变:等差数列首项为-5,前11项的 平均值为5,若从中抽取一项,余 下10项的平均值为4.6,则抽取的是 第几项。
谢谢观看
3、{an}成A.P, {bn}成 G.P,a1=b1,a2n+1=b2n+1
比较an+1与bn+1的大小。
综合
1、{an}的前n项的和为bn,数列{bn} 的前n项和为cn,且bn+cn=n,nN* (1)证明:数列{1-bn}为等比数列 (2)求{cn}的前n项的和 (3)比较1/an-1与(bn+cn+1)2的大小
2、已知数列{an}中,Sn是它的前n 项和, Sn+1=4an+2,a1=1,设 bn=an+1-2an,
求证:{bn}是等比数列,并求它的 通项公式。
3、正项等比数列{an}的首项a1 =2-5,其前11项的几何平均数为 25,若前11项中抽取一项后的几 何平均数仍是25,则抽去一项的项 数————
(2)a =18,a =8,求a ,q 求和公式:Sn=kqn-k (q≠1)
2 3、m+n=s+t → am.
通项公式:an=kqn-1
4
1
(2)求{cn}的前n项的和
2: a1<0,q>1
10{kan} 20{an2} 30{an.
(3)a5=4,a7=6,求a9 (2){an}是等比数列,{bn}是等比数列
4、若方程x2-5x+m=0与x210x+n=0的四个根,适当排列后, 恰好组成一个首项为1的等比数列, 则m:n=?
性质 :
看清下标用性质
1、b是a, c的等比中项
a b b2 ac bc
2、m+n=2s →am.an=as2 3、m+n=s+t → am.an=as.at