,∴直线a⊂平面α;同理直线b⊂平面α,直线c⊂平面α,∴直线a、b、c共面.25.【答案】证明:取棱BB1中点为G,连C1G、EG,由正方体性质,侧面ABB1A1为正方形,又E、G分别为边AA1、BB1中点,所以EG=A1B1=C1D1,EG // A1B1 // C1D1,从而四边形EGC1D1为平行四边形,∴D1E // C1G,D1E=C1G,又F、G分别为棱CC1、BB1中点,由侧面CBB1C1为正方形,知四边形BGC1F为平行四边形,所以BF // C1G,BF=C1G,又∴D1E // C1G,D1E=C1G,由平行公理可知D1E=BF,D1E // BF,从而四边形EBFD1为平行四边形.由ABCD−A1B1C1D1为正方体,不妨设其棱长为a,易a知BE=BF=√52而由四边形EBFD1为平行四边形,从而即为菱形.【考点】平行公理【解析】根据菱形的定义直接证明即可.【解答】证明:取棱BB1中点为G,连C1G、EG,由正方体性质,侧面ABB1A1为正方形,又E、G分别为边AA1、BB1中点,所以EG=A1B1=C1D1,EG // A1B1 // C1D1,从而四边形EGC1D1为平行四边形,∴D1E // C1G,D1E=C1G,又F、G分别为棱CC1、BB1中点,由侧面CBB1C1为正方形,知四边形BGC1F为平行四边形,所以BF // C1G,BF=C1G,又∴D1E // C1G,D1E=C1G,由平行公理可知D1E=BF,D1E // BF,从而四边形EBFD1为平行四边形.由ABCD−A1B1C1D1为正方体,不妨设其棱长为a,易a知BE=BF=√52而由四边形EBFD1为平行四边形,从而即为菱形.26.【答案】12【考点】异面直线及其所成的角【解析】此题暂无解析【解答】解:设AB=a,因为ABCD是正方形,所以AC=√2a.所以CC1⊥AC,CC1⊥BC,所以CC12=AC12−AC2=BC12−BC2,即9−2a2=5−a2,解得a=2.所以CC1=1,因为AD//BC,所以∠CBC1即异面直线BC1与AD所成的角,tan∠CBC1=CC1BC =12.故答案为:12.27.【答案】解:(1)BD1 // 平面AEC,如图,连结BD交AC于O,则O为BD中点,连结OE;∵E为DD1的中点,∴OE // BD1;∵OE⊂平面AEC,BD1⊄平面AEC;∴BD1 // 平面AEC;(2)∵OE // BD1;∴异面直线AE,BD1所成的角为∠AEO;∵AB=BC=√3,CC1=2;∴EA=EC=2,EO=12BD1=√102;∴EO⊥AC;∴Rt△AEO中,cos∠AEO=EOEA =√104;因此,异面直线AE,BD1所成的角的余弦值为√104.【考点】异面直线及其所成的角空间中直线与平面之间的位置关系【解析】(1)连接BD,设交AC于O,连接EO,便可说明BD1 // OE,由线面平行的判定定理即(2)由上面BD1 // OE即可得到异面直线AE、BD1所成的角为∠AEO,而通过条件可说明OE⊥AC,并且可求出AE,OE,从而根据直角三角形的边角关系cos∠AEO=EOAE,这样即可求出异面直线AE,BD1所成角的余弦值.【解答】解:(1)BD1 // 平面AEC,如图,连结BD交AC于O,则O为BD中点,连结OE;∵E为DD1的中点,∴OE // BD1;∵OE⊂平面AEC,BD1⊄平面AEC;∴BD1 // 平面AEC;(2)∵OE // BD1;∴异面直线AE,BD1所成的角为∠AEO;∵AB=BC=√3,CC1=2;∴EA=EC=2,EO=12BD1=√102;∴EO⊥AC;∴Rt△AEO中,cos∠AEO=EOEA =√104;因此,异面直线AE,BD1所成的角的余弦值为√104.28.【答案】【考点】异面直线及其所成的角【解析】此题暂无解析【解答】此题暂无解答29.【答案】解:(1)∵ 长方体ABCD −A ′B ′C ′D ′中,BC // A′C′∴ ∠A ′C ′B ′就是异面直线BC 与A′C′所成角 Rt △A ′B ′C ′中,A′C′=√42+42=4√2 ∴ cos ∠A ′C ′B ′=B ′C‘A′C′=√22; 连结B ′C ,可得四边形A ′DCB ′是平行四边形,∴ A ′D // CB ′,直线B ′C 与BC ′所成的角就是A′D 与BC′所成的角 矩形BB ′C ′C 中,BC ′=B ′C =√42+22=2√5 设A′D 与BC′所成的角为θ,则由余弦定理得cos θ=2×√5×√5=35综上所述,可得BC 与A′C′,A′D 与BC′所成角的余弦值分别为√22和35; (2)∵ 长方体ABCD −A ′B ′C ′D ′中,AA ′ // BB ′∴ ∠B ′BC (或其补角)就是AA′与BC 所成的角 矩形BB ′C ′C 中,可得∠B ′BC =90∘;又∵ AA′ // CC′,∴ AA′与CC′所成角为0∘综上所述AA′与BC ,AA′与CC′所成角的大小分别为90∘和0∘.【考点】异面直线及其所成的角 【解析】(1)根据长方体的性质,可得∠A ′C ′B ′就是异面直线BC 与A′C′所成角,在Rt △A ′B ′C ′中,利用三角函数的定义可得cos ∠A ′C ′B ′=√22,即为BC 与A′C′所成角的余弦值.