对坐标的曲面积分
- 格式:pdf
- 大小:1.03 MB
- 文档页数:41
第五节 对坐标的曲面积分 ㈠本课的基本要求了解对坐标的曲面积分的概念,性质及两类曲面积分的关系,掌握对坐标的曲面积分的计算方法㈡本课的重点、难点对面积的曲面积分的概念为重点,其计算方法为难点 ㈢教学内容一.对坐标的曲面积分的概念与性质 这里假定曲面是光滑的。
通常我们遇到的曲面都是双侧的。
例如由方程),(y x z z =表示的曲面,有上侧与下侧之分(假定z 轴铅直向上);又例如,一张包围某一空间区域的闭曲面,有外侧与内侧之分。
以后我们总假定所考虑的曲面是双侧的。
在讨论对坐标的曲面积分时,需要指定曲面的侧。
我们可以通过曲面上法向量的指向来定出曲面的侧。
例如,对于曲面),(y x z z =,如果取它的法向量n 的指向朝上,我们就认为取定曲面的上侧;又如,对于闭曲面如果取它的法向量的指向朝外,我们就认为取定曲面的外侧。
这种取定了法向量亦即选定了侧的曲面,就你为有向曲面。
设∑是有向曲面。
在∑上取一小块曲面s ∆,把s ∆投影到xoy 面上得一投影区域,这投影区域的面积记为xy )(σ∆。
假定s ∆上各点处的法向量与z 轴的夹角γ的余弦γcos 有相同的符号(即γcos 都是正的或都是负的)。
我们规定s ∆在xoy 面上的投影xy s )(∆为⎪⎩⎪⎨⎧≡<∆->∆=∆0cos ,00cos ,)(0cos ,)()(γγσγσxy xy xys 其中0cos ≡γ也就是0)(=∆xy σ的情形。
s ∆在xoy 面上的投影xy s )(∆实际就是s ∆在xoy 面上的投影区域的面积附以一定的正负号。
类似地可以定义s ∆在yoz 面及zox 面的投影yz s )(∆及zx s )(∆。
1.引例:流向曲面一侧的流量问题 设稳定流动的不可压缩流体(假定密度为1)的速度场由k z y x R j z y x Q i z y x P z y x v ),,(),,(),,(),,(++=给出,∑是速度场中一片有向曲面,函数),,(),,,(),,,(z y x R z y x Q z y x P 都在∑上连续,求在单位时间内流向∑指定侧的流体的质量,即流量Φ。
对面积的曲面积分和对坐标的曲面积分曲面积分是多元函数的积分扩展,用于计算曲面上某个量的总和。
它分为对面积和对坐标的曲面积分。
对面积的曲面积分
对面积的曲面积分是通过将曲面分割成小面元,并对每个小面元的贡献进行求和得到的。
每个小面元的贡献取决于曲面上某个标量场的值以及该面元的面积。
计算对面积的曲面积分的一般步骤如下:
1.将曲面分割成小面元,可以使用直角坐标系、极坐标系或其他合适的坐标
系。
2.计算每个小面元的面积。
3.计算每个小面元上标量场的值。
4.将每个小面元的贡献相加,并对所有小面元求和。
对坐标的曲面积分
对坐标的曲面积分是通过将曲面分割成小面元,并对每个小面元的贡献进行求和得到的。
每个小面元的贡献取决于曲面上某个向量场的分量以及该面元的面积。
计算对坐标的曲面积分的一般步骤如下:
1.将曲面分割成小面元,可以使用直角坐标系、极坐标系或其他合适的坐标
系。
2.计算每个小面元的面积。
3.计算每个小面元上向量场的分量。
4.将每个小面元的贡献相加,并对所有小面元求和。
通过对面积的曲面积分和对坐标的曲面积分,我们可以计算曲面上各种量的总和,这在物理学、工程学等领域中有广泛的应用。
对坐标的曲面积分的计算方法(一)对坐标的曲面积分的计算方法1. 引言曲面积分是微积分中的一种重要计算方法,用来求解三维空间中曲面上的某种量的总量。
其中,对坐标的曲面积分是其中一种常见的计算方法。
本文将详细介绍对坐标的曲面积分的计算方法。
2. 曲面积分的定义对坐标的曲面积分是指将一个函数在曲面上的每一点上的值乘以一个微小面积后进行累加得到的总量。
数学上,对坐标的曲面积分的公式如下:[曲面积分公式](其中,[f(x, y, z)]( 是定义在曲面上的函数,[dS]( 表示微小面积。
3. 计算方法对坐标的曲面积分的计算方法可以分为以下几种:3.1 参数化曲面法参数化曲面法是最常用的计算方法之一。
它将曲面上的点表示为二维参数域上的点,然后通过将参数域上的点映射到三维空间,从而得到曲面上的点坐标。
根据参数化曲面的定义,可以将对坐标的曲面积分转化为对参数域上的曲面积分的计算。
3.2 曲面积分的直接计算法对于某些特定的曲面,可以直接计算对坐标的曲面积分。
例如,球面、平面等特殊曲面具有简单的几何形状,可以直接进行计算。
