高考文科数学三角函数知识点
- 格式:docx
- 大小:164.25 KB
- 文档页数:4
三角函数专题复习知识点一:三角函数的概念、同角三角函数的关系式及诱导公式一.考试要求二.基础知识1.角的概念的推广:按逆时针方向旋转所形成的角叫 角,按顺时针方向旋转所形成的角叫_______角,一条射线没有作任何旋转时,称它形成一个 角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角(1)定义:在直角坐标系中,使角的顶点与原点重合,角的始边与轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角 任何象限。
(2)象限角的集合:第一象限角的集合为第二象限角的集合为第三象限角的集合为___________________________________第四象限角的集合为___________________________________终边在轴上的角的集合为终边在轴上的角的集合为______________________终边在坐标轴上的角的集合为_____________________(3)终边相同的角:与终边相同的角注意:相等的角的终边一定________,终边相同的角_____________.3、与的终边关系:若是第二象限角,则是第_____象限角4.弧度制:弧度与角度互换公式:1rad=、1°=(rad)。
弧长公式:(是圆心角的弧度数),扇形面积公式:【典例】已知扇形周长为10,面积为4,求扇形的圆心角.5、任意角的三角函数的定义:设是任意一个角,是的终边上的任意一点(异于原点),它与原点的距离是,那么,,.注:三角函数值与角的大小关,与终边上点P的位置关。
思考:判断各三角函数在每个象限的符号?【典型例题】1.(2014全国)已知角的终边经过点,则=()A.B.C.D.2.已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=____________,=____________,=____________3.(2011江西)已知角的顶点为坐标原点,始边为轴的正半轴,若是角终边上一点,且,则=_____________.【变式训练】1.(2014湖北孝感)点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.若,且,则所在的象限为_______________.3.已知角的终边上一点,且,求的值.6.特殊角的三角函数值:7.同角三角函数的基本关系式:(1)平方关系:(2)商数关系:【典型例题】1.已知,,则()A.B.C.D.无法确定2:已知,,则__________3.(2012江西)若,则=_________.【变式训练】1.(2011全国)已知,,则=______.2.如果,且,那么的值是()A.B.或C.D.或3.若,则=____________,=_______,=_____________.8、三角函数的诱导公式(重难点)【规律总结】奇偶(对而言,取奇数或偶数),符号___________(看原函数,同时把看成是锐角).诱导公式的应用的一般步骤:(1)负角变正角,再写成+,;(2)转化为锐角三角函数.【典型例题】1.(2013广东)已知,那么()A.B.C.D.2.如果为锐角,()A.B.C.D.3.的值等于()A.B.-C.D.-4.+的值是 .【变式训练】1.=_________;2.已知的值等于___________.3.已知.(1)化简;(2)若角的终边在第二象限且,求.【迁移应用】1.下列各命题正确的是()A.终边相同的角一定相等B.第一象限的角都是锐角C.锐角都是第一象限的角D.小于的角都是锐角2.等于()ABCD3.(2013山东诸城)集合中的角的终边所在的范围(阴影部分)是()4.化为弧度等于()A.B.C.D.5.点在第()象限.A.第一象限 B.第二象限 C.第三象限 D.第四象限6.点在第三象限,则角的终边在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.点从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q的坐标为()A.B.C.D.8.设,角的终边经过点,那么的值等于( )A.B.C.D.9.已知,且,则的值为( )A.B.[C.D.10.化简的结果是()A.B.1 C.D.11.已知角的顶点在坐标原点,始边与轴正半轴重合,终边在直线上,则=()A.B.2 C.0 D.12.(2014山东济南质检)已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=_________.13.(2011全国)已知,,则__________.14.已知,则____________.15..扇形的圆心角是,半径为20cm,则扇形的面积为16.