同理可得直线B ′C 与BC ′所成的角就是A′D 与BC′所成的角,结合余弦定理加以计算即可得到A′D 与BC′所成角的余弦值;(2)根据长方体的性质可得AA ′ // BB ′,因此矩形BB ′C ′C 中,∠B ′BC =90∘就是AA′与BC 所成的角;再由AA′ // CC′,得到AA′与CC′所成角为0∘. 【解答】解:(1)∵ 长方体ABCD −A ′B ′C ′D ′中,BC // A′C′∴ ∠A ′C ′B ′就是异面直线BC 与A′C′所成角 Rt △A ′B ′C ′中,A′C′=√42+42=4√2 ∴ cos ∠A ′C ′B ′=B ′C‘A′C′=√22; 连结B ′C ,可得四边形A ′DCB ′是平行四边形,∴ A ′D // CB ′,直线B ′C 与BC ′所成的角就是A′D 与BC′所成的角 矩形BB ′C ′C 中,BC ′=B ′C =√42+22=2√5设A′D 与BC′所成的角为θ,则由余弦定理得cos θ=5+5−162×√5×√5=35综上所述,可得BC 与A′C′,A′D 与BC′所成角的余弦值分别为√22和35;(2)∵ 长方体ABCD −A ′B ′C ′D ′中,AA ′ // BB ′ ∴ ∠B ′BC (或其补角)就是AA′与BC 所成的角 矩形BB ′C ′C 中,可得∠B ′BC =90∘;又∵ AA′ // CC′,∴ AA′与CC′所成角为0∘综上所述AA′与BC ,AA′与CC′所成角的大小分别为90∘和0∘. 30.【答案】 (4). 【考点】空间中平面与平面之间的位置关系 空间中直线与直线之间的位置关系【解析】根据题意,分析4个命题:(1)由α⊥γ,β⊥γ,得α // β,或α∩β; (2)由m // α,m // β,得α // β,或α∩β;(3)由m // α,n // α,得m // n ,或m ∩n ,或m ,n 异面;(4)由m ⊥α,n ⊥α,根据线面垂直的性质,得m // n .进而可得答案. 【解答】 解:(1)命题不一定成立,因为α⊥γ,β⊥γ时,α,β可能平行,也可能相交; (2)命题不一定成立,因为m // α,m // β时,α,β可能平行,也可能相交; (3)命题不一定成立,因为m // α,n // α时,直线m ,n 可能平行,也可能相交,也可能异面;(4)命题是正确的,因为m ⊥α,n ⊥α时,由垂直于同一平面的两条直线平行,得m // n .所以,上述正确的命题只有(4). 31.【答案】证明:取BD 的中点O ,连接AO ,CO . ∵ AB =AD ,∴ AO ⊥BD , ∵ CB =CD ,∴ CO ⊥BD , 又AO ∩CO =O , ∴ BD ⊥平面ACO , AC ⊂平面ACO ,∴BD⊥AC.【考点】空间中直线与直线之间的位置关系【解析】取BD的中点O,连接AO,CO.由等腰三角形的三线合一,得到AO⊥BD,CO⊥BD,再由线面垂直的判定定理得到BD⊥平面ACO,运用线面垂直的性质即可得证.【解答】证明:取BD的中点O,连接AO,CO.∵AB=AD,∴AO⊥BD,∵CB=CD,∴CO⊥BD,又AO∩CO=O,∴BD⊥平面ACO,AC⊂平面ACO,∴BD⊥AC.32.【答案】解:如图,三条直线a、b、c两两相交,且交点分别为A、B、C,设a,b确定一个平面α,∵B∈a,C∈a,A∈b,C∈b,∴A∈α,B∈α,又∵A∈c,B∈c,∴c⊂α,∴三条直线a,b,c共面于α.∴这三条直线共面.【考点】空间中直线与直线之间的位置关系【解析】利用设a,b确定一个平面α,由已知条件利用公理二能推导出c⊂α,从而这三条直线a,b,c共面于α.【解答】解:如图,三条直线a、b、c两两相交,且交点分别为A、B、C,设a,b确定一个平面α,∵B∈a,C∈a,A∈b,C∈b,∴A∈α,B∈α,又∵A∈c,B∈c,∴c⊂α,∴三条直线a,b,c共面于α.∴这三条直线共面.33.【答案】证明:(1)∵ SA ⊥面ABC ,BC ⊂平面ABC , ∴ SA ⊥BC ,又∵ AB ⊥BC ,SA ∩AB =A , ∴ BC ⊥平面SAB , ∵ SB ⊂平面SAB , ∴ BC ⊥SB ;(2)∵ AF ⊂平面SAB ,BC ⊥平面SAB , ∴ BC ⊥AF ,∵ AF ⊥SB ,且BC ∩SB =B , ∴ AF ⊥平面SBC , ∵ SC ⊂平面SBC ,∴ SC ⊥AF ,又AE ⊥SC ,且AF ∩AE =A , ∴ SC ⊥平面AEF , ∴ EF ⊥SC .【考点】空间中直线与直线之间的位置关系 【解析】(1)证明BC ⊥平面SAB ,然后,从而得到BC ⊥SB ;(2)对于EF ⊥SC 的证明,可以先证明SC ⊥平面EF ,然后,很容易得到EF ⊥SC . 【解答】 证明:(1)∵ SA ⊥面ABC ,BC ⊂平面ABC , ∴ SA ⊥BC ,又∵ AB ⊥BC ,SA ∩AB =A , ∴ BC ⊥平面SAB , ∵ SB ⊂平面SAB , ∴ BC ⊥SB ;(2)∵ AF ⊂平面SAB ,BC ⊥平面SAB , ∴ BC ⊥AF ,∵ AF ⊥SB ,且BC ∩SB =B , ∴ AF ⊥平面SBC , ∵ SC ⊂平面SBC ,∴ SC ⊥AF ,又AE ⊥SC ,且AF ∩AE =A , ∴ SC ⊥平面AEF , ∴ EF ⊥SC . 