第一二章习题解答
- 格式:doc
- 大小:1.08 MB
- 文档页数:13
高中化学选择性必修2第一章第二节原子结构与元素周期表练习题学校:___________姓名:___________班级:___________一、单选题1.下列四种元素中,其单质氧化性最强的是()A.基态原子最外层电子排布式为3s23p3的元素B.位于周期表中第三周期第IIIA族的元素C.基态原子最外层电子排布式为2s22p4的元素D.基态原子含有未成对电子最多的第二周期元素2.1869年门捷列夫编制了元素周期表。
硫元素也排列其中,其化合价分别为-2、0、+4,+6价,依次对应的化学式错误的是()A.H2S B.S C.SO2D.H2SO33.下列说法中不正确的是()A.利用光谱仪只能测得原子的发射光谱B.最外层电子数为14s的元素有3种I~I的数据如上表所示(单位:kJ∙mol−1),可推测该元素位于元C.某主族元素的电离能17素周期表第ⅢA族D.在ⅢP、S,ⅢMg、Ca,ⅢAl、Si三组元素中,每组中第一电离能较大的元素的原子序数之和为414.短周期元素甲、乙、丙、丁原子序数依次增大,其中甲、丙同主族,乙、丙、丁同周期。
常温下,含乙的化合物r浓度为0.1mol·L-1时溶液pH=13,p和q分别是元素丙和丁的单质,其中p为浅黄色固体。
上述物质的转化关系如图所示(产物水已略去)。
下列说法正确的是()A.简单离子半径:甲<乙<丙<丁B.甲与丙能形成使紫色石蕊试液先变红后褪色的物质C.工业上常利用反应Ⅲ制取漂白粉D.m、n的阴离子在酸性溶液中不能大量共存5.某同学在学习元素周期表后,绘制了一张“跑道式”元素周期表,结构如图所示:下列有关叙述错误的是()A.元素a位于第四周期第IA族B.元素b只能形成一种单质分子C.元素c、d、e、f、g的原子最外层电子数相同D.位置h和i处均各含有15种元素6.下列说法正确的是()A.一个CO2分子中存在两个π键B.电负性:O>N>H>C的空间结构为三角锥形C.NO3D.基态Cr原子的电子排布式是[Ar]3d44s27.下列说法正确的是()A.非金属元素的最高化合价不超过该元素的最外层电子数B.非金属元素的最低负化合价的绝对值等于该元素原子的最外层电子数C.最外层有2个电子的原子都是金属原子D.氟原子最外层有7个电子,最高化合价为+7价8.GaAs的晶胞结构如图甲所示,将Mn掺杂到GaAs的晶体中得到稀磁性半导体材料,其结构如图乙所示。
第一章1.1 能否将1.5V 的干电池以正向接法接到二极管两端?为什么?解:不能。
因为二极管的正向电流与其端电压成指数关系,当端电压为1.5V 时,管子会因电流过大而烧坏。
1.2已知稳压管的稳压值U Z =6V ,稳定电流的最小值I Zmin =5mA 。
求图T1.4所示电路中U O1和U O2各为多少伏。
解:U O1=6V ,U O2=5V 。
1.3写出图T1.3所示各电路的输出电压值,设二极管导通电压U D =0.7V 。
(该题与书上略有不同)解:U O1≈1.3V ,U O2=0,U O3≈-1.3V ,U O4≈2V ,U O5≈1.3V ,U O6≈-2V 。
1.5 电路如图P1.5(a )所示,其输入电压u I1和u I2的波形如图(b )所示,二极管导通电压U D =0.7V 。
试画出输出电压u O 的波形,并标出幅值(该题与书上数据不同)解:u O 的波形如解图P1.5所示。
解图P1.51.9电路如图T1.9所示,V CC =15V ,β=100,U BE =0.7V 。
试问: (1)R b =50k Ω时,u O =? (2)若T 临界饱和,则R b ≈? 解:(1)R b =50k Ω时,基极电流、集电极电流和管压降分别为26bBEBB B =-=R U V I μAV2mA 6.2 C C CC CE B C =-===R I V U I I β所以输出电压U O =U CE =2V 。
1.11电路如图P1.11所示,试问β大于多少时晶体管饱和? 解:取U CES =U BE ,若管子饱和,则Cb C BECC b BE CC R R R U V R U V ββ=-=-⋅所以,100Cb=≥R R β时,管子饱和。
图1.11 1.12 分别判断图P1.12所示各电路中晶体管是否有可能工作在放大状态第二章2.1试分析图T2.2所示各电路是否能够放大正弦交流信号,简述理由。
高中数学高中数学新课程标准数学选修1—2第二章课后习题解答第二章 推理与证明2.1合情推理与演绎推理 练习(P30)1、由12341a a a a ====,猜想1na=.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积,的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=××. 4、略. 练习(P33)1、略.2、因为通项公式为n a 的数列{}n a ,若1n na p a +=,p 是非零常数,则{}n a 是等比数列;是等比数列; …………………………大前提…………………………大前提又因为0cq ¹,则q 是非零常数,则11n n nna cq q a cq ++==;……………………小前提……………………小前提 所以,通项公式为(0)n n a cq cq =¹的数列{}n a 是等比数列.……………………结论……………………结论 3、由A D B D >,得到ACD BCD Ð>Ð的推理是错误的. 因为这个推理的大前提是因为这个推理的大前提是“在同一“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中. 4、略.习题2.1A 组(P35) 1、2(1)n -(n 是质数,且5n ³)是24的倍数.2、21n a n =+()n N *Î. 3、2F V E +=+. 4、当6n £时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *Î.5、212111(2)n n A A A n p++³-(2n >,且n N *Î). 6、121217n n b b b b b b -=(17n <,且n N *Î).7、如图,作DE ∥AB 交BC 于E . 因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形所以四边形ABED 是平行四边形是平行四边形.. 因为平行四边形的对边相等因为平行四边形的对边相等因为平行四边形的对边相等. . DEBAC(第7题)又因为四边形ABED 是平行四边形是平行四边形. .所以所以AB DE =.因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等, 又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的. 又因为△DEC 是等腰三角形是等腰三角形, , 所以DEC C Ð=Ð 因为平行线的同位角相等因为平行线的同位角相等 又因为DEC Ð与B Ð是平行线AB 和DE 的同位角的同位角, , 所以DEC B Ð=Ð 因为等于同角的两个角是相等的,因为等于同角的两个角是相等的, 又因为DEC C Ð=Ð,DEC B Ð=Ð, 所以B C Ð=Ð习题2.1B 组(P35) 1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略. 2.2直接证明与间接证明 练习(P42)1、因为442222cos sin (cos sin )(cos sin )cos 2q q q q q q q -=+-=,所以,命题得证. 2、要证67225+>+,只需证22(67)(225)+>+, 即证1324213410+>+,即证42210>,只需要22(42)(210)>,即证4240>,这是显然成立的. 所以,原命题得证.3、因为、因为222222222()()()(2sin )(2tan )16sin tan a b a b a b a a a a -=-+==, 又因为又因为 sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab a a a a a a a a a a +-=+-=×22222222sin (1cos )sinsin161616sin tan cos cos aa aa a a aa-===,从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P43)1、假设B Ð不是锐角,则90B г°. 因此9090180C B Ð+г°+°=°. 这与三角形的内角和等于180°矛盾. 所以,假设不成立. 从而,B Ð一定是锐角.2、假设2,3,5成等差数列,则2325=+.所以22(23)(25)=+,化简得5210=,从而225(210)=,即2540=, 这是不可能的. 所以,假设不成立. 从而,2,3,5不可能成等差数列. 说明:进一步熟悉运用反证法证明数学命题的思考过程与特点.习题2.2A 组(P44) 1、因为、因为(1tan )(1tan )2A B ++=展开得展开得1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ① 假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B p <+<,从而2A B p+=,与已知矛盾.因此1tan tan 0A B -¹.①式变形得①式变形得 tan tan 11tan tan A BA B +=-,即tan()1A B +=. 又因为0A B p <+<,所以4A B p+=.说明:本题也可以把综合法和分析法综合使用完成证明. 2、因为PD ^平面ABC ,所以PD AB ^. 因为AC BC =,所以ABC D 是等腰三角形. 因此ABC D 底边上的中线CD 也是底边上的高,也是底边上的高, 因而CD AB ^ 所以AB ^平面PDC . 因此AB PC ^.3、因为,,a b c 的倒数成等差数列,所以211b ac =+.假设2B p<不成立,即2B p³,则B 是ABC D 的最大内角,的最大内角,所以,b a b c >>(在三角形中,大角对大边),从而从而 11112a c b b b +>+=. 这与211b a c =+矛盾.所以,假设不成立,因此,2B p<.习题2.2B 组(P44) 1、因为、因为 1tan 12tan aa-=+,所以12tan 0a +=,从而2sin cos 0a a +=.另一方面,要证另一方面,要证3sin 24cos2a a =-, 只要证226sin cos 4(cos sin )a a a a =-- 即证即证 222sin 3sin cos 2cos 0a a a a --=,即证即证 (2s i n c o s )(s i n 2c o s a a a a+-= 由2sin cos 0a a +=可得,(2sin cos )(sin 2cos )0a a a a +-=,于是命题得证.