(2012山东)如图,在平面直角坐标系中,一单位圆的圆心的初始位置在,此时圆上一点的位置在,圆在轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为__________________.17.化简:(1)(2)18.已知,求(1);(2)的值19.(2013江苏启东中学测试)已知是关于的方程的两个根.(1)求的值.(2)求的值.知识点二:三角恒等变换1.考试要求二.基础知识(1)两角和与差的三角函数(正余余正号相同)(余余正正号相反)(2).二倍角公式______________=_____________=______________.(3)降幂公式;____________;___________.(4)辅助角公式。
第3节三角恒等变换考试要求 1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin__αcos__β±cos__αsin__β.cos(α∓β)=cos__αcos__β±sin__αsin__β.tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式sin 2α=2sin__αcos__α.cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.tan 2α=2tan α1-tan2α.3.函数f(α)=a sin α+b cos α(a,b为常数),可以化为f(α)=a2+b2sin(α+φ)(其中tan φ=ba)或f(α)=a2+b2·cos(α-φ)(其中tan φ=ab).1.tan α±tan β=tan(α±β)(1∓tan αtan β).2.cos2α=1+cos 2α2,sin2α=1-cos 2α2.3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.1.思考辨析(在括号内打“√”或“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( ) (4)存在实数α,使tan 2α=2tan α.( ) 答案 (1)√ (2)√ (3)× (4)√解析 (3)变形可以,但不是对任意的α,β都成立,α,β,α+β≠π2+k π(k ∈Z ).2.(易错题)已知锐角α,β满足sin α=1010,cos β=255,则α+β=( ) A.3π4 B.π4 C.π6 D.3π4或π4 答案 B解析 ∵sin α=1010,cos β=255, 又α,β为锐角,∴cos α=31010,sin β=55,∴cos(α+β)=cos αcos β-sin αsin β=31010×255-1010×55=22.∵0<α+β<π,∴α+β=π4. 3.计算:1+tan 15°1-tan 15°=________.答案3解析 1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)=tan 60°= 3.4.(易错题)tan 10°+tan 50°+3tan 10°tan 50°=________. 答案3解析 ∵tan 60°=tan(10°+50°) =tan 10°+tan 50°1-tan 10°tan 50°, ∴tan 10°+tan 50°=tan 60°(1-tan 10°tan 50°)=3-3tan 10°tan 50°, ∴原式=3-3tan 10°tan 50°+3tan10°tan 50°= 3. 5.(2020·江苏卷)已知sin 2⎝ ⎛⎭⎪⎫π4+α=23,则sin 2α的值是________.答案 13解析 因为sin 2⎝ ⎛⎭⎪⎫π4+α=23, 所以1-cos ⎝ ⎛⎭⎪⎫π2+2α2=23,即1+sin 2α2=23,所以sin 2α=13.6.函数f (x )=sin 2x +3cos 2x 的周期为________. 答案 π解析 f (x )=2⎝ ⎛⎭⎪⎫12sin 2x +32cos 2x=2sin ⎝ ⎛⎭⎪⎫2x +π3,周期T =2π2=π.第一课时 两角和与差的正弦、余弦和正切公式考点一 公式的基本应用1.已知cos α=-45,α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫α+π4等于( ) A.-210 B.210 C.-7210 D.7210 答案 C解析 ∵α∈⎝ ⎛⎭⎪⎫π,3π2,且cos α=-45,∴sin α=-35,∴sin ⎝ ⎛⎭⎪⎫α+π4=-35×22+⎝ ⎛⎭⎪⎫-45×22=-7210.2.(2022·贵阳模拟)已知角α,β的顶点为坐标原点,始边与x 轴的非负半轴重合,若角α,β的终边分别与单位圆交于点A ⎝ ⎛⎭⎪⎫x 1,13,B ⎝ ⎛⎭⎪⎫x 2,23,其中x 1<0<x 2,则cos(2α-β)=________. 