34.【答案】证明:(Ⅰ)证明:连接BC 1,AC 1.在△ABC 1中,∵ M ,N 是AB ,A 1C 的中点,∴ MN||BC 1. 又∵ MN ⊄平面BCC 1B 1,∴ MN||平面BCC 1B 1.(2)如图,以B 1为原点建立空间直角坐标系B 1−xyz .则B 1(0, 0, 0),C(0, 2, 2),A 1(−2, 0, 0),M(−1, 0, 2),N(−1, 1, 1) ∴ B 1C →=(0, 2, 2),A 1B 1→=(2,0,0),NM →=(0,−1,1). 设平面A 1B 1C 的法向量为n =(x, y, z).{n ⋅B 1C →=0n ⋅A 1B 1→=0⇒{x =0y =−z令z =1,则x =0,y =−1,∴ n =(0, −1, 1). ∴ n =NM →.∴ MN ⊥平面A 1B 1C .【考点】空间中直线与平面之间的位置关系 【解析】(Ⅰ)欲证MN||平面BCC 1B 1,根据直线与平面平行的判定定理可知只需证MN 与平面BCC 1B 1内一直线平行即可,而连接BC 1,AC 1.根据中位线定理可知MN||BC 1,又MN ⊄平面BCC 1B 1满足定理所需条件;(Ⅱ)以B 1为原点,A 1B 1为x 轴,B 1B 为y 轴,B 1C 1为z 轴建立空间直角坐标系B 1−xyz ,求出平面A 1B 1C 的法向量为n =(x, y, z),而n =NM →,根据法向量的意义可知MN ⊥平面A 1B 1C . 【解答】证明:(Ⅰ)证明:连接BC 1,AC 1.在△ABC 1中,∵ M ,N 是AB ,A 1C 的中点,∴ MN||BC 1. 又∵ MN ⊄平面BCC 1B 1,∴ MN||平面BCC 1B 1.(2)如图,以B 1为原点建立空间直角坐标系B 1−xyz .则B 1(0, 0, 0),C(0, 2, 2),A 1(−2, 0, 0),M(−1, 0, 2),N(−1, 1, 1) ∴ B 1C →=(0, 2, 2),A 1B 1→=(2,0,0),NM →=(0,−1,1). 设平面A 1B 1C 的法向量为n =(x, y, z).{n ⋅B 1C →=0n ⋅A 1B 1→=0 ⇒{x =0y =−z令z =1,则x =0,y =−1,∴ n =(0, −1, 1). ∴ n =NM →.∴ MN ⊥平面A 1B 1C .35.【答案】解:(1)过点P作B′C′的平行线,交A′B′、C′D′于点E,F,连结BE,CF;作图如右图,(2)易知BE,CF与平面AC的相交,∵BC // 平面A′C′,又∵平面B′C′CB∩平面A′C′=B′C′,∴BC // B′C′,∴EF // BC,又∵EF⊄平面AC,BC⊂平面AC,∴EF // 平面AC.【考点】空间中直线与平面之间的位置关系【解析】(1)注意到棱BC平行于面A′C′,故过点P作B′C′的平行线,交A′B′、C′D′于点E,F,连结BE,CF;(2)易知BE,CF与平面AC的相交,可证EF // 平面AC.【解答】解:(1)过点P作B′C′的平行线,交A′B′、C′D′于点E,F,连结BE,CF;作图如右图,(2)易知BE,CF与平面AC的相交,∵BC // 平面A′C′,又∵平面B′C′CB∩平面A′C′=B′C′,∴BC // B′C′,∴EF // BC,又∵EF⊄平面AC,BC⊂平面AC,∴EF // 平面AC.36.【答案】解:判定b与平面α的位置关系是b∩α=Q,下面给出证明:如图所示,∵a // b,∴可以经过直线a,b确定一个平面β.∵a∩α=P,∴α∩β=l.则b与直线l必然相交,否则b // l,则a // l,与a∩l=P相矛盾.因此b∩l=Q,∴b∩α=Q.【考点】空间中直线与平面之间的位置关系【解析】判定b与平面α的位置关系是b∩α=Q,可用反证法给出证明:如图所示,由于a // b,可以经过直线a,b确定一个平面β.由于a∩α=P,可得α∩β=l.可得b与直线l必然相交,否则b // l,得出矛盾.【解答】解:判定b与平面α的位置关系是b∩α=Q,下面给出证明:如图所示,∵a // b,∴可以经过直线a,b确定一个平面β.∵a∩α=P,∴α∩β=l.则b与直线l必然相交,否则b // l,则a // l,与a∩l=P相矛盾.因此b∩l=Q,∴b∩α=Q.37.【答案】解:由平面与平面的基本性质可知,如果两个平面相交,有且仅有结果该点的公共直线,所以如图,在四棱锥P −ABCD 中,有同学说平面PAD ∩平面PBC =P ,这句话不正确.【考点】平面的基本性质及推论空间中直线与平面之间的位置关系【解析】利用平面的基本性质判断即可.【解答】解:由平面与平面的基本性质可知,如果两个平面相交,有且仅有结果该点的公共直线,所以如图,在四棱锥P −ABCD 中,有同学说平面PAD ∩平面PBC =P ,这句话不正确. 38.