说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.2、由已知条件得、由已知条件得2b ac = ① 2x a b =+,2y b c =+ ②要证2a cx y +=,只要证2ay cx xy +=,只要证224ay cx xy +=由①②,得由①②,得22()()2ay cx a b c c a b ab ac bc +=+++=++, 24()()2x y a b b c a b b a c b c a b a c b c=++=+++=++, 所以,224ay cx xy +=,于是命题得证.第二章 复习参考题A 组(P46)1、图略,共有(1)1n n -+(n N *Î)个圆圈.2、333n 个(n N *Î).3、因为2(2)(1)4f f ==,所以(1)2f =,(3)(2)(1)8f f f ==,(4)(3)(1)16f f f ==………… 猜想()2n f n =.4、如图,设O 是四面体A BCD -内任意一点,连结AO ,BO ,CO ,DO 并延长交对面于A ¢,B ¢,C ¢,D ¢,则,则1O A O B O C O D A A B B C C D D ¢¢¢¢+++=¢¢¢¢ 用“体积法”证明:用“体积法”证明: O A O B O C O DA AB BC CD D¢¢¢¢+++¢¢¢¢ O B C D O C D AO D A B OA B C A B C D BC D A CD AB D A B CV VV V V VVV --------=+++1A B C D A B C DVV --==5、要证、要证(1tan )(1tan )2A B ++= 只需证只需证 1tan tan tan tan 2A B A B +++=即证即证t a n t a n 1t a n t a A B A B +=- 由54A B p +=,得tan()1A B +=. ①又因为2A B k p p +¹+,所以tan tan 11tan tan A BA B+=-,变形即得①式.所以,命题得证. 第二章 复习参考题B 组(P47)1、(1)25条线段,16部分;部分; (2)2n 条线段;条线段;(3)222n n ++部分. 2、因为90BSC Ð=°,所以BSC D 是直角三角形.A BCDA'B'D'C'(第4题)在Rt BSC D 中,有222BC SB SC =+.类似地,得类似地,得 222AC SA SC =+,222AB SB SA =+ 在ABC D 中,根据余弦定理得中,根据余弦定理得2222cos 02AB AC BC SA A AB AC AB AC+-==>××2222cos 02AB BC AC SB B AB BCAB BC+-==>×× 2222cos 02BC AC AB SC C BC ACBC AC +-==>×× 因此,,,A B C 均为锐角,从而ABC D 是锐角三角形. 3、要证、要证cos 44cos 43b a -= 因为因为 cos 44cos 4cos(22)4cos(22)b a b a -=´-´ 2212sin 24(12sin 2)b a =--´-222218s i n c o s 4(18s i n c o s )b b a a =--´-222218s i n (1s i n )4[18s i n (1s i n )]bb a a=---´-- 只需证只需证 222218sin (1sin )4[18sin (1sin )]3b b a a ---´--= 由已知条件,得由已知条件,得 sincos sin2q q a +=,2sin sin cos b q q =,代入上式的左端,得代入上式的左端,得 222218sin (1sin )4[18sin (1sin )]b b a a ---´-- 2238sin cos (1sin cos )32sin (1sin )q q q q a a =---+-2238sin cos 8sin cos 2(12sin cos )(32sin cos )q q q q q q q q =--+++-222238s i n c o s 8s i nc o s 68s i n c o s 8s i nc o sq q q q q q q q =--++-+ 3= 因此,cos 44cos 43b a -=。
新课程标准数学选修1—2第一章课后习题解答第一章统计案例1.1回归分析的基本思想及其初步应用练习(P8)1、画散点图的目的是通过变量的散点图判断两个变量更近似于什么样的函数关系,以确定是否直接用线性回归模型来拟合原始数据.说明:学生在对常用的函数图象比较了解的情况下,通过观察散点图可以判断两个变量的关系更近似于哪种函数.2、分析残差可以帮助我们解决以下两个问题:(1)寻找异常点,就是残差特别大的点,考察相应的样本数据是否有错.(2)分析残差图可以发现模型选择是否合适.说明:分析残差是回归诊断的一部分,可以帮助我们发现样本数据中的错误,分析模型选择是否合适,是否有其他变量需要加入到模型中,模型的假设是否正确等. 本题只要求学生能回答上面两点即可,主要让学生体会残差和残差图可以用于判断模型的拟合效果.3、(1)解释变量和预报变量的关系式线性函数关系.R=.(2)21说明:如果所有的样本点都在一条直线上,建立的线性回归模型一定是该直线,所以每个=+,没有随机误差项,是严样本点的残差均为0,残差平方和也为0,即此时的模型为y bx aR=.格的一次函数关系. 通过计算可得21习题1.1 (P9)1、(1)由表中数据制作的散点图如下:从散点图中可以看出GDP值与年份近似呈线性关系.y表示GDP值,t表示年份. 根据截距和斜率的最小二乘计算公式,得(2)用tˆ14292537.729a≈-,ˆ7191.969b≈从而得线性回归方程ˆ7191.96914292537.729=-.y t残差计算结果见下表.GDP 值与年份线性拟合残差表(年实际GDP 值为117251.9,所以预报与实际相差4275.540-.(4)上面建立的回归方程的20.974R =,说明年份能够解释约97%的GDP 值变化,因此所建立的模型能够很好地刻画GDP 和年份的关系.说明:关于2003年的GDP 值的来源,不同的渠道可能会有所不同.2、说明:本题的结果与具体的数据有关,所以答案不唯一.3、由表中数据得散点图如下:从散点图中可以看出,震级x 与大于或等于该震级的地震数N 之间不呈线性相关关系,随着x 的减少,所考察的地震数N 近似地以指数形式增长. 做变换lg y N =,得到的数据如下表所示.x 和y 的散点图如下:从这个散点图中可以看出x 和y 之间有很强的线性相关性,因此可以用线性回归模型拟合它们之间的关系. 根据截距和斜率的最小二乘计算公式,得ˆ 6.704a≈,ˆ0.741b ≈-, 故线性回归方程为 ˆ0.741 6.704y x =-+. 20.997R ≈,说明x 可以解释y 的99.7%的变化.因此,可以用回归方程 0.741 6.704ˆ10x N-+= 描述x 和N 之间的关系. 1.2独立性检验的基本思想及其初步应用练习(P15)列联表的条形图如图所示.由图及表直观判断,好像“成绩优秀与班级有关系”. 因为2K 的观测值0.653 6.635k ≈<,由教科书中表1-11克重,在犯错误的概率不超过0.01的前提下,不能认为“成绩与班级有关系”.说明:(1)教师应要求学生画出等高条形图后,从图形上判断两个分类变量之间是否有关系. 这里通过图形的直观感觉的结果可能会出错.(2)本题与例题不同,本题计算得到的2K 的观测值比较小,所以没有理由说明“成绩优秀与班级有关系”. 这与反证法也有类似的地方,在使用反证法证明结论时,假设结论不成立的条件下如果没有推出矛盾,并不能说明结论成立也不能说明结论不成立. 在独立性检验中,没有推出小概率事件发生类似于反证法中没有推出矛盾.习题1.2 (P16)1、假设“服药与患病之间没有关系”,则2K 的值应该比较小;如果2K 的值很大,则说明很可能“服药与患病之间没有关系”. 由列联表中数据可得2K 的观测值 6.110 5.024k ≈>,而由教科书表1-11,得2( 5.024)0.025P K ≥≈,所以在犯错误的概率不超过0.025的前提下可以认为“服药与患病之间有关系”. 又因为服药群体中患病的频率0.182小于没有服药群体中患病的频率0.400,所以“服药与患病之间关系”可以解释为药物对于疾病有预防作用. 因此在犯错误的概率不超过0.025的前提下,可以认为药物有效.说明:仿照例1,学生很容易完成此题,但希望学生能理解独立性检验在这里的具体含义,即“服药与患病之间关系”可以解释为“药物对于疾病有预防作用”.2、如果“性别与读营养说明之间没有关系”,由题目中所给数据计算,得2K 的观测值为8.416k ≈,而由教科书中表1-11知2(7.879)0.005P K ≥≈,所以在犯错误的概率不超过0.005的前提下认为“性别与读营养说明之间有关系”.3、说明:需要收集数据,所有没有统一答案. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.4、说明:需要从媒体上收集数据,学生关心的问题不同,收集的数据会不同. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.第一章 复习参考题A 组(P19)根据散点图,可以认为中国人口总数与年份呈现很强的线性相关关系,因此选用线性回归模型建立回归方程.由最小二乘法的计算公式,得 2095141.503a ≈-,1110.903b ≈,则线性回归方程为 ˆ1110.9032095141.503yx =-. 由2R 的计算公式,得 20.994R ≈,明线性回归模型对数据的拟合效果很好.根据回归方程,,预计2003年末中国人口总数约为129997万人,而实际情况为129227万人,预测误差为770万人;预计2004年末中国人口总数约为131108万人,而实际情况为129988万人,预测误差为1120万人.说明:数据来源为《中国统计年鉴》(2003). 由于人数为整数,所以预测的数据经过四舍五入的取整运算.2、(1)将销售总额作为横轴,利润作为纵轴,根据表中数据绘制散点图如下:由于散点图中的样本点基本上在一个带形区域内分布,猜想销售总额与利润之间呈现线性相关关系.(2)由最小二乘法的计算公式,得 ˆ1334.5a≈,ˆ0.026b ≈, 则线性回归方程为 ˆ0.0261334.5yx =+ 其残差值计算结果见下表:(3)对于(2)中所建立的线性回归方程,20.457R ≈,说明在线性回归模型中销售总额只能解释利润变化的46%,所以线性回归模型不能很好地刻画销售总额和利润之间的关系. 说明:此题也可以建立对数模型或二次回归模型等,只要计算和分析合理,就算正确.3、由所给数据计算得2K 的观测值为 3.689k ≈,而由教科书中表1-11知2( 2.706)0.10P K ≥=所以在犯错误的概率不超过0.10的前提下认为“婴儿的性别与出生的时间有关系”.第一章 复习参考题B 组(P19)1、因为 21(,)()ni i i Q a b y a bx ==--∑21(()())n i i i y bx y bx a y bx ==--+--+∑ 2211()()n n i i i i y bx y bx a y bx ===--++-+∑∑12()()ni i i y bx y bx a y bx =---+-+∑ 并且221()()n i a y bx n a y bx =-+=-+∑,12()()n i i i y bx y bx a y bx =--+-+∑ 1()(())ni i i a y bx y bx ny nbx ==-+--+∑ ()()0a y b x n y n b xn y n b x=-+--+= 所以 221(,)()()ni i i Q a b y bx y bx n a y bx ==--++-+∑.考察上面的等式,等号右边的求和号中不包含a ,而另外一项非负,所以ˆa和ˆb 必然使得等号右边的最后一项达到最小值,即 ˆˆ0ay bx -+=, 即ˆˆy a bx =+. 2、总偏差平方和21()n i i y y =-∑表示总的效应,即因变量的变化效应;残差平方和21ˆ()ni i y y =-∑表示随机误差的效应,即随机误差的变化效应;回归平方和21ˆ()ni yy =-∑表示表示变量的效应,即自变量的变化效应. 等式 222111ˆˆ()()()n n n i ii i i y y y y y y ===-=-+-∑∑∑ 表示因变量的变化总效应等于随机误差的变化效应与自变量的变化效应之和.3、说明:该题主要是考察学生应用回归分析模型解决实际问题的能力,解答应该包括如何获取数据,如何根据散点图寻找合适的模型去拟合数据,以及所得结果的解释三方面的内容.。