答案 75-8227解析 由题意可知,sin α=13,sin β=23, 由x 1<0<x 2可知cos α=-1-sin 2α=-223,cos β=1-sin 2β=53,所以cos 2α=⎝ ⎛⎭⎪⎫-2232-⎝ ⎛⎭⎪⎫132=79, sin 2α=2×⎝⎛⎭⎪⎫-223×13=-429, 所以cos(2α-β)=cos 2αcos β+sin 2αsin β=75-8227.3.已知2tan θ-tan ⎝ ⎛⎭⎪⎫θ+π4=7,则tan 2θ=________.答案 -43解析 2tan θ-tan ⎝ ⎛⎭⎪⎫θ+π4=2tan θ-1+tan θ1-tan θ=7,解得tan θ=2,∴tan 2θ=2tan θ1-tan 2θ=2×21-22=-43. 感悟提升 1.使用两角和与差的三角函数公式,首先要记住公式的结构特征. 2.使用公式求值,应先求出相关角的函数值,再代入公式求值.考点二 公式的逆用、变形用 角度1 公式的活用例1 (1)tan 22.5°1-tan 222.5°的值为________.(2)若α+β=-3π4,则(1+tan α)(1+tan β)=________. (3)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. 答案 (1)12 (2)2 (3)-12 解析 (1)tan 22.5°1-tan 222.5°=12·2tan 22.5°1-tan 222.5°=12tan 45°=12×1=12. (2)tan ⎝ ⎛⎭⎪⎫-3π4=tan(α+β)=tan α+tan β1-tan αtan β=1,所以1-tan αtan β=tan α+tan β,所以1+tan α+tan β+tan αtan β=2, 即(1+tan α)·(1+tan β)=2.(3)∵sin α+cos β=1,cos α+sin β=0,∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.角度2 辅助角公式的运用 例2 化简:(1)sin π12-3cos π12; (2)cos 15°+sin 15°; (3)1sin 10°-3sin 80°; (4)315sin x +35cos x .解 (1)法一 原式=2⎝ ⎛⎭⎪⎫12sin π12-32cos π12=2⎝ ⎛⎭⎪⎫sin π6sin π12-cos π6cos π12 =-2cos ⎝ ⎛⎭⎪⎫π6+π12=-2cos π4=- 2.法二 原式=2⎝ ⎛⎭⎪⎫12sin π12-32cos π12=2⎝ ⎛⎭⎪⎫cos π3sin π12-sin π3cos π12 =-2sin ⎝ ⎛⎭⎪⎫π3-π12=-2sin π4=- 2. (2)cos 15°+sin 15°=2(cos 45°cos 15°+sin 45°sin 15°) =2cos(45°-15°) =2×32=62.(3)原式=cos 10°-3sin 10°sin 10°cos 10° =2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=4(sin 30°cos 10°-cos 30°sin 10°)2sin 10°cos 10°.=4sin (30°-10°)sin 20°=4.(4)315sin x +35cos x =65⎝ ⎛⎭⎪⎫32sin x +12cos x=65⎝ ⎛⎭⎪⎫sin x cos π6+cos x sin π6=65sin ⎝ ⎛⎭⎪⎫x +π6.感悟提升 1.运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力.2.对a sin x +b cos x 化简时,辅助角φ的值如何求要清楚.训练1 (1)下列式子化简正确的是( ) A.cos 82°sin 52°-sin 82°cos 52°=12 B.sin 15°sin 30°sin 75°=14 C.tan 48°+tan 72°1-tan 48°tan 72°= 3D.cos 215°-sin 215°=32(2)(2022·郑州模拟)函数f (x )=cos x -sin ⎝ ⎛⎭⎪⎫x +π6-sin ⎝ ⎛⎭⎪⎫x -π6在[0,π]的值域为________.答案 (1)D (2)[-2,1]解析 (1)选项A 中,cos 82°sin 52°-sin 82°·cos 52°=sin(52°-82°)=sin(-30°) =-sin 30°=-12,故A 错误;选项B 中,sin 15°sin 30°sin 75°=12sin 15°cos 15°=14sin 30°=18,故B 错误; 选项C 中,tan 48°+tan 72°1-tan 48°tan 72°=tan (48°+72°)=tan 120°=-3,故C 错误;选项D 中,cos 215°-sin 215°=cos 30°=32,故D 正确.