【答案】解:(1)如图所示,取A 1A 4的三等分点p 2,p 3,A 1A 3的中点M ,A 2A 4,的中点N , 过三点A 2,P 2,M ,作平面α2,过三点A 3,P 3,N 作平面α3,因为A 2P 2 // NP 3,A 3P 3 // MP 2,所以平面α2 // α3,再过点A 1,A 4,分别作平面α1,α4,与平面α3平行,那么四个平面α1,α2,α3,α4依次互相平行,由线段A 1A 4被平行平面α1,α2,α3,α4截得的线段相等知,其中每相邻两个平面间的距离相等,故α1,α2,α3,α4为所求平面.(2):当(1)中的四面体为正四面体,若所得的四个平行平面每相邻两平面之间的距离为1,则正四面体A 1A 2A 3A 4就是满足题意的正四面体.设正四面体的棱长为a ,以△A 2A 3A 4的中心O 为坐标原点,以直线A 4O 为y 轴,直线OA 1为Z 轴建立如图所示的右手直角坐标系,则A 1(0, 0, √63a),A 2(−a 2, √36a, 0),A 3(a 2, √36a, 0),A 4(0, −√33a, 0). 令P 2,P 3为.A 1A 4的三等分点,N 为A 2A 4的中点,有P 3(0, −2√39a, √69a),N(−a 4, −√312a, 0),所以P 3N →=(−a 4, 5√336a, −√69a),NA 3→=(34a, √34a, 0),A 4N →=(−a 4, √34a, 0)。
8.4.2 空间点、直线、平面之间的位置关系一、选择题1.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为( )A .相交B .平行C .异面而且垂直D .异面但不垂直【答案】D【解析】利用展开图可知,线段AB 与CD 是正方体中的相邻两个面的面对角线,仅仅异面,所成的角为600,因此选D2.若直线//a α,直线b α⊂,则直线a 与b 的位置关系是( )A .相交B .异面C .异面或平行D .平行【答案】C【解析】由题意直线a ∥α,直线b ⊂α,可得直线a ,b 一定没有公共点,故两直线的位置关系可以是异面或平行故选C.3.如果在两个平面内分别有一条直线,这两条直线互相平行,那么两个平面的位置关系一定是( ) A .平行B .相交C .平行或相交D .不能确定 【答案】C【解析】如下图所示:由图可知,两个平面平行或相交,故选C .4.已知平面α和直线l ,则α内至少有一条直线与l ( )A .异面B .相交C .平行D .垂直【解析】若直线l ∥α,α内至少有一条直线与l 垂直,当l 与α相交时,α内至少有一条直线与l 垂直.当l ⊂α,α内至少有一条直线与l 垂直.故选D .5.(多选题)已知A B C ,,表示不同的点,l 表示直线,αβ,表示不同的平面,则下列推理正确的是( ) A .∈A l ,A α∈,B l ∈,B l αα∈⇒⊂B .A α∈,A β∈,B α∈,B AB βαβ∈⇒= C .l α,A l A α∈⇒∉D .A α∈,∈A l ,l l A αα⊄⇒⋂=【答案】ABD【解析】【分析】对于选项A:由公理1知,l α⊂,故选项A 正确;对于选项B :因为αβ,表示不同的平面,由公理3知,平面αβ,相交,且AB αβ=,故选项B 正确;对于选项C:l α⊄分两种情况:l 与α相交或//l a .当l 与α相交时,若交点为A ,则A α∈,故选项C 错误;对于选项D :由公理1逆推可得结论成立,故选项D 成立;故选:ABD6.(多选题)如图所示,在正方体1111ABCD A B C D -中,,M N 分别为棱111,C D C C 的中点,则以下四个结论正确的是( )A .直线AM 与1CC 是相交直线B .直线AM 与BN 是平行直线C .直线BN 与1MB 是异面直线D .直线AM 与1DD 是异面直线【解析】直线AM 与1CC 是异面直线,直线AM 与BN 也是异面直线,故A 、B 错误直线BN 与1MB 是异面直线,直线AM 与1DD 是异面直线,故C 、D 正确.故选CD.二、填空题7.以下四个命题中, 正确命题的个数是_________.①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A , B ,C ,E 共面,则点A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.【答案】1【解析】正确,可以用反证法证明,假设任意三点共线,则四个点必共面,与不共面的四点矛盾;②从条件看出两平面有三个公共点A 、B 、C ,但是若A 、B 、C 共线,则结论不正确;③不正确,共面不具有传递性,若直线a 、b 共面,直线a 、c 共面,则直线b 、c 可能异面;④不正确,因为此时所得的四边形四条边可以不在一个平面上,空间四边形的四个定点就不共面.故答案为:1.8.如图,试用适当的符号表示下列点、直线和平面之间的关系:(1)点C 与平面β:__________;(2)点A 与平面α:__________;(3)直线AB 与平面α:__________;(4)直线CD 与平面α:__________;(5)平面α与平面β:__________;【答案】C β∉ A α AB B α⋂= CD α⊂ BD αβ⋂=【解析】(1)点C 不在平面β内,所以C β∉;(2)点A 不在平面α内,所以A α;(3)直线AB 与平面α相交于点B ,所以AB B α⋂=;(4)直线CD 在平面α内,所以CD α⊂;(5)平面α与平面β相交,且交线为BD ,所以BD αβ⋂=.9.