数学物理方法习题解答一、复变函数局部习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,那么上式中**1z zz z∆∆==∆∆】 3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,那么()f z ∴ 在原点上满足C -R 条件。
但33332200()(0)()lim lim ()()z z f z f x y i x y zx y x iy →→--++=++。
令y 沿y kx =趋于0,那么依赖于k ,()f z ∴在原点不可导。
4、假设复变函数()z f 在区域D 上解析并满足以下条件之一,证明其在区域D 上必为常数。
〔1〕()z f 在区域D 上为实函数; 〔2〕()*z f 在区域D 上解析; 〔3〕()Re z f 在区域D 上是常数。
证明:〔1〕令()(,)(,)f z u x y iv x y =+。
由于()z f 在区域D 上为实函数,所以在区域D 上(,)0v x y =。
第一章思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字 你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B 是两随机事件,化简事件 (1)()()A B A B (2) ()()A B A B 解:(1)()()A B AB AB AB B B ==, (2) ()()A B A B ()A B A B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
《利息理论》习题详解 第一章 利息的基本概念1.解:(1))()0()(t a A t A =又()25A t t =+(0)5()2()1(0)55A A t a t t A ∴===++ (2)3(3)(2)11(92 2.318I A A =-=== (3)4(4)(3)0.178(3)A A i A -===2.解:15545(4)(3)(1)100(10.04)0.05 5.2nn n I i A I A i A i i -=∴==+=+⨯=3.证明: (1)123(1)()(2)(1)(3)(2)()(1)m m m m k I A m A m I A m A m I A m A m I A m k A m k ++++=+-=+-+=+-+=+-+-123123()()()()()m m m m k m m m n I I I I A m k A m n m k A n A m I I I I m n +++++++∴++++=+-=+-=++++<令有(2)()(1)()1(1)(1)n A n A n A n i A n A n --==---()1(1)()(1)(1)n n A n i A n A n i A n ∴+=-∴=+-4.证明: (1)112123123(1)(0)(0)(2)(0)(0)(0)(3)(0)(0)(0)(0)()(0)(0)(0)(0)(0)k nk i a a a i a a a i a i a a a i a i a i a n a a i a i a i a i ∴=+=++=+++=+++++第期的单利利率是又(0)1a =123123()1()(0)()1nna n i i i i a n a a n i i i i ∴=+++++∴-=-=++++(2)由于第5题结论成立,当取0m =时有12()(0)n A n A I I I -=+++5.解:(1)以单利积累计算1205003i =⨯1200.085003i ∴==⨯800(10.085)1120∴+⨯=(2)以复利积累计算3120500500(1)i +=+0.074337i ∴=5800(10.074337)1144.97∴+=6.解:设原始金额为(0)A 有(0)(10.1)(10.08)(10.06)1000A +++=解得 (0)794.1A =7.证明:设利率是i ,则n 个时期前的1元钱的当前值为(1)ni +,n 个时期后的1元钱的当前值为1(1)ni +又22211[(1)](1)20(1)(1)n n n ni i i i +-=++-≥++,当且仅当221(1)(1)1(1)n n n i i i +=⇒+=+,0i =即或者n=0时等号成立。
第 1章 化学热力学基础(二)一、选择题(均为单选题,将正确选项填在各题后的括号内)8. 1 mol 理想气体,从同一始态出发经过绝热可逆压缩和绝热不可逆压缩到系统压力相同的终态,终态的熵分别为S 1和S 2,则两者关系为( B )A. S 1 = S 2B. S 1 < S 2C. S 1 >S 2D. S 1 ≥ S 2 始终态相同时,不可逆过程的熵变大于可逆过程9. 根据熵增加原理知,若从ΔS >0判定过程一定是自发过程,那么该系统一定是( C )A. 封闭系统B. 绝热系统C. 隔离系统D. 敞开系统10. 关于偏摩尔量,下列叙述正确的是( C ) A. 偏摩尔量是状态函数,其值与物质的数量有关 B. 在多组分多相系统中不存在偏摩尔量 C. 系统的强度性质没有偏摩尔量 D. 偏摩尔量的值只能大于或等于零11. 对封闭的单组分均相系统且'0W =时,()T G p∂∂的量值为( B )。
A. <0B. >0C. = 0D. 前述三种情况无法判断 根据p 69公式(1-128)(),0,T G V V p∂=>∂所以()0,T G p∂>∂12. 下面哪一个关系式是不正确的?( D ) A. ()p GS T∂=-∂ B. ()T G V p ∂=∂C. 2()V A T U T T ∂⎡⎤=-⎢⎥∂⎣⎦ D. ()pG T H T T ∂⎡⎤=-⎢⎥∂⎣⎦ 正确的应该是2()pG T H T T ∂⎡⎤=-⎢⎥∂⎣⎦ 二、填空题(在以下各小题中画有” ”处填上答案)5. 热力学第二定律的经典表述之一为___不可能将热从低温物体转移到高温物体而不留下其他变化 ,数学表达式为 __ Q dS Tδ≥,“>”不可逆,“=”可逆 。
答克劳修斯说与开尔文说都算对,但要求“之一”答第一种说法即克劳修斯说更妥当一些。
P 486. 在隔离系统中进行的可逆过程S ∆___=0__;进行的不可逆过程S ∆__>0_。
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
第一节地球和地球仪(第一课时)1.划分东西半球的界线是以下哪组经线圈()A.180°经线和 0°经线B.20°E和160°WC.20°W 和 160°ED.90°E和90°W2.与东经116°经线共同组成经线圈的另一个经线的经度是()A、64ºEB、64ºWC、116ºWD、0°3.下列纬线圈中,最长的是( )A.20°N B.30°S C.19°N D.25°N4.某点以西是西半球,以东是东半球,以北是北半球,以南是南半球,这点的地理坐标是( )A.0°、160°E B.23°26′S、20°WC.66°34′N、160°E D.0°、20°W5.在地球表面,纬度40°、经度120°的地方一共有( )A.一个 B.二个 C.三个 D.四个6.咸蛋超人住在(20°W,23.5°S),有一天他想拜访住在地球另一端的面包超人,并决定“遁地”前去。
于是他从家中钻入地底,始终保持直线前进并穿越地心来到面包超人家。
请你判断面包超人家的具体位置( )A.(20°W,23.5°S) B.(160°W,23.5°S)C.(160°E,66.5°N) D.(160°E,23.5°N)7.小明到英国格林尼治天文台旧址旅游时,他两脚跨在本初子午线地标的两侧,张开双手表示东经和西经,此时东经和西经的度数分别向东、向西变化规律是()A. 没有变化B. 度数减少C. 度数增大D. 变化无规律8.有关地球仪上经纬线的说法,正确的是()A.纬线指示南北方向 B.纬度越高,纬线越短C.地球仪上经线有360条D.每条经线的长度都相等,任何一条经线都能把地球分为两个半球9.一探险队,历经千辛万苦到达了地球上的某一点,环顾四周,发现前后左右均为北方,你认为他们站在了:A. 北极点B. 南极点C. 赤道上D. 本初子午线上答案解析:1.C.2.B.经线圈是两条相对的经线,这两条经线的度数需要满足和是180,故排除C和D,而且东西经相反,题中为东经,答案为西经用W表示,故选B。
第 二 章 热力学第一定律一、思考题1. 判断下列说法是否正确,并简述判断的依据(1)状态给定后,状态函数就有定值,状态函数固定后,状态也就固定了。
答:是对的。
因为状态函数是状态的单值函数。
(2)状态改变后,状态函数一定都改变.答:是错的。
因为只要有一个状态函数变了,状态也就变了,但并不是所有的状态函数都得变.(3)因为ΔU=Q V ,ΔH=Q p ,所以Q V ,Q p 是特定条件下的状态函数? 这种说法对吗?答:是错的.∆U ,∆H 本身不是状态函数,仅是状态函数的变量,只有在特定条件下与Q V ,Q p 的数值相等,所以Q V ,Q p 不是状态函数。
(4)根据热力学第一定律,因为能量不会无中生有,所以一个系统如要对外做功,必须从外界吸收热量.答:是错的。
根据热力学第一定律U Q W ∆=+,它不仅说明热力学能(ΔU )、热(Q )和功(W )之间可以转化,有表述了它们转化是的定量关系,即能量守恒定律。
所以功的转化形式不仅有热,也可转化为热力学能系.(5)在等压下,用机械搅拌某绝热容器中的液体,是液体的温度上升,这时ΔH=Q p =0答:是错的。