(2)f (x )=cos x -32sin x -12cos x -32sin x +12cos x =cos x -3sin x =2cos ⎝ ⎛⎭⎪⎫x +π3.∵0≤x ≤π,∴π3≤x +π3≤4π3,则当x +π3=π时,函数取得最小值2cos π=-2,当x +π3=π3时,函数取得最大值2cos π3=2×12=1, 即函数的值域为[-2,1]. 考点三 角的变换例3 (1)已知sin α=255,sin(β-α)=-1010,α,β均为锐角,则β等于( ) A.5π12 B.π3 C.π4 D.π6(2)(2022·大庆模拟)已知α,β∈⎝ ⎛⎭⎪⎫3π4,π,sin(α+β)=-35,sin ⎝ ⎛⎭⎪⎫β-π4=2425,则cos ⎝ ⎛⎭⎪⎫α+π4=________. (3)(2022·兰州模拟)若23sin x +2cos x =1,则sin ⎝ ⎛⎭⎪⎫5π6-x ·cos ⎝ ⎛⎭⎪⎫2x +π3=________.答案 (1)C (2)-45 (3)732解析 (1)因为sin α=255,sin(β-α)=-1010,且α,β均为锐角,所以cos α=55,cos(β-α)=31010, 所以sin β=sin [α+(β-α)] =sin α·cos(β-α)+cos αsin(β-α) =255×31010+55×⎝ ⎛⎭⎪⎫-1010=25250 =22,所以β=π4.故选C.(2)由题意知,α+β∈⎝ ⎛⎭⎪⎫3π2,2π,sin(α+β)=-35<0,所以cos(α+β)=45,因为β-π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以cos ⎝ ⎛⎭⎪⎫β-π4=-725, cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫β-π4 =cos(α+β)cos ⎝ ⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝ ⎛⎭⎪⎫β-π4=-45.(3)由题意可得4sin ⎝ ⎛⎭⎪⎫x +π6=1,令x +π6=t ,则sin t =14,x =t -π6, 所以原式=sin(π-t )cos 2t =sin t (1-2sin 2t )=732.感悟提升 1.求角的三角函数值的一般思路是把“所求角”用“已知角”表示. (1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β等.训练2 (1)已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,则sin 2α等于( ) A.5665B.-5665C.1665D.-1635(2)(2021·全国大联考)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.答案 (1)B (2)-45解析 (1)因为π2<β<α<3π4,所以0<α-β<π4,π<α+β<3π2,由cos(α-β)=1213,得sin(α-β)=513,由sin(α+β)=-35,得cos(α+β)=-45, 则sin 2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β) =513×⎝ ⎛⎭⎪⎫-45+1213×⎝ ⎛⎭⎪⎫-35=-5665.故选B. (2)由cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3⎝ ⎛⎭⎪⎫12cos α-32sin α=3cos ⎝ ⎛⎭⎪⎫α+π3=3sin ⎝ ⎛⎭⎪⎫π6-α=435,得sin ⎝ ⎛⎭⎪⎫π6-α=45.sin ⎝ ⎛⎭⎪⎫α+11π6=-sin ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫α+11π6 =-sin ⎝ ⎛⎭⎪⎫π6-α=-45.1.已知α是第二象限角,且tan α=-13,则sin 2α=( ) A.-31010 B.31010C.-35D.35答案 C解析 因为α是第二象限角,且tan α=-13, 所以sin α=1010,cos α=-31010,所以sin 2α=2sin αcos α=2×1010×⎝ ⎛⎭⎪⎫-31010=-35,故选C. 2.已知tan α2=3,则sin α1-cos α=( )A.3B.13 C.-3 D.-13答案 B解析 因为tan α2=3,所以sin α1-cos α=2sin α2cos α21-⎝⎛⎭⎪⎫1-2sin 2α2=cos α2sin α2=1tan α2=13,故选B.3.