- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上式作为虎克定律在复杂受力情况下的一个推广, 因此称为广义虎克定律。式中系数Cmn (m,n 1,是2, ,6) 物质弹性性质的表征,由均匀性假设可知这些弹性性 质与点的位置无关,称为弹性常数。上式也可以写成 矩阵形式
广义虎克定律
x
y
C11 C21
C12 C22
C13 C23
C14 C24
各向同性体的广义虎克定律 如果物体是各向同性的,则在任何方向上弹性性质相 同,因此在各个方向上应力与应变关系相同。 下面来证明对于各向同性体,只有两个独立的弹性常 数。 (一)首先证明弹性状态下,主应力和主应变方向重合。
图4-2 应变主轴
数G称剪切弹性模量
广义虎克定律 在空间应力状态下,描述一点应力状态需6个应力分量 ,与之相应的应变状态也要用6个应变分量来表示。它 们之间存在一定关系。假设应力是应变的函数,分量形 式表示为:
x f1( x , y , z , yz , zx , xy )
y
f2
(
x
,
y
,
z
,
yz
,
zx
,
xy
要化使,它强增化加阶变段形中必的须最增高加点拉D所力对,应这的种现称象D为称强为度材极料限的。强
广义虎克定律--应力应变曲线 (四)局部变形阶段——DG段
过了D点以后,在局部范围内,横截面急剧缩小,继 续伸长需要拉力相应减小,到G点处,试件被拉断。
在纯剪应力作用时,与xy 也xy成正比, xy, 比G例xy系
广义虎克定律--应力应变曲线 在常温、静载情况下,由材料拉伸试件可得到 应力与应变关系曲线。不同材料得到的应力应变曲 线不同。图4-1给出低碳钢应力应变曲线。从图中 可看出,该曲线大致可分为四个阶段:
图4-1 某材料应力与应变关系曲线
广义虎克定律--应力应变曲线
(一)弹性阶段——OB段
,为即直在变线此形,段完 说内全 明,消 当撤失去。外通力时常时,为(A,,称将成)为沿B线弹O性(性B关,线极系恢限) 即复。回而原OA点段O
对 ,可x 得:
x
(
f1 )0
( f1
x
)0 x
( f1
y
)0 y
( f1
z
)0 z
( f1
yz
)0
yz
( f1
zx
)0
zx
( f1
xy
)0
xy
广义虎克定律 展开系数表示函数在其对应变分量一阶导数在应变分 量等于零时的值,而 实( f1际)0 上代表初应力,由于无初应 力假设 等于( f1零)0 。 其它分量类推,那么在小变形情况下应力与应变关系 式简化为:
x C11 x C12 y C13 z C14 yz C15 zx C16 xy
y
C21 x
C22 y
C23 z
C24 yz
C25 zx
C26 xy
z yz
C31 x C41 x
C32 y C42 y
C33 z C43 z
C34 yz C44 yz
C35 zx C45 zx
(4-1)
E
广义虎克定律--应力应变曲线
其中E是与材料有关的弹性常数,通常称为弹性模
量,E的量纲与 相同,一般用GN/m2。 则A称为比
例极限,上式即为虎克定律的数学表达式。
A点与B点非常接近,工程上弹性极限 B和比例极限 并A 不严格区分。这种情况下,横向应变 与' 轴向应
变 绝对值之比一般是常数,即
'
(4-2)
称为横向变形系数或泊松比。
广义虎克定律--应力应变曲线
(二)屈服阶段——BC段
当 后,B出现应变增加很快,而应力在很小范围
内波动的阶段。这种应力变化不大,而应变显著增加的
现象称屈服或流动,屈服阶段的最低应力 称屈 服S 极限
。
(三)强化阶段——CD段
过了屈服阶段以后,材料又恢复了抵抗变形的能力,
)
z f3 ( x , y , z , yz , zx , xy )
yz
f
4
(
x
,
y
,
z
,
yz
,
zx
,ห้องสมุดไป่ตู้
xy
)
zx
f5
(
x
,
y
,
z
,
yz
,
zx
,
xy
)
xy f6 ( x , y , z , yz , zx , xy )
(4-3a)
广义虎克定律
在小变形条件下,应变分量都是微量,(a)式在应变 为零附近做Taylor展开后,忽略2阶以上的微量,例如
第四章应力与应变关系
第四章 应力与应变关系
4.1 广义虎克定律 4.2 工程弹性常数及相互间关系式 4.3 简单和复杂应力状态下弹性应变能和应变能密度 4.4 能量密度与能通量密度
应力与应变关系
在前几章中,从静力学、动力学和几何学的观点分 别研究了应力和应变。前面知道联结应力分量(6个)与 位移分量(3个)有3个方程,联结应变分量(6个)与位移 分量(3个)有6个方程,15个未知数9个方程,还需要6 个方程才能求解弹性动力学问题。
C15 C25
C16 C26
x y
z
yz
CC3411
C32 C42
C33 C43
C34 C44
C35 C45
C36 C46
z yz
zx
C51
C52
C53
C54
C55
C56
zx
xy C61 C62 C63 C64 C65 C66 xy
(4-4)
可以证明对各向异性体,由于应变能存在,也只有 21个弹性常数独立,对各向同性体,只有两个弹性常 数独立。
C36 xy C46 xy
(4-3b)
zx
C51 x
C52 y
C53 z
C54 yz
C55 zx
C56 xy
xy C61 x C62 y C63 z C64 yz C65 zx C66 xy
广义虎克定律
上式表明在弹性体内,任一点的每一应力分量都是 6个应变分量的线性函数,反之亦然。简单拉伸实验已 指出在弹性极限以内,应力与应变呈线性关系,与上 式一致。
X
x
yx
y
zx
z
X
2u
t 2
xy
x
y
y
zy
z
Y
2v t 2
xz
x
yz
y
z
z
Z
2w t 2
平衡运动微分方程
应力与应变关系
x
u x
y
v y
z
w z
xy
v x
u y
yz
w y
v z
zx
u z
w
x
几何方程
应力与应变关系
要解决弹性动力学问题,还要研究应力与应变的关 系,这种关系通常被称为物理方程或本构方程。即还 需要补充应力与应变关系(6个方程)。应力与应变的关 系反映物质固有的物理特性,应力分量与应变分量的 一一对应关系,在线性弹性范围内,便是广义虎克定 律。