如图是表示一个正方体表面的一种平面展开图,图中的四条线段AB 、CD 、EF 和GH 在原正方体中相互异面的有__________对.【答案】3【解析】画出展开图复原的几何体,所以C 与G 重合,F ,B 重合,所以:四条线段AB 、CD 、EF 和GH 在原正方体中相互异面的有:AB 与GH ,AB 与CD ,GH 与EF ,共有3对.故答案为3.10.(1)平面1AB 平面11AC =_______;(2)平面11AC CA ⋂平面AC =________.【答案】11A B AC【解析】由图可知,(1)平面1AB 平面11AC =11A B ,(2)平面11AC CA ⋂平面AC = AC故答案为:(1)11A B ;(2)AC三、解答题11.按下列叙述画出图形(不必写出画法):m αβ=,a α⊂,b β⊂,a m N ⋂=,M m ∈,//b m .【答案】图形见解析【解析】12.如图,若P 是ABC 所在平面外一点,PA PB ≠,PN AB ⊥,N 为垂足.M 为AB 的中点,求证:PN 与MC 为异面直线.【答案】见解析【解析】证明:∵PA PB ≠,PN AB ⊥,N 为垂足,M 是AB 的中点,∴点N 与点M 不重合∵N ∈平面ABC ,P ∉平面ABC ,CM ⊂平面ABC ,N CM ∉∴由异面直线的判定定理可知,直线PN 与MC 为异面直线。
高二数学点直线平面之间的位置关系试题答案及解析1.如图,在直三棱柱中,,是中点.(I)求证:平面;(II)求点到平面的距离。
【答案】(1)根据题意,由于为中点,又为中点,所以为的中位线,所以,利用平行判定定理得到结论。
(2)【解析】解:(I) 连接交于点,连接因为为正方形,所以为中点,又为中点,所以为的中位线,所以又平面,平面所以平面(Ⅱ)根据题意,要求接点到平面的距离,则可以利用等体积法或建系来得到结论为【考点】线面平行和点到直线的距离点评:主要是考查了线面平行的判定定理以及点到面的距离的求解,属于中档题。
2.在三棱锥中,和都是边长为的等边三角形,,分别是的中点.(1)求证:平面;(2)求证:平面⊥平面;(3)求三棱锥的体积.【答案】(1)对于线面平行的证明,关键是证明线线平行,进而得到结论。
(2)对于面面垂直的证明,要借助于线面垂直的判定定理以及面面垂直的判定定理来推理得到。
(3)【解析】解:(1)分别为的中点, 2分又平面,平面平面 4分(2)连结,,又为的中点,,同理, 6分又,,又,平面.∵平面平面⊥平面 9分(3) 由(2)可知垂直平面为三棱锥的高,且。
三棱锥的体积为: 14分【考点】空间中平行和垂直的证明点评:解决的关键是利用线面平行的判定定理以及面面垂直的判定定理来证明,同时利用等体积法求解锥体的体积,属于基础题。
3.如图,已知二面角α—AB—β的大小为120º,PC⊥α于C,PD⊥β于D,且PC=2,PD=3.(1)求异面直线AB与CD所成角的大小;(2)求点P到直线AB的距离.【答案】(1) 90º (2)【解析】解:(1)∵PC⊥α于C,PD⊥β于D.∴PC⊥AB,PD⊥AB.又PC∩PD=D.∴AB⊥平面PCD.∴AB⊥CD,即异面直线AB与CD所成角的大小为90º.……6分(2)设平面ACD与直线AB交于点E,连结CE,DE,PE由(1)可知,AB⊥平面PCD.∴AB⊥CE,AB⊥DE,AB⊥PE.∴∠CED为二面角α—AB—β的平面角,……8分从而∠CED=120º.∵PC⊥α,PD⊥β.∴PC⊥CE,PD⊥DE.∴∠CPD=60º.又PC=2,PD=3.∴由余弦定理,得CD2=4+9-12cos60º=7,从而CD=.……10分∵PE为四边形PCED的外接圆直径.∴由正弦定理,得PE==.……12分【考点】异面直线所成的角和点到面的距离点评:解决的关键是根据异面直线所成的角的平移法来得到,以及根据二面角来得到点到面的距离,结合正弦定理求解,属于基础题。
高二数学点直线平面之间的位置关系试题答案及解析1.设是两个不同的平面,是一条直线,以下命题正确的是()A.若,则B.若,则C.若,则D.若,则【答案】C【解析】A中直线也可能平行于平面,所以不正确;B中直线也可能平行于平面,所以不正确;根据线面垂直的判定定理知C正确;D中直线与平面的关系不确定,所以不正确.【考点】本小题主要考查空间中直线、平面间位置关系的判断,考查学生的空间想象能力和推理能力.点评:解决此类问题,一定要严密,要紧扣相关的判定定理和性质定理,定理中要求的条件缺一不可.2.正方体ABCD-A1B1C1D1中,异面直线A1B与B1C所成角的大小为A.B.C.D.【答案】C【解析】解:连接A1D,由正方体的几何特征可得:A1D∥B1C,则∠BA1D即为异面直线A1B与B1C所成的角,连接BD,易得:BD=A1D=A1B故∠BA1D=60°故答案为:60°3.(本题满分8分)已知圆与直线相交于两点.(Ⅰ)求弦的长;(Ⅱ)若圆经过,且圆与圆的公共弦平行于直线,求圆的方程.