这虽然是一个等压过程,而此过程存在机械功,即W f ≠0,所以ΔH≠Q p 。
(6)某一化学反应在烧杯中进行,热效应为Q 1,焓变为ΔH 1.如将化学反应安排成反应相同的可逆电池,使化学反应和电池反应的始态和终态形同,这时热效应为Q 2,焓变为ΔH 2,则ΔH 1=ΔH 2。
答:是对的。
Q 是非状态函数,由于经过的途径不同,则Q 值不同,焓(H )是状态函数,只要始终态相同,不考虑所经过的过程,则两焓变值∆H 1和∆H 2相等。
2 . 回答下列问题,并说明原因(1)可逆热机的效率最高,在其它条件相同的前提下,用可逆热机去牵引货车,能否使火车的速度加快?答?不能.热机效率hQ W -=η是指从高温热源所吸收的热最大的转换成对环境所做的功。
但可逆热机循环一周是一个缓慢的过程,所需时间是无限长.又由v F tW P ⨯==可推出v 无限小。
第一章 第二章第一章1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群.证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □3. 设G 是一个非空有限集合, 它上面的一个乘法满足:(1) ()()a bc ab c =, 任意,,a b c G ∈.(2) 若ab ac =则b c =.(3) 若ac bc =则a b =.求证: G 关于这个乘法是一个群.证明: 任取a G ∈, 考虑2{,,,}a a G ⋯⊆. 由于||G <∞必然存在最小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1,即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元,从而是幺群. 事实上, 对任意,a b G ∈, 此时有:()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==,再由消去律, 得到a b =, 从而证明了此时G 只有一个元,从而是幺群.所以我们设G 中至少有一个元素a 满足: 对于满足i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =:i ba ba =, 即be b =.最后, 对任意x G ∈, 前面已经证明了有最小的正整数k使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e =从而22x e e ==, 此时x 有逆, 即它自身.如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆:1k x -. □注: 也可以用下面的第4题来证明.4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群.证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =.于是: ()()be ca e c ae ca b ====. 得证.对任意g G ∈, 由gx e =即得g 的逆. □5. 找两个元素3,x y S ∈使得222()xy x y =/.解: 取(12)x =, (13)y =. □6. 对于整数2n >, 作出一个阶为2n 的非交换群.解: 二面体群n D . □7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证明: ii i r a ba b -=, i 是非负整数.证明: 对i 作数学归纳. □8. 证明: 群G 是一个交换群当且仅当映射1x x - 是群同构.证明: 直接验证. □9. 设S 是群G 的一个非空集合. 在G 上定义关系 为: ~a b 当且仅当1ab S -∈. 证明: 这个关系是一个等价关系当且仅当S G ≤. 证明: 直接验证. □10. 设n 是正整数. 证明: n 是 的子群且与 同构.证明: 直接验证. □11. 证明: 4S 的子集{(1),(12)(34),(13)(24),(14)(23)}B =是一个子群, 而且B 与4U 不同构. (n U 是全体n 次单位根关于复数的乘法组成的群).证明: 用定义验证B 是4S 的子群. 由于4U 中有4阶元而B 中的元的阶只能是1或2, 所以它们不可能同构. □12.证明: 2n 阶群的n 阶子群必然是正规子群.证明: 用正规子群的定义验证. □13. 设群G 的阶为偶数. 证明: G 中必有2阶元.证明: 否则, G 中的任意非单位元和它的逆成对出现, 从而, G的阶为奇数, 矛盾. □14. 设0110A ⎛⎫= ⎪⎝⎭, 2i 2i 0e e 0n n B ππ-⎛⎫ ⎪= ⎪ ⎪⎝⎭. 证明: 集合 22:{,,,,,,,}n n G B B B AB AB AB =⋯⋯关于矩阵的乘法是一个群, 而且这个群与二面体群n D 同构.证明: n D 有如下的表现: 21,|1,n n D T S T S TS ST -=〈===〉. 作2:GL ()n D ϕ→ : S A , T B . 直接验证ϕ是群单同态,而且im G ϕ=. □15. 设群G 满足: 存在正整数i 使得对任意,a b G ∈都有()k k k ab a b =, 其中,1,2k i i i =++. 证明: G 是一个交换群.证明: 由()i i i ab a b =和111()i i i ab a b +++=得:111()()()()()i i i i i i ab a b ab ab ab a b +++===, 从而, 1i i i i ba b a b +=, 即:i i ba a b =.同理可得: 11i i ba a b ++=. 于是:11()()i i i i a ba ba a b a ab ++===, 即: ab ba =. □16. 在群2()SL 中, 证明元素0110a -⎛⎫= ⎪⎝⎭的阶为4, 元素1101b --⎛⎫= ⎪-⎝⎭的 阶为3, 而ab 的阶为∞.证明: 直接验证. □17. 如果群G 为一个交换群, 证明G 的全体有限阶元素组成一个子群.证明: 设{|()}H g G o g =∈<∞. 显然e H ∈, 从而H 不是空集. 对任意,a b H ∈, 设()o a m =, ()o b n =, 则1()o b n -=;11()()mn m n ab a b e --==, 即: 1ab H -∈. □18. 如果群G 只有有限多个子群, 证明G 是有限群.证明: 首先证明: 对任意a G ∈有()o a <∞. 事实上, 设k a 〈〉为G 的由k a 生成的子群, 其中, 1k ≥是整数. 则242m a a a a 〈〉⊇〈〉⊇〈〉⊇⊇〈〉⊇ . 由于G 只有有限多 个子群, 所以必然存在m 使得2(1)22(2)m m m a a a ++〈〉=〈〉=〈〉= ,即 22(1)m t m a a +=.由消去律即得()o a <∞.于是G 的任意元素都包含在某个有限子群里, 而G 只有有限多个子群, 所以||G <∞. □19. 写出群n D 的全部正规子群.解: 已知: 212121{,,,,1,,,,,,|1},n n n n n D T T T T S ST ST ST S T S T TS ST ---=⋯=⋯〈====〉设H 是n D 的子群. 如果1H =则H 当然是n D 的正规子群.I (1) 设k H T =〈〉. 由于1k k k k ST S ST S SST T H ---===∈和k k TT T T H =∈. 所以k T 〈〉是n D 的正规子群.(2) 设{1,}H S S =〈〉=. 由于SSS S =和12TST ST --=, 所以{1,}H S S =〈〉=是n D 的正规子群当且仅当2n =.(3) 设k H ST =〈〉. 注意到()()1k k ST ST =, 所以{1,}k k H ST ST =〈〉=. 由于1k k TST T ST -=和()k k S ST S ST -=,所以{1,}k k H ST ST =〈〉=是n D 的正规子群当且仅当|2n k .II (1) 设,k k H T T '=〈〉. 则(,')k k H T =〈〉. 归结为I (1)的情形, 从而是n D 的正规子群. 一般地,1212(,,,),,,t t k k k k k k H T T T T ⋯=〈⋯〉=〈〉也是n D 的正规子群.(2) 设,k H S T =〈〉. 由于1k k TT T T -=, 12TST ST --=, k k ST S T -=, 所以,k H S T =〈〉是n D 的正规子群当且仅当存在m ∈ 使得|(2)n mk +. (注: 当1k =时,k n H S T D =〈〉=). 一般地, 设1,,,t k k H S T T =〈⋯〉. 则12(,,,),t k k k H S T ⋯=〈〉, 归结为刚讨论的情形.(3) 设,k k H ST ST '=〈〉. 或者, 更一般地,1212(,,,),,,t t k k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉. 归结为I (3)的情形,即: 1212(,,,),,,t tk k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉是n D 的正规子群 当且仅当12|2(,,,)t n k k k ⋯.□20. 设,H K 是群G 的子群. 证明: HK 为G 的子群当且仅当HK KH =. 证明: HK 为G 的子群当且仅当111()HK HK K H KH ---===. □21. 设,H K 是群G 的有限子群. 证明: ||||||||H K HK H K =⋂. 证明: 首先, HK 是形如Hk 的不交并; 其中k K ∈. 又, 12Hk Hk =当且仅当112k k K H -∈⋂. 所以, 这样的右陪集共有||||K H K ⋂ 个. 于是: ||||||||K HK H K H =⋂. □ 22. 设,M N 是群G 的正规子群, 证明:(1) MN NM =.(2) MN 是G 的正规子群.(3) 如果{}M N e ⋂=, 那么/MN N 与M 同构.证明: (1) 由1MNM N -⊆得MN NM ⊆. 同理, NM MN ⊆.(2) 由(1)和第20题, MN 确实是子群. 对任意g G ∈有111()()()g MN g gMg gNg MN ---=⊆. 所以MN 是G 的正规子群.(3) 如果mn m n ''=则11(){}m m n n M N e --''=∈⋂=, 从而,m m n n ''==. 即: MN 中的元素可以唯一地写为,,mn m M n N ∈∈的形式. 于是可以定义映射: :MN M σ→为mn m . 由于,M N 都是正规子群, 对任 意,m M n N ∈∈有111()(){}mn nm mnm n M N e ---=∈⋂=, 所 以mn nm =: 即此时, M 中的元素与N 中的元素可交 换. 