最新串联式稳压电源A (2)
- 格式:ppt
- 大小:1.04 MB
- 文档页数:4
串联型三极管稳压电路1.电路构成用三极管V代替图8.2中的限流电阻R,就得到图8.3所示的串联型三极管稳压电路。
在基极电路中,V DZ与R组成参数稳压器。
图 8.3 串联型三极管稳压电路2. 工作原理〔实验〕:①按图8.3连接电路,检查无误后,接通电路。
②保持输入电压U i不变,改变R L,观察U0。
③保持负载R L不变,改变U L,观察U0。
结论:输出电压U0基本保持不变。
该电路稳压过程如下:(1)当输入电压不变,而负载电压变化时,其稳压过程如下:(2)当负载不变,输入电压U增加时,其稳压过程如下:(3)当UI增加时,输出电压U0有升高趋势,由于三极管T基极电位被稳压管DZ固定,故U0的增加将使三极管发射结上正向偏置电压降低,基极电流减小,从而使三极管的集射极间的电阻增大,UCE增加,于是,抵消了U0的增加,使U0基本保持不变.上述电路虽然对输出电压具有稳压作用,但此电路控制灵敏度不高,稳压性能不理想。
8.3.2 带有放大环节的串联型稳压电路1.电路组成在图8.3电路加放大环节.如图8.4所示。
可使输出电压更加稳定。
图8.4带放大电路的串联型稳压电路取样电路:由R1、RP、R2组成,当输出电压变大时,取样电阻将其变化量的一部分送到比较放大管的基极,基极电压能反映出电压的变化,称为取样电压;取样电压不宜太大,也不宜太小,若太大,控制的灵敏度下降;若太小,带负载能力减弱。
基准电路:由RZ、V DZ组成,给V2发射极提供一个基准电压,RZ为限流电阻,保证V DZ有一个合适的工作电流。
比较放大管V2:R4既是V2的集电极负载电阻,又是V1的基极偏置电阻,比较放大管的作用是将输出电压的变化量,先放大,然后加到调整管的基极,控制调整管工作,提高控制的灵敏度和输出电压的稳定性。
调整管V1:它与负载串联,故称此电路为串联型稳压电路,调整管V1受比较放大管控制,集射极间相当于一个可变电阻,用来抵消输出电压的波动。
串联反馈式稳压电路图XX_01图XX_01是串联反馈式稳压电路的一般结构图,图中VI是整流滤波电路的输出电压,T为调整管,A为比较放大电路,VREF 为基准电压,它由稳压管DZ与限流电阻R串联所构成的简单稳压电路获得(见齐纳二极管一节),R1与R2组成反馈网络,是用来反映输出电压变化的取样环节。
这种稳压电路的主回路是起调整作用的BJT T与负载串联,故称为串联式稳压电路。
输出电压的变化量由反馈网络取样经放大电路(A)放大后去控制调整管T的c-e极间的电压降,从而达到稳定输出电压VO的目的。
稳压原理可简述如下:当输入电压VI 增加(或负载电流IO减小)时,导致输出电压VO增加,随之反馈电压VF=R2VO/(R1+R2)=F V V O也增加(F V为反馈系数)。
V F与基准电压V REF相比较,其差值电压经比较放大电路放大后使V B和I C减小,调整管T的c-e极间电压VCE 增大,使VO下降,从而维持VO基本恒定。
同理,当输入电压VI 减小(或负载电流IO增加)时,亦将使输出电压基本保持不变。
从反馈放大电路的角度来看,这种电路属于电压串联负反馈电路。
调整管T连接成电压跟随器。
因而可得或式中A V是比较放大电路的电压增益,是考虑了所带负载的影响,与开环增益AVO不同。
在深度负反馈条件下,时,可得上式表明,输出电压VO 与基准电压VREF近似成正比,与反馈系数F V成反比。
当VREF及F V已定时,VO也就确定了,因此它是设计稳压电路的基本关系式。
值得注意的是,调整管T的调整作用是依靠VF 和VREF之间的偏差来实现的,必须有偏差才能调整。
如果VO绝对不变,调整管的VCE 也绝对不变,那么电路也就不能起调整作用了。
所以VO不可能达到绝对稳定,只能是基本稳定。
因此,图10.2.1所示的系统是一个闭环有差调整系统。
由以上分析可知,当反馈越深时,调整作用越强,输出电压VO 也越稳定,电路的稳压系数g和输出电阻Ro也越小。
串联型直流稳压电源一、主要指标和要求1、输出电压:8~15V可调2、输出电流:I0=1A3、输入电压:交流220V +/- 10%4、保护电流:I0m =1.2A5、稳压系数:Sr = 0.05%/V6、输出电阻:R0 < 0.5 Ω7、交流分量(波纹电压):<10mV二、方案选择及电路工作原理分析电路组成及工作原理;我们所设计的串联型直流稳压电源为小功率电源,它将频率为50Hz、有效值为220V的单相交流电压转化为幅值稳定、输出电流为1A以下的可调直流电压。
交流电经过电源变压器、整流电路、滤波电路和稳压电路转换成稳定的直流电压,其方框图如图1所示。
1、电源变压器电源变压器是利用电磁感应原理,将输入的有效值为220V的电网电压转换为所需的交流低电压。
变压器的副边电压有效值由后面电路的需要决定。
2、整流电路整流电路的任务是将经过变压器降压以后的交流电压变换为直流电压。
变压器的选择,除了应满足功率要求外,它的次级输出电压的有效值V2 应略高于要求稳压电路输出的直流电压值。
对于高质量的稳压电源,其整流电路一般都选用桥式整流电路。
整流电路常见的有单相桥式整流电路,单相半波整流电路,和单相全波整流电路。
(1)工作原理单相桥式整流电路是最基本的将交流转换为直流的电路,如图(a)所示。