【答案】解:(Ⅰ)圆心到直线的距离,………………………………2分所以.…………………………………4分(II)设圆的方程为,则公共弦所在的直线方程为:,所以即.………………………6分又因为圆经过,所以所以圆的方程为.………………………8分【解析】略4.如图,平面,四边形是正方形,,点、、分别为线段、和的中点. 在线段上是否存在一点,使得点到平面的距离恰为?若存在,求出线段的长;若不存在,请说明理由.【答案】假设在线段上存在一点满足条件,设点,平面的法向量为,则有得到,取,所以,则,又,解得,所以点即,则.所以在线段上存在一点满足条件,且长度为.【解析】略5.如图,已知六棱锥的底面是正六边形,,则下列结论正确的是()A.PB⊥ADB.平面PAB⊥平面PBCC.直线BC∥平面PAED.直线PD与平面ABC所成的角为45°【答案】D【解析】略6.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【答案】C【解析】分别取中点连接则(或补角)就是异面直线与所成的角;设则,所以所以异面直线与所成的角为故选C7.如图,正方体ABCD—A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF//平面AB1C,则线段EF的长度等于______________。
高一数学点直线平面之间的位置关系强化练习题一、选择题1.已知平面α外不共线的三点,,A B C 到α的距离都相等,则正确的结论是( )A. 平面ABC 必平行于α B. 平面ABC 必与α相交C. 平面ABC 必不垂直于αD. 存在ABC ∆的一条中位线平行于α或在α内2.给出下列关于互不相同的直线l 、m 、n 和平面α、β、γ的三个命题: ①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β; ②若α∥β,l ⊂α,m ⊂β,则l ∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l ∥γ,则m ∥n. 其中真命题的个数为( )A.3B.2C.1D.03.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”。
在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( ) (A )48 (B )18 (C )24 (D )36 4. 已知二面角l αβ--的大小为060,m n 、为异面直线,且m n αβ⊥⊥,,则m n 、所成的角为( )(A )030 (B )060 (C )090 (D )01205.如图,点P 在正方形ABCD 所在的平面外,PD ⊥平面ABCD,PD =AD,则PA 与BD 所成角的度数为( )A.30°B.45°C.60°D.90°7.设m 、n 是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是( )A .βαβα⊥⇒⊥⊂⊥n m n m ,,B .n m n m ⊥⇒⊥βαβα//,,//C .n m n m ⊥⇒⊥⊥βαβα//,,D .ββαβα⊥⇒⊥=⊥n m n m ,,I8.设A 、B 、C 、D 是空间四个不同的点,在下列命题中,不正确...的是( ) A .AC 与BD 共面,则AD 与BC 共面 B .若AC 与BD 是异面直线,则AD 与BC 是异面直线 C .若AB =AC ,DB =DC ,则AD =BC D .若AB =AC ,DB =DC ,则AD ⊥BC 9.若l 为一条直线,αβγ,,为三个互不重合的平面,给出下面三个命题:①αγβγαβ⊥⊥⇒⊥,;②αγβγαβ⊥⇒⊥,∥;③l l αβαβ⊥⇒⊥,∥.其中正确的命题有( )A .0个B .1个C .2个D .3个10.如图,在正三棱锥P —ABC 中,E 、F 分别是PA 、AB 的中点,∠CEF =90°,若AB =a,则该三棱锥的全面积为( )A.2233a + B.2433a + C.243a D.2436a + 11.如图,正三棱柱111ABC A B C -的各棱长都为2,E F 、分别为AB 、A 1C 1的中点,则EF 的长是( )(A )2 (B )3 (C )5 (D )712.若P 是平面α外一点,则下列命题正确的是( )(A )过P 只能作一条直线与平面α相交 (B )过P 可作无数条直线与平面α垂直 (C )过P 只能作一条直线与平面α平行 (D )过P 可作无数条直线与平面α平行 13.对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l ( )(A )平行 (B )相交 (C )垂直 (D )互为异面直线 14.对于平面α和共面的直线m 、,n 下列命题中真命题是( )(A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n(C )若,m n αα⊂∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n 15.关于直线m 、n 与平面α、β,有下列四个命题:① 若//m α,//n β且//αβ,则//m n ;② 若m α⊥,n β⊥且αβ⊥,则m n ⊥; ③ 若m α⊥,//n β且//αβ,则m n ⊥;④ 若//m α,n β⊥且αβ⊥,则//m n 。