由此可以验证σ是群同态. 显然σ是满的, 而且 ker N σ=. □23. 设G 是一个群, S 是G 的一个非空子集. 令(){|,}C S x G xa ax a S =∈=∀∈; 1(){|}N S x G x Sx S -=∈=. 证明: (1) (),()C S N S 都是G 的子群.(2) ()C S 是()N S 的正规子群.证明: 直接用定义验证. 以(2)为例. 对任意(),(),c C S n N S s S ∈∈∈,111111()()()()ncn s ncn nc n sn c n ------=. 设1n sn s S -'=∈, 即: 1s ns n -'=. 所以,1111111()()()()ncn s ncn nc n sn c n ns n s -------'===. 此即表明: 1()ncn C S -∈. □24. 证明: 任意2阶群都与乘法群{1,1}-同构. 证明: 设{,}G e a =. 作:{1,1}G σ→-为1e , 1a - . □25. 试定出所有的互不同构的4阶群.解: 设群G 的阶为4. 如果G 有4阶元, 则4G . 如果G 没有4阶元, 则G 的非单位元的阶都为2. 设{,,,}G e a b c =. 考虑第11题中的4S 的子群(Klein 四元群):{(1),(12),(34),(12)(34)}K =. 作映射: :G K σ→为:(1),(12),(34),(12)(34)e b a c . 则σ为群同构. 综上, 在同构意义下, 4阶群只能是4 或Klein 四元群. □26. 设p 是素数. 证明任意两个p 阶群都同构.证明: 只需证明任意p 阶群G 都同构于p . 由Lagrange 定理, G的任意非单位元a 的阶都为p , 从而21{,,,,}p G e a a a -=⋯, 从 而有良定的映射:p G σ→ 为: 1a . 此即为一个群同构.□27. 在集合S =⨯ 上定义(,)(,):(,);(,)(,):(,)a b c d a c b d a b c d ac bd ad bc +=++=++. 证明: S 在这两个运算下是一个有单位元的环. 证明: 直接验证. 零元素为(0,0), 单位元为(1,0). □28. 在 上重新定义加法⊕和 为: :,:a b ab a b a b ⊕==+ . 问 关于这两个运算是否是一个环.解: 不是. 关于⊕不是一个abel 群. □29. 设L 是一个有单位元的交换环. 在L 中定义: :1a b a b ⊕=+-,:a b a b ab =+- . 证明: 在这两个新的运算下, L 仍然是一个环, 且与原来的环同构.证明: 直接验证满足环的定义中的条件. 作:(,,)(,,)L L σ+→⊕ 为:1a a - . 验证σ是环同构. □30. 给出满足如下条件的环L 和子环S 的例子:(1) L 有单位元, 而S 没有单位元.(2) L 没有单位元, 而S 有单位元.(3) ,L S 都有单位元, 但不相同.(4) L 不交换, 但S 可交换.解: (1) ;2L S == .(2) 0|,20a L a b b ⎧⎫⎛⎫=∈∈⎨⎬⎪⎝⎭⎩⎭ , 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (3) 0|,0a L a b b ⎧⎫⎛⎫=∈∈⎨⎬ ⎪⎝⎭⎩⎭, 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (4) |,,,a L a b b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 0|0a S a a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . 31. 环R 中的一个元L e 为一个左单位元, 如果对任意r R ∈有L e r r =.类似地可定义右单位元. 证明:(1) 如果环R 既有左单位元, 又有右单位元, 则R 有单位元.(2) 如果环R 有左单位元, 没有零因子, 则R 有单位元.(3) 如果环R 有左单位元但没有右单位元, 则R 至少有两个左单位元.证明: (1) 设,L R e e 分别为R 的左, 右单位元. 则L L R R e e e e ==为R的单位元.(2) 设L e 为R 的一个左单位元. 对任意0x R =∈/, 由22()0L xe x x x x -=-=得: L xe x =, 即L e 为R 的一个右单 位元. 由(1)即得.(3) 设L e 为R 的一个左单位元, 由于R 没有右单位元, 所以存在0z R =∈/使得L ze z =/. 令: :L L L f e z ze =+-. 则 L L f e =/且, 对任意r R ∈有0L L L f r e r zr ze r r r =+-=+=, 即: L f 为R 的另一个单位元. □32. 设F 为一个域. 证明: F 没有非平凡的双边理想.证明: 设0I F =⊆/为F 的一个理想. 取0x I =∈/, 有11x x F -=∈, 从而I F =. □33. 设R 是一个交换环, a R ∈.(1) 证明{|}Ra ra r R =∈是R 的一个理想.(2) 举例说明, 如果R 不是交换环, 那么Ra 不一定是一个(双边)理想.证明: (1) 直接验证.(2) 设|,,,a b R a b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 1010a ⎛⎫= ⎪⎝⎭. 则 0|,0r s Ra r s ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭. 显然, Ra 不是一个理想, 比如: 01010101a Ra ⎛⎫⎛⎫=∉ ⎪ ⎪⎝⎭⎝⎭. □34. 设I 为交换环R 的一个理想, 令: rad {|,}n I r I r I n +=∈∈∈ . 证明:rad I 为R 的理想, 称为I 的根.证明: 对任意,rad a b I ∈. 则存在正整数,m n 使得,m n a b I ∈. 由于 ()m n a b I +-∈, 从而rad a b I -∈.对任意rad a I ∈和r R ∈, 存在正整数m 使得m a I ∈. 从而()m m m ra r a I =∈, 即: rad ra I ∈. □35. 设F 为一个有单位元的交换环. 证明: 如果F 没有非平凡理想,则F 是一个域.证明: 对任意0a F =∈/, 由第33题(1)知, Fa 是F 的一个非零理想.由于F 没有非平凡理想, 所以Fa F =. 特别1Fa ∈, 即: 存在 b F ∈使得1ba =. □36. 设 是有理数域, ()n 是全体n 阶 上的矩阵组成的环. 证明:()n 没有非平凡的理想(没有非平凡理想的环称为单环). 证明: 设0I =/为()n 的一个理想. 取0A I =∈/. 则A 至少有一个 非零元素, 设为ij a . 由于I 是一个理想, 所以1ij ij ij ij E AE E I a ⎛⎫=∈ ⎪ ⎪⎝⎭, 其中ij E 表示(,)i j -元为1而其余元为0的基本矩阵. 由基本矩阵的乘法性质, ij jk ik E E E I =∈, 从而ki ik kk E E E I =∈, 1,2,,k n =⋯. 于是单位阵1nn kk k E E I ==∈∑, 从而()n I = . □37. 设R 是一个环, 0a R =∈/. 证明: 如果存在0b R ≠∈使得0aba =, 那么a 是一个左零因子或右零因子.证明: 由于0aba =, 所以, 如果0ba =/则a 是一个左零因子; 如果0ba =, 则a 是一个右零因子. □38. 环的一个元素a 成为幂零的, 如果存在正整数n 使得0n a =. 证明:对于有单位元环R 的任意幂零元a , 1a -是可逆的.证明: 21(1)(1)11n n a a a a a --+++⋯+=-=. □39. 证明: 在交换环中, 全部幂零元素组成一个理想.证明: 用定义直接验证: 在交换环中, 幂零元的差、积仍然幂零.□40. 设R 是有单位元的有限环. 如果,x y R ∈满足1xy =, 证明: 1yx =.证明: 作映射: ::f R R z yz → . 则f 是单射: 事实上, 如果 12yz yz =, 则12xyz xyz =, 即12z z =. 由于R 是有限集, 所以f是满射, 从而存在0z R ∈使得001()f z yz ==. 只需证明:0z x =. 事实上, 00001()()1z z xy z x yz x x ===== . □41. 设R 是一个有单位元的环. 证明: 如果存在,a b R ∈满足1ab =但1ba =/, 那么有无穷多x R ∈使得1ax =.证明: 注意到111()1n n n n a b ba a ab aba a ab ++++-=+-==, n ∈ . 所以只需证明1n n ba a +- (n ∈ )互不相同. 注意到1m m a b aa abb b =⋯⋯=, 对任意m ∈ 都成立.如果11n n k k ba a ba a ++-=-, (n k >). 则11111()0n n k k k k k ba a b ba b a b b b +++++-=-=-=, 即0n k n k ba a b ---=. 如果1n k -=则1ba ab ==, 矛盾.所以1n k ->. 从而10n k n k ba a ----=;11)(10n k n k n k ba a b b a ------=-=, 也得到矛盾. □42. 设R 是满足如下条件的环: R 至少有两个元素而且对任意0a R =∈/都存在唯一的元素b R ∈使得aba a =. 证明:(1) R 没有零因子.(2) bab b =.(3) R 有单位元.(4) R 是一个体.证明: (1) 设0a R =∈/使得0ax =. 由已知, 对于a 有唯一的b R ∈使得aba a =. 于是()a b x a aba +=. 由唯一性, b x b +=, 即: 0x =; 从而a 不是左零因子. 即: R 中的任意非零元都不 是左零因子; 从而R 也没有右零因子.(2) 由于()()a bab a ab aba aba ==, 再由唯一性即得bab b =.(3) 任取0a R =∈/, 取那个唯一的b R ∈使得aba a =. 往证ab就是一个单位元. 对任意0x R =∈/, 取那个唯一的y R ∈ 使得xyx x =. 由(2)有:()0b ab xy x babx bxyx bx bx -=-=-=.由(1), 0ab xy -=. 从而abx xyx x ==, 此即证明了ab 是左 单位元. 保持记号. 类似地有:()0a ba xy x abax axyx ax ax -=-=-=, 从而ba xy =, 于是xab xyx x ==, 此即证明了ab 是右单位元.(4) 由(3)可知, R 的每个非零元都有逆. □43. 设[0,1]C 是[0,1]上的连续函数组成的环. 