3.3 曲面积分的换元计算法曲面积分的换元计算法是通过选择适当的变量替换来简化计算。
例如,对于某些问题,可以通过使用球坐标、柱坐标或其他坐标系来简化计算。
3.4 曲面积分的参数消去法对于某些特殊的曲面,可以通过参数消去法来简化计算。
参数消去法通过选择适当的参数变换,将曲面的方程转化为简化形式,从而简化对坐标的曲面积分的计算。
4. 结论对坐标的曲面积分的计算方法有很多种,可以根据具体的曲面和问题选择合适的方法。
参数化曲面法、直接计算法、换元计算法和参数消去法都是常用的计算方法。
在实际应用中,需要根据具体情况灵活选择合适的方法来求解对坐标的曲面积分。
以上是对坐标的曲面积分的计算方法的一些简要介绍,希望对读者有所帮助。
(以上内容仅供参考,具体计算方法以教材和相关资料为准。
)5. 参数化曲面法详解参数化曲面法是计算对坐标的曲面积分最常用的方法之一,下面将详细介绍该方法的步骤:5.1 确定参数域首先,需要确定参数域,即一个二维参数空间。
对坐标的曲面积分曲面的侧•曲面分类双侧曲面单侧曲面莫比乌斯带曲面分上侧和下侧曲面分内侧和外侧曲面分左侧和右侧(单侧曲面的典型)其方向用法向量指向方向余弦cos αcos βcos γ> 0 为前侧< 0 为后侧封闭曲面> 0 为右侧< 0 为左侧> 0 为上侧< 0 为下侧外侧内侧侧的规定•指定了侧的曲面叫有向曲面表示:Oxyz(),,1x y n z z =--(),z z x y =(),,1x y n z z =-Oxyz(),z z x y =上侧曲面下侧曲面若曲面为则曲面定向可取上侧或下侧,():,,z z x y ∑=当此曲面取上侧时, 法向量为(),,1;x y n z z =--当此曲面取下侧时, 法向量为(),,1;xyn z z =-右侧曲面左侧曲面若曲面为则曲面定向可取右侧或左侧,():,,y y x z ∑=当此曲面取右侧时, 法向量为当此曲面取左侧时, 法向量为(),1,;x z n y y =--(),1,;x z n y y =-Oxyz(),1,x z n y y =--(),y y x z =Oxyz(),1,x z n y y =-(),y y x z =前侧曲面后侧曲面若曲面为则曲面定向可取前侧或后侧,():,,x z y z ∑=当此曲面取前侧时, 法向量为当此曲面取后侧时, 法向量为()1,,;y z n x x =--()1,,;yzn x x =-Oxyz()1,,y z n x x =--(),x x y z =Oxyz()1,,y z n x x =-(),x x y z =设∑是有向曲面. 在∑上取一小块曲面S ∆,把S ∆投影到xOy 面上得一投影区域, 面积记为()xy σ∆S ∆在xOy 面上的投影()xy S ∆为⎪⎩⎪⎨⎧≡<∆->∆=∆0cos 00cos )(0cos )()(γγσγσxy xy xy S流向曲面一侧的流量设稳定流动的不可压缩流体的速度场由v x y z P x y z Q x y z R x y z=给出, (,,)((,,),(,,),(,,))∑是速度场中的一片有向曲面,函数(,,),(,,),(,,)P x y z Q x y z R x y z都在∑上连续,求在单位时间内流向∑指定侧流体的质量,即流量Φ.当()π,2v n θ=<时,||cos A v Av n θ⇒Φ=⋅v n hθ当()π,2v n θ==时, 0Av n Φ=⋅=当()π,2v n θ=>时, 0Av n Φ=⋅<(,,)i i i i S ξηζ∀∈∆nviS ∆∑(,,)(,,)(,,)(,,)i i i i i i i i i i i i i v v P i Q j R kξηζξηζξηζξηζ==++(,,)cos cos cos i i i i i i i n i j k ξηζαβγ=++ 1ni i i i v n S =Φ≈⋅∆∑i i i ni S ∆⋅≈=∑n v 1Φii i i i i i i i i i i i ni S R Q P ∆++==∑]cos ),,(cos ),,(cos ),,([1γζηξβζηξαζηξ()()()cos ,cos ,cos i i i i i i i i i yz xz xyS S S S S S αβγ⋅∆≈∆⋅∆≈∆⋅∆≈∆]))(,,())(,,())(,,([1xy i i i i zx i i i i yz i i i i ni S R S Q S P ∆+∆+∆≈Φ=∑ζηξζηξζηξ对坐标的曲面积分的概念和性质设∑为光滑的有向曲面, 函数(,,)R x y z 在∑上有界.