在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。
根据图1(a)的电路图可知:当正半周时,二极管D1、D3导通,在负载电阻上得到正弦波的正半周。
当负半周时,二极管D2、D4导通,在负载电阻上得到正弦波的负半周。
在负载电阻上正、负半周经过合成,得到的是同一个方向的单向脉动电压。
(2)参数计算输出电压是单相脉动电压,通常用它的平均值与直流电压等效。
输出平均电压为流过负载的平均电流为流过二极管的平均电流为二极管所承受的最大反向电压流过负载的脉动电压中包含有直流分量和交流分量,可将脉动电压做傅里叶分析,此时谐波分量中的二次谐波幅度最大。
1.实训项目一-串联型稳压电源(7812)的装配与调试2电子技能实训项目一串联型稳压电源的装配与调试一、电路原理图电路原理图二、实训条件:37无极电容0.1µF/16V 1 C412 熔断器0.5A 1其他:电路板,熔断丝,接线固定片,黒胶布,导线若干等(2)工具:电烙铁、烙铁架、焊锡丝、实验操作台(3)仪器仪表:万用表其他:三、技能标准:工艺规范描述读图→元器件检测→装配→焊接→调试步骤1:读图根据电路原理图和装配图的对应关系找出各个元器件所在位置。
步骤2:元器件检测用万用表仔细检测元器件, 将不合格的元器件筛选出来.电阻器的万用表检测4 电容器的万用表检测31mm二极管的万用表检测5三极管的万用表检测步骤3:装配 对照原理图和印制电路板,解读各元器件在印制板上的位置。
装配时注意:①元器件不能齐根部处理,以防折断,安装元器件时要注意极性,元器件的标注方向要一致。
②电阻要卧式安装(包括二极管),电容要立式安装。
③注意带有极性的元器件,正负极不要装错。
电解电容的极性元器件的安装- ++ -6步骤4:焊接要进行认真的检查,有无虚焊和假焊,焊点之间有否连接,以防引起短路,烧坏集成短路.焊接完成后剪去多余引脚,留头在焊面以上0.5-1mm,且不能损坏焊接面.图7-9典型焊点外观图7-10焊点的正确形状abcdefghiabcdef7-图7-11焊点的正确形状(俯视)步骤5: 调试①检查各元器件装配无误后,接通电源。
②调节RP的值,测出输出电压的可调范围,并记入表中。
③调节RP的值,使输出电压为3V。
④输出电压为3V时,接入30欧姆的负载电阻,观察输出电压是否有变化。
⑤测量V1、V2、V3各脚电压,并计入表中比较得数.四、情感要求:89五、评价标准:101112六、知识标准:七、项目总结通过直流稳压电源电子产品的装配,简单介绍产品组成原理,在完成产品装配的实际操作过程中,逐步理解电子整机产品装配的工艺流程,学习电子产品装配的工艺规范并且实践中严格遵守,进一步把握电子装接的基本操作技能,为考得无线电装接中级工打下坚实基础。
串联型直流稳压电源的设计报告一. 题目: 串联型直流稳压电源的设计。
二. 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。
指标:1、输出电压6V、9V两档,同时具备正负极性输出;2、输出电流:额定电流为150mA,最大电流为500mA;3、在最大输出电流的时候纹波电压峰值▲Vop-p≤5mv;三. 电路原理分析与方案设计采用变压器、二极管、集成运放,电阻、稳压管、三极管等元件器件。
220V的交流电经变压器变压后变成电压值较少的交流,再经过桥式整流电路和滤波电路形成直流,稳压部分采用串流型稳压电路。
比例运算电路的输入电压为稳定电压,且比例系数可调,所以其输出电压也可以调节;同时,为了扩大输出电流,集成运放输出端加晶体管,并保持射极输出形式,就构成了具有放大环节的串联型稳压电路。
1.方案比较:方案一.用晶体管和集成运放组成基本串联型直流稳压电源方案二.用晶体管和集成运放组成的具有保护换届的串联型直流稳压电源.方案三:用晶体管和集成运放组成的实用串联型直流稳压电压可行性分析:上面三种方案中,方案一最简单,但功能也最少,没有保护电路和比较放大电路,因而不够实用,故抛弃方案一。
方案三功能最强大,但是由于实验室条件和经济成本的限制,我们也抛弃方案三,因为它牺牲了成本来换取方便。
所以从简单、合理、可靠、经济从简单而且便于购买的前提出发,我选择方案二未我们最终的设计方案。
2.结合设计的要求,电路框图如下3.单元电路设计与元器件选择(1)变压器的选择直流电的输入为220V的电网电压,一般情况下,所需直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对电流电压处理。
电源变压器的作用是将电网220V的交流电压变换成整流滤波电路所需要的交流电压Ui。
变压器副边与原边的功率比为P2/ P1=η,式中η是变压器的效率。
本次课程设计的要求是输出正负9伏和正负6负的双电压电源,输出电压较低,而一般的调整管的饱和管压降在2-3伏左右,由Omin Imax CE U U U -=,CE U 为饱和管压降,而Im ax U =9V 为输出最大电压,Om in U 为最小的输入电压,以饱和管压降CE U =3伏计算,为了使调整管工作在放大区,输入电压最小不能小于12V ,为保险起见,可以选择220V-15V 的变压器,再由P=UI 可知,变压器的功率应该为0.5A ×9V=4.5w ,所以变压器的功率绝对不能低于4.5w ,并且串联稳压电源工作时产生的热量较大,效率不高,所以变压器功率需要选择相对大些的变压器。