证明:(1) 对于[0,1]C 的任意非平凡理想I , 都存在一个[0,1]θ∈使得对任意()f x I ∈都有()0f θ=.(2) ()[0,1]f x C ∈是一个零因子当且仅当零点集{[0,1]|()0}x f x ∈= 包含一个开区间.证明: (1) 若不然, 对任意[0,1]θ∈都存在()[0,1]g x C θ∈使得()0g θ=/. 由连续性, 存在一个包含θ的开区间[0,1]J θ⊆使得()g x θ在 J θ上恒为正或恒为负(0J 实际上是左闭右开的; 1J 实际上是左开右闭的). 另一方面, 由开覆盖定理, 存在有限多个i J θ, 使得[0,1]i i J θ=⋃. 定义2():(())ii g x g x θ=∑. 则 ()g x I ∈, 而且()0g x >. 于是11()()g x I g x =∈ , 与I 是非平凡理 想矛盾.(2) “⇒”: 设()f x 是[0,1]C 中的一个零因子: 存在0()[0,1]g x C =∈/使得()()0,[0,1]g x f x x ≡∈. 由于()0g x =/, 所以 存在[0,1]上的开区间J 使得()g x 在J 上恒为正或恒为负; 从而, ()f x 在J 上恒为0.“⇐”: 设存在[0,1]上的开区间J 使得()f x 在J 上恒为0. 作连 续函数()g x 使得: ()g x 在J 上恒不为0, 而在J 上恒为0, 从 而()()0f x g x ≡: 即()f x 是[0,1]C 中的一个零因子. □44. 设p = 为素域. (1) 求环()n 的元素个数.(2) 求群()n GL 的元素个数.(1) 解: 由于2dim ()n n = , 所以()n 的元素个数为2n p .(2) 解: 取定向量空间n 的一个基, 则()n GL 中的元与n 上 的可逆线性变换一一对应, 而可逆线性变换把基映为基. 所以, 只需求n 的基的个数. 注意到n 的元素个数为n p . 任取n 的一 个非零向量1α, 这样的取法有1n p -种. 取2n α∈ 使得12,αα线性 无关. 这样的2α能且只能从1n α-〈〉 中选取. 所以2α的选取方法有n p p -种. 类似地, 取3n α∈ 使得312,,ααα线性无关. 这样的3α 能且只能从12,n αα-〈〉 中选取. 所以3α的选取方法有2n p p -种(因为12,αα〈〉的维数是2). 继续这个过程, 我们得到n 的基的个 数为21()()()n n n n p p p p p p ---⋯-, 此即为所求. □45. 设K 是一个体, 0,a b K =∈/且1ab =/. 证明如下的华罗庚恒等式:1111(())a a b a aba -----+-=.证明: 由提示, 先证明引理: 对任意0,1x K =∈/,1111(1)(1(1))1(1)(((1)))x x x x x x -----+-=-+--11(1)(1)11x x x x x x -=-+--=-+=,所以, 111(1)(1)1x x ----=--成立. 注意到: 原恒等式等价于1111(1)(())a ba a b a -----=+-, 等价于11111(1)()ba a a b a ------=+-. 由引理,111111*********(1)((1)1)(1)((1))ba a a b a a a b a a a a b ----------------=-+=+-=+-111()a b a ---=+- 即为所要的等式. □第二章1. 设G 为有限群, N G , (||,|/|)1N G N =. 证明: 如果元素a G ∈的阶整除||N , 那么a N ∈.证明: 考虑自然满态: :/G G N π→. 记()a a π=. 由于()/o a a e G N =∈, 所以()|()o a o a . 如果()1o a =/, 则((),|/|)1o a G N =/, 矛盾. □2. 设c 为群G 的阶为rs 的元素, 其中(,)1r s =. 证明: c 可以表示成c ab =, 其中()o a r =, ()o b s =, 且,a b 都是c 的幂.证明: 由(,)1r s =知, 存在整数,u v 使得1ur vs +=. 于是1ur vs c c c c ==.令vs a c =和ur b c =. 则()()((),)(,)o c rs rs o a r o c vs rs vs s ====. 同理, ()o b s =. □3. 证明: 如果群G 中的元素a 的阶与正整数k 互素, 那么方程k x a =在 a 〈〉内恰有一解.证明: 设()o a n =. 于是存在整数,r s 使得1rn ks +=. (法一) 作映射::k f a a x x 〈〉→〈〉 . 只需证明f 是双射. 由于||a n 〈〉=<∞, 所以只需证明f 是单射. 若k k x y =, ,x y a ∈〈〉, 则1()1k xy -=. 从而1111()()rn ks s xy xy xy e e ----====, 即x y =.(法二) 首先1()s k rn a a a -==, 即方程k x a =在a 〈〉中有解. 若t a a ∈〈〉也是k x a =的一个解, 那么()t s k a e -=, 从而 1()()t s ks t s rn t s a e a a ----===, 即t s a a =. □4. 设G 是一个群. 证明: 对任意,a b G ∈有()()o ab o ba =. 证明: 注意到, 对任意正整数m , 1()()m m ab a ba b -=, 所以1()()m m ab a ba b e -==当且仅当1111()()m ba a b ba ----==当且仅当 ()m ba e =. □5. 设2n >. 证明: 有限群G 中阶为n 的元素个数是偶数. 证明: 注意到, 对任意g G ∈有1()()o g o g -=, 而且, ()2o g >当且仅当1g g -=/. □6. 证明: 当2n >时有(){}n Z S e =. 即: n S 是交换群当且仅当2n ≤. 证明: 注意到, 对任意n S σ∈和轮换12()r i i i ⋯有11212()(()()())r r i i i i i i σσσσσ-⋯=⋯. 设()n e z Z S =∈/, 则对任意 n S σ∈应该有1z z σσ-=. 不妨设z 分解为互不相交的轮换的乘积(必要的话, 可通过重新编号): (12)(...)...(...)z =⋯. 取 (23)σ=. 则()(1)3z σσ=但(1)2z =, 矛盾. □7. 证明: 有理数加群 的任意有限生成的子群是一个循环群. 证明: 设1212,,,n n n H m m m =〈⋯〉, 其中(,)1i i n m =, 1i ≤≤ . 令 12[,,,]t m m m =⋯ . 则1H t=〈〉. □ 8. 设G 是有限生成的交换群. 证明: 如果G 的这些生成元都是有限 阶的, 那么G 是一个有限群.证明: 设1,,n G a a =〈⋯〉且()i i o a m =. 则G 的任意元素具有形式:1212nt t t n a a a ⋯, 其中1i i t m ≤≤, 从而G 只有有限个元素. □ 9. 对任意群G 和正整数k , 令{|}k k G a a G =∈. 证明: 群G 是循环 群的成分必要条件是G 的任意非单位子群都是形如k G 的集合. 证明: 必要性. 设G g =〈〉. 则G 的任意非单位子群H 具有形式k H g =〈〉, 其中k 是某个正整数. 于是H 中的任意元素具有形 式()()k m m k g g =, 即k H G ⊆. 反之, k G 的任意元素具有形式 ()()m k k m g g =, 于是k H G =.充分性. 考虑12k k G G ≥-⋃.(i) 如果12k k G G ≥-⋃不是空集, 取12k k g G G ≥∈-⋃. 则G g =〈〉是无限循环群. 事实上, g e =/, 从而G 的子群g 〈〉形如k G . 如果2k ≥, 则k k g x G =∈, 与g 的选取矛盾. 所以1g G G 〈〉==. 另外, 如果此时G g =〈〉是有限群, 则2k k G G ≥=⋃, 也得到矛盾.(ii) 现在假设12k k G G ≥-⋃是空集. 则对任意e x G =∈/, 存在正整 数k 使得子群k x G 〈〉=. 若1k =则G x =〈〉是循环群. 特别,存在整数s 使得k s x x =, 此即表明, G 的任意元素都是有限阶的. (To be continued).。
第一章勾股定理1.1探索勾股定理(1)一、选择题1.如图字母B 所代表的正方形的面积是()A.12B.13C.144D.1942.如图小方格都是边长为1的正方形,则四边形ABCD 的面积是()A.25B.12.5C.9D.8.53.如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是()A.12米 B.13C.14米D.15米二、填空题4.在一个直角三角形中,两条直角边分别为a ,b ,斜边为c :(1)如果8a =,15b =,则c =,三角形的周长为,面积为;(2)如果5a =,13c =,则三角形的周长为,面积为;(3)如果6b =,:4:5a c =,则a =,c =5.一个直角三角形的两条直角边分别为3和4,则斜边上的高为;6.(教材P4习题T3变式)如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为;7.若一个直角三角形的三边长分别为a ,b ,c ,已知a 2=25,b 2=144,则c 2=;三、解答题8.规范表达(严格按格式):如图,已知∠A=90°,AC=5,AB=12,BE=3.求长方形的面积第1题第2题1.1探索勾股定理(2)一、选择题1.如图,64、400分别为所在正方形的面积,则图中字母A 所代表的正方形面积是()A.8B.20C.336D.4642.如图是一个外轮廓为长方形的机器零件平面示意图,根据图中标出的尺寸(单位:mm),计算两圆孔中心A和B 的距离为().A.80mmB.100mmC.90mmD.120mm.3.【关注数学文化】“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab =8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3二、填空题4.在△ABC 中,∠C=90°,(1)若86==b a ,,则=c ;(2)若,3024==c a ,则=b ;(3)若2524==c b ,,则=a .5.如果直角三角形的斜边与一直角边的长分别是13厘米和5厘米,那么这个直角三角形的面积是.6.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.三、解答题7.4个全等的直角三角形的直角边分别为a ,b ,斜边为c .现把它们适当拼合,可以得到如图的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.1.2一定是直角三角形吗一、选择题1.