把∑任意分成n 块小曲面i S ∆(i S ∆也代表第i 小块曲面面积).在xOy 面上的投影为()i xy S ∆, (,,)i i i ξηζ是i S ∆上任意一点. 定义 如果当各小块曲面的直径的最大值0λ→时,xy i i i i ni S R ))(,,(lim 10∆=→∑ζηξλ 总存在,定义 称此极限为函数(,,)R x y z 在有向曲面∑上对坐标,x y 的曲面积分: 记作 (,,)d d R x y z x y ∑⎰⎰01(,,)d d lim (,,)()niiii xyi R x y z x y R S λξηζ→=∑=∆∑⎰⎰其中(,,)R x y z 叫做被积函数,∑叫做积分曲面.定义 类似的有01(,,)d d lim (,,)()ni i i i yzi P x y z y z P S λξηζ→=∑=∆∑⎰⎰01(,,)d d lim (,,)()ni i i i zx i Q x y z z x Q S λξηζ→=∑=∆∑⎰⎰以上三个曲面积分也称为第二类曲面积分.为P 在曲面∑上对坐标,y z 的曲面积分为Q 在曲面∑上对坐标,z x 的曲面积分对坐标的曲面积分的简记形式(,,)d d (,,)d d (,,)d d P x y z y z Q x y z z x R x y z x y ∑∑∑++⎰⎰⎰⎰⎰⎰(,,)d d (,,)d d (,,)d d P x y z y z Q x y z z x R x y z x y ∑=++⎰⎰对坐标的曲面积分的物理意义(,,)d d (,,)d d (,,)d d P x y z y z Q x y z z x R x y z x y ∑Φ=++⎰⎰对坐标的曲面积分的侧的性质设∑是有向曲面, -∑表示与∑取相反侧的曲面, 则d d d d d d d d d d d d P y z Q z x R x y P y z Q z x R x y -∑∑++=-++⎰⎰⎰⎰对坐标的曲面积分的计算法设积分曲面∑由方程(,)z z x y =给出的, ∑在xOy 面上的投影区域为xy D , 函数(,)z z x y =在xy D 上具有一阶连续偏导数, 被积函数(,,)R x y z 在∑上连续,(,,)d d [,,(,)]d d xyD R x y z x y R x y z x y x y ∑=±⎰⎰⎰⎰当∑取上侧时, 积分前取“+”; 当∑取下侧时, 积分前取“-”类似地, 如果∑由(,)x x y z =给出, 则有(,,)d d [(,),,]d d yzD P x y z y z P x y z y z y z ∑=±⎰⎰⎰⎰如果∑由(,)y y x z =给出, 则有(,,)d d [,(,),]d d zxD Q x y z z x Q x y z x z z x ∑=±⎰⎰⎰⎰前正后负 右正左负例 计算曲面积分222d d d d d d x y z y z x z x y ∑++⎰⎰ , 其中∑是长方体Ω的整个表面的外侧,解 把Ω的上下面分别记为1∑和2∑;{(,,)|0,0,0}x y z x a y b z c Ω=≤≤≤≤≤≤前后面分别记为3∑和4∑; 左右面分别记为5∑和6∑.xzyO1∑2∑3∑4∑5∑6∑xzyO1∑2∑3∑4∑5∑6∑解 1:(0,0)z c x a y b ∑=≤≤≤≤的上侧;2:0(0,0)z x a y b ∑=≤≤≤≤的下侧;3:(0,0)x a y b z c ∑=≤≤≤≤的前侧;4:0(0,0)x y b z c ∑=≤≤≤≤的后侧;5:0(0,0)y x a z c ∑=≤≤≤≤的左侧. 6:(0,0)y b x a z c ∑=≤≤≤≤的右侧.xzyO1∑2∑3∑4∑5∑6∑解 除3∑、4∑外, 其余四片曲面在yOz 面上的投影为零,34222d d d d d d x y z x y z x y z ∑∑∑=+⎰⎰⎰⎰⎰⎰2d d 0d d yzyzD D a y z y z =-⎰⎰⎰⎰2a bc =3:∑=x a 4:0∑=x解 xzyO1∑2∑3∑4∑5∑6∑类似地可得22d d y z x b ac ∑=⎰⎰,22d d z x y c ab ∑=⎰⎰,于是所求曲面积分为()a b c abc ++.例 计算曲面积分d d xyz x y ∑⎰⎰, 其中∑是球面2221x y z ++=外侧在0,0x y ≥≥的部分.