其中真命题的序号式( )A .①②B .③④C .①④D .②③ 16.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行 ③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线 其中假命题...的个数是( ) (A )1 (B )2 (C )3 (D )4 17.如图平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。
过A 、B 分别作两平面交线的垂线,垂足为'A 、B ',若AB=12,则''A B =( )(A )4 (B )6 (C )8 (D ) 18.已知正四棱锥S ABCD -中,23SA =,那么当该棱锥的体积最大时,它的高为( )A .1B .3C .2D .319.已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为( )A .34B .54C .74D .3420.有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是 ( ) A .(62B .(1,22C . 6262D .(0,22)A'B'A B βα21.在半径为R 的球内有一内接正三棱锥,它的底面三个顶点恰好都在同一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,则经过的最短路程是 ( )A .2R πB.73R π C .83R π D .76Rπ 22.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,2BC =,则球O 的表面积等于( )A .4πB .3πC .2πD .π23.将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为( )A .3263+ B .2+263C .4+263D .43263+24.如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H,则以下命题中,错误的命题是( ) A.点H 是△A 1BD 的垂心 B.AH 垂直于平面CB 1D 1 C.AH 的延长线经过点C 1 D.直线AH 和BB 1所成角为45° 二、填空题1.多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A 在平面α内,其余顶点在α的同侧,正方体上与顶点A 相邻的三个顶点到α的距离分别为1,2和4,P 是正方体的其余四个顶点中的一个,则P 到平面α的距离可能是: ①3; ②4; ③5; ④6; ⑤7 以上结论正确的为______________。
(写出所有正确结论的编号..) 2.平行四边形的一个顶点A 在平面α内,其余顶点在α的同侧,已知其中有两个顶点到α的距离分别为1和2 ,那么剩下的一个顶点到平面α的距离可能是: ①1; ②2; ③3; ④4; 以上结论正确的为______________。
(写出所有正确结论的编号..)3.如图,在正三棱柱111ABC A B C -中,所有棱长均为1,则点1B 到平面1ABC 的距离为。
4.已知,,A B C 三点在球心为O ,半径为R 的球面上,AC BC ⊥,且AB R =,那么,A B 两点的球面距离为 ,球心到平面ABC 的距离为______________。
5.如图,在正三棱柱111C B A ABC -中,1=AB .若二面角1C AB C --的大小为ο60,则点C 到平面1ABC 的距离为______________。
ABC Dα6.如图(同理科图),在正三棱柱111ABC A B C -中,1AB =.若二面角1C AB C --的大小为60o ,则点1C 到直线AB 的距离为。
7.(如图,在6题上)正四面体ABCD 的棱长为l ,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是____________。
8.如图,矩形ABCD 中,DC=3,AD=1,在DC 上截取DE=1,将△ADE 沿AE 翻折到D 1点,点D 1在平面ABC 上的射影落在AC 上时,二面角D 1—AE —B 的平面角的余弦值是 。
9.若一条直线与一个正四棱柱各个面所成的角都为α,则cos α=_____。
10.已知正四棱椎的体积为12,地面的对角线为26,则侧面与底面所成的二面角为____________。
11.m n 、是空间两条不同直线,αβ、是空间两条不同平面,下面有四个命题:①,;m n m n αβαβ⊥⇒⊥P P , ②,,;m n m n αβαβ⊥⊥⇒P P ③,,;m n m n αβαβ⊥⇒⊥P P ④,,;m m n n ααββ⊥⇒⊥P P 其中真命题的编号是 (写出所有真命题的编号)。