满足下列条件的△ABC,不是直角三角形的是()A.b 2=c 2-a 2B.a ∶b ∶c =3∶4∶5C.∠C=∠A-∠B D.∠A∶∠B∶∠C=3∶4∶52.有五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是()3.三角形三边长分别为6,8,10,那么它最短边上的高为()A.6B.4.8C.2.4D.8二、填空题4.已知RT△ABC,︒=∠90C ,︒=∠30B ,则=∠A .5.某农舍大门是一个木制矩形栏栅,它高为2m,宽为1.5m,现需要在相对的顶点间用一块木棒加固,模板的长为.6.如图,在△ABC 中,AC=.三、解答题7.(教材P9例题变式):如图,在四边形ABDC 中,∠A=90°,AB=4,AC=3,CD=13,BD=12,求这个四边形的面积.[规范表达(严格按格式)]8.如图,点A、D、B 在同一直线上,BC=15,CD=12,AC=13,AD=5.求AB 的长915b1024c1.3勾股定理的应用一、选择题1.将直角三角形的三边扩大相同的倍数后,得到的三角形()A.是直角三角形B.是锐角三角形C.是钝角三角形D.不是直角三角形2.等腰三角形的腰长为10,底长为12,则其底边上的高为()A.8B.13C.25D.643.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1米,当他把绳子下端拉开5米后,发现下端刚好接触地面,则旗杆高度为()A.8米B.10米C.12米D.14米4.如图,若圆柱的底面周长是30cm,高是40cm,从圆柱底部A 处沿侧面缠绕一圈丝线到顶部B 处作装饰,则这条丝线的最小长度是(D)A.80cm B.70cm C.60cm D.50cm 二、填空题5.求图中直角三角形中未知的长度:b=__________,c=____________.6.已知三角形的三边长分别是m 2+1,2m,m 2-1(n 为正整数),则最大角等于_______度.三、解答题7.如图,长方体的高为3厘米,底面是正方形,边长为2厘米,现有一小虫从A 出发,沿长方体表面到达C 处,问小虫走的路程最短为多少厘米?8.如图,长方形ABCD 的边AD 沿AE 折叠,使点D 落在BC 上的点F 处,已知AB=6,△ABF 的面积是24,则FC 等于多少?第二章实数2.1认识无理数(1)一、选择题1.在等式x 2=3中,下列说法中正确的是()A.x 可能是整数B.x 可能是分数C.x 可能是有理数D.x 不是有理数2.在中,),的个数逐渐加之间每两个,6.0107(7070070007.011371π不是有理数有()个A.1个B.2个C.3个D.4个3.下列说法中,正确的有()①无限小数都是有理数;②不循环小数不是有理数;③不是有理数的数都是无限小数;④0是有理数A.1个 B.2个 C.3个 D.4个二、填空题4.已知2x =12,则x ______分数,______整数,______有理数.(填“是”或“不是”)5.面积为5的正方形的边长______有理数;面积为9的正方形的边长______有理数.(填“是”或“不是”)三、解答题6.求出下图1-2中直角三角形未知边的长度;求x 的值.7.下列4×4的网格中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.1312x2.1认识无理数(2)一、选择题1.下列数中是无理数的是()A.1.∙∙32 B.2π C.0 D.7222.在数0.222,2.525252…,π-3,31-,1.1351335…(相邻两个1之间3的个数逐次加1),其中无理数的个数为()A.1个B.2个C.3个D.4个3.若方程x 2=m 的解是有理数,则m 不能取下列四个数中的()A.1B.4 C.14 D.12二、填空题4.已知2x =8,则x ______分数,______整数,______有理数.(填“是”或“不是”)5.面积为3的正方形的边长______有理数;面积为4的正方形的边长______有理数.(填“是”或“不是”)6.将下列各数按要求分类:-43,-∙∙24.1,π,3.1416,32,0,3.14,-0.2020020002……(相邻两个2之间0的个数逐次加1)有理数有________________________,无理数有__________________________.分数有_______________________,整数有__________________________.三、解答题7.如图,我们可以在网格图中以这样的方式画出面积为5的正方形,(1)请问它的边长是有理数吗?(2)你能用类似的方法画出面积为8和面积为13的正方形吗?一、选择题1.下列说法正确的是()A.5是25的算术平方根B.16是4的算术平方根C.6-是2(6)-的算术平方根D.0没有算术平方根2.“1625的算术平方根是45”用式子表示为()A.±1625=±45B.1625=±45C.1625=45D.±1625=45)A.3B.3±D.二、填空题4.1.44的算术平方根为,13的算术平方根为,2(7)-的算术平方根为;=,=,=,=,2=,=,=,=6.若一个数的算术平方根是6,则这个数为;是的算术平方根三、解答题7.求下列各数的算术平方根:(1)6449(2)917(3)43-(4)|-25241|8.已知一直角三角形两边长分别为3和4,求第三边的长一、选择题1.2(11)-的平方根是()A.121B.11C.11±D.不存在2.4的平方根是±2,用数学符号表示,正确的是()A.4=2B.±4=2C.4=±2D.±4=±23.如果24x =的值为()A.2±B.2C.2-或不存在二、填空题4.3的算术平方根为,0.81的平方根为,25121的平方根为,17的平方根为,的平方根为,0的平方根为;6.1是的一个平方根,它的另一个平方根是;7.=,=;三、解答题8.求下列各式的值(1)(2)2)13(-(3)3649±(4)-9009.已知:一个正数的平方根是23a -和518a -,那么这个正数是多少?10.求下列各式中的x:(1)9x 2-25=0;(2)4(2x-1)2=36.2.3立方根一、选择题1.下列语句中不正确的是()A.-1的立方根是-1 B.1的立方根是±1C.21是81的立方根 D.8的立方根是22.下列叙述正确的个数有()1一个数立方根的符号与这个数的符号相同;2正数、负数、0都有立方根;3如果一个数的立方根是它本身,这个数一定是0;4两个互为相反数的数,开立方所得的结果仍然互为相反数;A.1个B.2个C.3个 D.4个3.下列各数互为相反数的是()A.-2与2)2(-B.-2与38-C.|-2|与2D.22与2)2(-二、填空题4.立方根等于它本身的数为.5.若33)1(-x =1-x,则x 的值为;=,=,-=;-31-1927;三、解答题7.求满足下列各式中的未知数x :①310125x -=②33264x =8.已知21a -的平方根是3±,31a b +-的算术平方根是4,求2a b +的平方根?2.4估算一、选择题1.1.下列整数中,与10最接近的整数是()A.3B.4C.5D.62.设n 为正整数,且n<65<n+1,则n 的值为(D)A.5B.6C.7D.811.(河北中考)如图,在数轴上标注了四段范围,则表示8的点落在()A.段①B.段②C.段③D.段④二、填空题3.比较下列各组数的大小⑴73⑵5.32(3)10-2212.=;=;=;==;==;=-=;=5.的算术平方根=,的平方根=,的立方根=;三、解答题6.一个正数的平方根是21a -和2a -+,求a 的值和这个正数7.如图,已知一灯塔A 周围2000米水域内有礁石,一舰艇由西向东航行,在O 处测得O,A 相距4000米.若使舰艇到达与灯塔最近处B,则还需航行3500米,问舰艇再向东航行有无触礁的危险?2.6实数一、选择题1.下列说法:①无理数是无限小数;②带根号的数一定是无理数;③任何实数都可以开立方;④有理数都是实数;其中正确的个数有()A.1个B.2个C.3个D.4个2.实数a,b 在数轴上的对应点的位置如图所示,下列结论正确的结论是()A.a>b B.a>-b C.-a>b D.-a<b3.下列各式化简结果为无理数的是()A.327-B.(2−1)0C.8D.()22-二、填空题4.410-的相反数为,绝对值为;5.把下列各数填入相应的集合内:-7,0.32,31,46,0,8,21,3216,-2π.①有理数集合:{…};②无理数集合:{…};③正实数集合:{…};④实数集合:{…}.三、解答题6.计算:(1)(3+2)-2;(2)|3-2|+|3-1|.7.在数轴上作出2的对应点.8.已知a 是整数部分,b 是小数部分,求2a b +的值一、选择题1.实数0.5的算术平方根等于()A.2B.2C.22D.212.下列计算正确的是()A.2·3=6B.2+3=6 C.8=32 D.4÷2=23.下列运算中错误的有()个①416=②4936=±76③332-=-④3)3(2=-⑤±332=A.4B.3C.2D.1二、填空题4.=,=,,=,;5.=,,=,=,;6.,,=三、解答题7.计算(1)(2)(3)(4)÷一、选择题1.9的算术平方根是()A.3B.±3C.3D.±33.下列各式中,正确的是()A.2)2(2-=-B .9)3(2=-C .393-=-D.39±=±二、填空题4.,=,=;5.-,三、解答题6.(1-+(5)⨯(6)2)313(-2.7二次根式(3)一、选择题1.估计10的值在()A.1到2之问B.2到3之间C.3到4之问D.4刊5之问2.实数0.2的算术平方根等于()A.5B.C.5D.15A.加号B.减号C.乘号D.除号二、填空题4.大于2且小于5的整数是;5.已知1-a +1++b a =0,则a b =;6.比较下列实数的大小①14012②215-5.0;三、解答题7.(1)()2-()(232-+(4。
概率论与数理统计(第二版-刘建亚)习题解答——第1章概率论与数理统计(第二版.刘建亚)习题解答——第一章1-1解:(1)C AB ;(2)ABC ;(3)C B A ;(4)C AB C B A BC A ;(5)C B A ;(6)C B A C B A C B A C B A 。
1-2解:(1)A B Ì;(2)A B É;(3)A BC Ì;(4)A B C É()。
1-3解:1+1=2点,…,6+6=12点,共11种;样本空间的样本点数:n =6×6=12, 和为2,{}1,1A =,1A n =,1()36A n P A n ==, ……和为6,{}1,5;2,4;3,3;4,2;5,1A =,5A n =,5()36A n P A n ==, 和为(2+12)/2=7,{}1,6;2,5;3,4;4,3;5,2;6,1A =,6A n =,61()366A n P A n ===, 和为8,{}2,6;3,5;4,4;5,3;6,2A =,5A n =,5()36A n P A n ==, ……和为12,{}6,6A =,1A n =,1()36A n P A n ==, ∴ 出现7点的概率最大。