解 1∑: 221y x z --=(0,0)x y ≥≥的上侧,Oyxz1∑2∑xyD 2∑: 221y x z ---=(0,0)x y ≥≥的下侧.Oyxz1∑2∑xyD 例 计算曲面积分d d xyz x y ∑⎰⎰, 其中∑是球面2221x y z ++=外侧在0,0x y ≥≥的部分.解 1∑和2∑在xOy 面上的投影区域都是22:1(0,0)xy D x y x y +≤≥≥解12d d d d d d xyz x y xyz x y xyz x y ∑∑∑=+⎰⎰⎰⎰⎰⎰22221d d (1)d d xyxyD D xy x y x y xy x y x y=------⎰⎰⎰⎰ 2221d d xyD xy x y x y =--⎰⎰π122202d sin cos 1d θθθ=-⎰⎰r r r r 152=两类曲面积分之间的联系设积分曲面∑由方程(,)=给出,z z x yD,∑在xOy面上的投影区域为xyD上具有一阶连续偏导数,函数(,)=在z z x yxy被积函数(,,)R x y z在∑上连续.如果∑取上侧, 则有(,,)d d [,,(,)]d d xy D R x y z x y R x y z x y x y ∑=⎰⎰⎰⎰因上述有向曲面∑的法向量的方向余弦为221cos y x x z z z ++-=α, 221cos y x yz z z ++-=β, 2211cos y x z z ++=γ,(,,)cos d [,,(,)]d d xy D R x y z S R x y z x y x y γ∑=⎰⎰⎰⎰(,,)d d (,,)cos d R x y z x y R x y z S γ∑∑=⎰⎰⎰⎰如果∑取下侧, 则有(,,)d d [,,(,)]d d xyD R x y z x y R x y z x y x y ∑=-⎰⎰⎰⎰ 但这时2211cos yx z z ++-=γ, 因此仍有 (,,)d d (,,)cos d R x y z x y R x y z S γ∑∑=⎰⎰⎰⎰(,,)d d (,,)cos d R x y z x y R x y z S γ∑∑=⎰⎰⎰⎰ (,,)d d (,,)cos d P x y z y z P x y z S α∑∑=⎰⎰⎰⎰ (,,)d d (,,)cos d Q x y z z x Q x y z S β∑∑=⎰⎰⎰⎰d d d d d d (cos cos cos )d P y z Q z x R x y P Q R S αβγ∑∑++=++⎰⎰⎰⎰向量形式d d A S A n S ∑∑⋅=⋅⎰⎰⎰⎰,d d n A S A S ∑∑⋅=⎰⎰⎰⎰, (,,)A P Q R =, (cos ,cos ,cos )n αβγ=,d d (d d ,d d ,d d )S n S y z z x x y ==n A 为向量A 在向量n 上的投影.例 计算曲面积分2()d d d d z x y z z x y ∑+-⎰⎰, 其中∑是曲面)(2122y x z +=介于平面0z =及2z =之间部分的下侧. 解 曲面上向下的法向量为(,,1)x y - 221cos y x x ++=α, 2211cos y x ++-=γ, O yx z222d 1d d S x y x y =++解 d d =cos d ,d d cos d y z S x y S αγ= d d d d =cos ()d d ,cos x y y z x x y αγ=- 22()d d d d [()()]d d z x y z z x y z x x z x y ∑∑+-=+--⎰⎰⎰⎰2[()()]d d ∑+--⎰⎰z x x z x y 2222211()()()d d 42⎧⎫⎡⎤=-++⋅--+⎨⎬⎢⎥⎣⎦⎩⎭⎰⎰xy D x y x x x y x y 22222211()()d d 42⎧⎫=+-+⎨⎬⎩⎭+⎰⎰xyD x x y x y y x x2221()d d 20⎡⎤=+++⎢⎥⎣⎦⎰⎰xy D x x y x y 2222241[()]d d 2x y x x y x y +≤=++⎰⎰ 2π2222001d (cos )d 2θθ=+⎰⎰r r r r 8π=对坐标的曲面积分1. 理解曲面的侧,对坐标的曲面积分的概念.2. 掌握对坐标(第二类)的曲面积分的计算方法.3. 理解两类曲面积分的联系.。