12.如图,已知三棱锥S -ABC 中,底面ABC 为边长等于2的等边三角形,SA ⊥底面ABC ,SA =3,那么直线SB 与平面SAC 所成角的正弦值为________. 三、解答题:13.如图,正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =4,点E 在C 1C 上且C 1E =3EC. (1)证明A 1C ⊥平面BED; (2)求二面角A 1-DE-B 的正切值。
.在正△ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE ∶EB =CF ∶FA =CP ∶PB =1∶2〔如图(1)〕.将△AEF 沿EF 折起到△A 1EF 的位置,使二面角A 1-EF-B 成直二面角,连结A 1B 、A 1P 〔如图(2)〕. (1)求证:A 1E ⊥平面BEP;(2)求直线A 1E 与平面A 1BP 所成角的大小; (3)求二面角B-A 1P-F 的余弦值。
一、选择题1.D 2.C 3.D 4.B 5.C 7.B 8.C 9.C 10.B 11.C 12.D 13.C 14.C 15.D 16.D 17.B18.C ;19.D ;20.A ;21.B ;22.A ;23.B ;24.D二、填空题1.①③④⑤ 2.①③ 3.217 4.13R π3R 5.346.3 7.21[,]2 8. 32- 9.6 10.3π11.①,② 12. 3913解法二:(1)证明:如图,连结B 1C 交BE 于点F,连结AC 交BD 于点O.由题知B 1C 是A 1C 在面BCC 1B 1内的射影,在矩形BCC 1B 1中,B 1B =C 1C =4,BC =B 1C 1=2,C 1E =3,EC =1.因为211==B B BC BC CE 且∠B 1BC =∠BCC 1=90°, 所以△BB 1C ∽△BCE.所以∠BB 1C =∠CBE.所以由互余可得∠BFC =90°.所以BE ⊥B 1C.所以BE ⊥A 1C;由四边形ABCD 为正方形,所以BD ⊥AC.所以BD ⊥A 1C 且BD∩BE =B. 所以A 1C ⊥平面BDE.(2)连结OE,由对称性知必交A 1C 于G 点,过G 点作GH ⊥DE 于点H,连结A 1H.由(1)的结论,及三垂线定理可得,∠GHA 1就是所求二面角的平面角,根据已知数据,计算3651=G A , 在Rt △DOE 中,1530=GH , 所以55tan 11==∠GHGA GHA .故二面角A 1DEB 的大小为55arctan . 解法一:不妨设正△ABC 的边长为3.(1)证明:在图(1)中,取BE 的中点D,连结DF. ∵AE ∶EB =CF ∶FA =1∶2, ∴AF =AD =2.而∠A =60°, ∴△ADF 是正三角形.又AE =DE =1,∴EF ⊥AD. 在图(2)中,A 1E ⊥EF,BE ⊥EF,∴∠A 1EB 为二面角A 1-EF-B 的平面角. 由题设条件知此二面角为直二面角, ∴A 1E ⊥BE.又BE∩EF =E,∴A 1E ⊥平面BEF, 即A 1E ⊥平面BEP.(2)在图(2)中,∵A 1E 不垂直于A 1B, ∴A 1E 是平面A 1BP 的斜线. 又A 1E ⊥平面BEP,∴A 1E ⊥BP.从而BP 垂直于A 1E 在平面A 1BP 内的射影(三垂线定理的逆定理). 设A 1E 在平面A 1BP 内的射影为A 1Q,且A 1Q 交BP 于点Q,则 ∠EA 1Q 就是A 1E 与平面A 1BP 所成的角,且BP ⊥A 1Q. 在△EBP 中,∵BE =BP =2,∠EBP =60°,∴△EBP 是等边三角形.∴BE =EP. 又A 1E ⊥平面BEP,∴A 1B =A 1P. ∴Q 为BP 的中点,且3=EQ .又A 1E =1,在Rt △A 1EQ 中,3tan 11==∠EA EQQ EA ,∴∠EA 1Q =60°.∴直线A 1E 与平面A 1BP 所成的角为60°.(3)在图(3)中,过F 作FM ⊥A 1P 于点M,连结QM 、QF.(3)∵CF =CP =1,∠C =60°,∴△FCP 是正三角形.∴PF =1. 又PQ =21BP =1, ∴PF =PQ.①∵A 1E ⊥平面BEP,EQ =EF =3,∴A 1F =A 1Q.∴△A 1FP ≌△A 1QP.从而∠A 1PF =∠A 1PQ.②由①②及MP 为公共边知△FMP ≌△QMP, ∴∠QMP =∠FMP =90°,且MF =MQ.从而∠FMQ 为二面角B-A 1P-F 的平面角. 在Rt △A 1QP 中,A 1Q =A 1F =2,PQ =1, ∴51=P A .∵MQ ⊥A 1P, ∴55211=•=P A PQ Q A MQ . ∴552=MF . 在△FCQ 中,FC =1,QC =2,∠C =60°, 由余弦定理得3=QF .在△FMQ 中,872cos 222-=•-+=∠MQ MF QF MQ MF FMQ .∴二面角B-A 1P-F 的大小为87arccos -π.。