1-4解:只有n =133种取法,设事件A 为取到3张不同的牌,则313A n A ,(1)31333131211132()1313169A A n P A n 创====;(2)37()1()169P A P A =-=。
1-5解:(1)()()()()()0.450.100.080.030.30P ABC P A P AB P AC P ABC =--+=--+= (2)()()()0.100.030.07P ABC P AB P ABC =-=-= (3)∵ ,,ABC ABC ABC 为互不相容事件,参照(1)有()()()()()()()()()()()()()()()()()()()2[()()()]3()0.450.350.302(0.100.080.05)0.090.73P ABCABCABC P ABC P ABC P ABC P A P AB P AC P ABC P B P AB P BC P ABC P C P AC P BC P ABC P A P B P C P AB P BC P AC P ABC =++=--++--++--+=++-+++=++-+++= (4)∵ ,,ABC ABC ABC 为互不相容事件,参照(2)有()()()()()()()3()0.100.080.0530.030.14P ABC ABC ABC P ABC P ABC P ABC P AB P AC P BC P ABC =++=++-=++-?=(5)()()()()()()()3()0.450.350.300.100.080.0530.030.90P A B C P A P B P C P AB P AC P BC P ABC =++---+=++---+?(6)()1()10.900.10P A B C P A B C =-=-=。
工程力学学习参考资料第一章静力学基础一、判断题1-1.如物体相对于地面保持静止或匀速运动状态,则物体处于平衡。
()1-2.作用在同一刚体上的两个力,使物体处于平衡的必要和充分条件是:这两个力大小相等、方向相反、沿同一条直线。
( ) 1-3.静力学公理中,二力平衡公理和加减平衡力系公理仅适用于刚体。
( ) 1-4.二力构件是指两端用铰链连接并且指受两个力作用的构件。
( ) 1-5.对刚体而言,力是滑移矢量,可沿其作用线移动。
()1-6.对非自由体的约束反力的方向总是与约束所能阻止的物体的运动趋势的方向相反。
()1-7.作用在同一刚体的五个力构成的力多边形自行封闭,则此刚体一定处于平衡状态。
()1-8.只要两个力偶的力偶矩相等,则此两力偶就是等效力偶。
()二、单项选择题1-1.刚体受三力作用而处于平衡状态,则此三力的作用线( )。
A、必汇交于一点B、必互相平行C、必都为零D、必位于同一平面内1-2.力的可传性()。
A、适用于同一刚体B、适用于刚体和变形体C、适用于刚体系统D、既适用于单个刚体,又适用于刚体系统1-3.如果力F R是F1、F2二力的合力,且F1、F2不同向,用矢量方程表示为F R= F1+ F2,则三力大小之间的关系为()。
A、必有F R= F1+ F2B、不可能有F R= F1+ F2C、必有F R>F1, F R>F2D、必有F R<F1, F R<F21-4.作用在刚体上的一个力偶,若使其在作用面内转移,其结果是()。
A、使刚体转动B、使刚体平移C、不改变对刚体的作用效果D、将改变力偶矩的大小三、计算题1-1.已知:F1=2000N,F2=150N,F3=200N,F4=100N,各力的方向如图1-1所示。
试求各力在x、y轴上的投影。
解题提示F x= + F cosαF y= + F sinα注意:力的投影为代数量;式中:F x、F y的“+”的选取由力F的指向来确定;α为力F与x轴所夹的锐角。
第一章 习 题 1. 画出下列晶体的惯用原胞和布拉菲格子,指明各晶体的结构以及惯用原胞、初基原胞中的原子个数和配位数。 (1) 氯化钾;(2)氯化钛;(3)硅;(4)砷化镓;(5)碳化硅(6)钽酸锂;(7)铍;(8)钼;(9)铂。 解:
名称 分子式 结构 惯用元胞 布拉菲格子 初基元胞中原子数 惯用元胞中原子数 配位数
氯化钾 KCl NaCl结构 fcc 2 8 6
氯化钛 TiCl CsCl结构 sc 2 2 8 硅 Si 金刚石 fcc 2 8 4 砷化镓 GaAs 闪锌矿 fcc 2 8 4 碳化硅 SiC 闪锌矿 fcc 2 8 4 钽酸锂 LiTaO3 钙钛矿 sc 5 5 2、6、12 O、Ta、Li
铍 Be hcp 简单 六角 2 6 12 钼 Mo bcc bcc 1 2 8 铂 Pt fcc fcc 1 4 12 2. 试证明:理想六角密堆积结构的1281.6333ca。如果实际的ca值比这个数值大得多,可以把晶体视为由原子密排平面所组成,这些面是疏松堆垛的。 证明:如右图所示,六角层内最近邻原子间距为a,而相邻两层的最近邻原子间距为:212243cad。
当d=a时构成理想密堆积结构,此时有:212243caa, 由此解出:633.13821ac。 若633.1ac 时,则表示原子平面的层间距较理想结构的层间距大, 因此层间堆积不够紧密。 3. 画出立方晶系中的下列晶向和晶面:[101]、[110]、[112]、[121]、(110)、(211)、(111)、(112)。 解:3 / 13
4. 考虑指数为(100)和(001)的面,其晶格属于面心立方,且指数指的是立方惯用原胞。若采用初基原胞基矢坐标系为轴,这些面的指数是多少? 解:如右图所示:在立方惯用原胞中的(100)晶面,在初基原胞基矢坐标
系中,在1a、2a、3a三个基矢坐标上的截距为2,,2,则晶面 指数为(101)。同理,(001)晶面在初基原胞基矢坐标系1a、2a、 3a上的截距为,2,2,则晶面指数为(110)。
5. 试求面心立方结构(100)、(110)、(111)晶面族的原子数面密度和面间距,并比较大小;说明垂直于上述各晶面的轴线是什么对称轴? 解: 晶面指数 原子数面密度 面间距 对称轴 (100) 2
2
a a C4
(110) 2
4.1
a a2
2 C2
(111) 2
3.2
a a3
3 C3
6. 对于二维六角密积结构,初基原胞基矢为:132aaij,232aaij,kcc。求其倒格子基矢,并判断倒格子也是六方结构。 解:由倒格基失的定义,可计算得:3212aab=a2)31(ji, 4 / 13
jiaaab)31(22
132
,kcaab22213(未在图中画出)
正空间二维初基原胞如图(A)所示,倒空间初基原胞如图(B)所示 (1)由21bb、组成的倒初基原胞构成倒空间点阵,具有C6操作对称性,而C6对称性是六角晶系的特征。
(2)由21aa、构成的二维正初基原胞,与由21bb、构成的倒初基原胞为相似平行四边形,故正空间为六角结构,倒空间也必为六角结构。 (3)倒空间初基原胞基矢与正格子初基原胞基矢形式相同,所以也为六方结构。
7. 用倒格矢的性质证明,立方晶系的[hkl]晶向与(hkl)晶面垂直。 证明:由倒格矢的性质,倒格矢321blbkbhGhkl垂直于晶面(hkl)。由晶向指数(hkl),晶向可用矢量A表示,则:321alakahA。
倒格子基矢的定义:)(2321aab;)(2132aab;)(2213aab 在立方晶系中,可取321aaa、、相互垂直且321aaa,则可得知332211bababa, , , 且321bbb。设mabii(为常值,且有量纲,即不为纯数), 则 AmalakahmGhkl)=321(,即hklG与A平行。 8. 考虑晶格中的一个晶面(hkl),证明:(a) 倒格矢123hGhbkblb垂直于这个晶面;(b) 晶格中相邻两个平行晶面的间距为2hklhdG;(c) 对于简单立方晶格有22222adhkl。 证明:(a)晶面(hkl)在基矢321aaa、 、 上的截距为lakaha321、 、 。作矢量: kaham211,lakam322,halam133
显然这三个矢量互不平行,均落在(hkl)晶面上(如右图),且
022232121321133213221321211aaaaalaaaaakaaaaahkahablbkbhkahaGmh 同理,有02hGm,03hGm 所以,倒格矢hklGh晶面。 (b)晶面族(hkl)的面间距为:
hhhhhklGGblbkbhhaGGhad232111
(c)对于简单立方晶格: 21
222
2
lkhaGh
22222
lkhad
9. 用X光衍射对Al作结构分析时,测得从(111)面反射的波长为1.54Å,反射角为=19.20,求面间距d111。 解:由布拉格反射模型,认为入射角=反射角,由布拉格公式:2dsin=,可得
sin2n
d (对主极大取n=1)
)(34.22.19sin254.10Ad 10. 试证明:劳厄方程与布拉格公式是等效的。 证明:由劳厄方程:2)(0kkRl 与正倒格矢关系:2hlGR比较可知: 若0kkGh成立,即入射波矢0k,衍射波矢k之差为任意倒格矢hG,则k方向产生衍射光,6 / 13
0kkGh式称为倒空间劳厄方程又称衍射三角形。
现由倒空间劳厄方程出发,推导Blagg公式。 对弹性散射:0kk。由倒格子性质,倒格矢hG垂直于该
晶面族。所以,hG的垂直平分面必与该晶面族平行。 由右图可知:sin4sin2kGh (A) 又若'hG为该方向的最短倒格矢,由倒格矢性质有:dGh2';若hG不是该方向最短倒格失,由倒格子周期性: ndGnGhh2' (B) 比较(A)、(B)二式可得: 2dSin=n 即为Blagg公式。 11. 求金刚石的几何结构因子,并讨论衍射面指数与衍射强度的关系。 解:每个惯用元胞中有八个同类原子,其坐标为:
434341434143414343414141212102102102121
000, , , , , , ,
结构因子:mijlwkvhuijhkljjjefS2
lkhilkhilkhilkhilhilkikhieeeeeeef33233233221
前四项为fcc的结构因子,用Ff表示从后四项提出因子)(2lkhie
lkhiflkhifflkilhikhilkhifhkleFeFFeeeefFS22)()()()(112
因为衍射强度2hklSI, lkhilkhiflkhilkhifhkleeFeeFS222)()(2221·122
用尤拉公式整理后:)(2cos1222lkhFSfhkl 讨论:1、当h、k、l为奇异性数(奇偶混杂)时,0fF,所以02hklS; 2、当h、k、l为全奇数时,222232)4(22ffFSflkh; 3、当h、k、l全为偶数,且nlkh4(n为任意整数)时, 2222..64164)11(2ffFSflkh 当h、k、l全为偶数,但nlkh4,则122nlkh时, 0)11(222..FSlkh
12. 证明第一布里渊区的体积为cV32,其中Vc是正格子初基原胞的体积。 证明:根据正、倒格子之间的关系:
)(2321aab,)(2132aab;)(2213aab
Vc是正格子初基原胞的体积,第一布里渊区的体积为就为倒格子原胞的体积,即
cc
cc
VaaaaaaVaaaaaaVaaaV31231233211332332122)()(2