下列选项中,值为14的是( )A.2sin π12sin 5π12B.13-23cos 215°C.1sin 50°+3cos 50°D.cos 72°·cos 36° 答案 D解析 对于A ,2sin π12sin 5π12=2sin π12cos π12=sin π6=12,故A 错误; 对于B ,13-23cos 215°=-13(2cos 215°-1)=-13cos 30°=-36,故B 错误;对于C ,原式=cos 50°+3sin 50°sin 50°cos 50°=2⎝ ⎛⎭⎪⎫32sin 50°+12cos 50°12sin 100°=2sin 80°12sin 100°=2sin 80°12sin 80°=4,故C 错误;对于D ,cos 36°·cos 72°=2sin 36°·cos 36°·cos 72°2sin 36°=2sin 72°·cos 72°4sin 36°=sin 144°4sin 36°=14,故D 正确.4.(2020·全国Ⅲ卷)已知sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=1,则sin ⎝ ⎛⎭⎪⎫θ+π6等于( ) A.12 B.33 C.23 D.22答案 B解析 因为sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3 =sin ⎝ ⎛⎭⎪⎫θ+π6-π6+sin ⎝ ⎛⎭⎪⎫θ+π6+π6 =sin ⎝ ⎛⎭⎪⎫θ+π6cos π6-cos ⎝ ⎛⎭⎪⎫θ+π6sin π6+ sin ⎝ ⎛⎭⎪⎫θ+π6cos π6+cos ⎝ ⎛⎭⎪⎫θ+π6sin π6=2sin ⎝ ⎛⎭⎪⎫θ+π6cos π6=3sin ⎝ ⎛⎭⎪⎫θ+π6=1. 所以sin ⎝ ⎛⎭⎪⎫θ+π6=33. 5.若sin ⎝ ⎛⎭⎪⎫π6-θ=35,则sin ⎝ ⎛⎭⎪⎫π6+2θ=( ) A.-2425 B.2425 C.-725 D.725答案 D解析 法一 因为sin ⎝ ⎛⎭⎪⎫π6-θ=35, 所以sin ⎝ ⎛⎭⎪⎫π6+2θ=sin ⎣⎢⎡⎦⎥⎤π2-2⎝ ⎛⎭⎪⎫π6-θ =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-θ=1-2sin 2⎝ ⎛⎭⎪⎫π6-θ =1-2×⎝ ⎛⎭⎪⎫352=725.故选D. 法二 因为sin ⎝ ⎛⎭⎪⎫π6-θ=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π3+θ=35,所以cos ⎝ ⎛⎭⎪⎫2π3+2θ=2×⎝ ⎛⎭⎪⎫352-1=-725. 因为cos ⎝ ⎛⎭⎪⎫π2+π6+2θ=-sin ⎝ ⎛⎭⎪⎫π6+2θ, 所以sin ⎝ ⎛⎭⎪⎫π6+2θ=725. 6.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2等于( ) A.33B.-33C.539D.-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2 =cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+α·sin ⎝ ⎛⎭⎪⎫π4-β2. ∵0<α<π2,则π4<π4+α<3π4,∴sin ⎝ ⎛⎭⎪⎫π4+α=223. 又-π2<β<0,则π4<π4-β2<π2,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63. 故cos ⎝ ⎛⎭⎪⎫α+β2=13×33+223×63=539.故选C. 7.sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=________.答案 sin(α+γ)解析 sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=sin(α+β)cos(β-γ)-cos(α+β)sin(β-γ)=sin[(α+β)-(β-γ)]=sin(α+γ).8.(2020·浙江卷)已知tan θ=2,则cos 2θ=________,tan ⎝ ⎛⎭⎪⎫θ-π4=________. 答案 -35 13解析 由题意,cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2 θcos 2θ+sin 2 θ=1-tan 2θ1+tan 2θ=1-41+4=-35. tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-tan π41+tan θ·tan π4=tan θ-11+tan θ=2-11+2=13.9.tan 25°-tan 70°+tan 70°tan 25°=________.答案 -1解析 ∵tan 25°-tan 70°=tan(25°-70°)·(1+tan 25°tan 70°)=tan(-45°)(1+tan 25°tan 70°)=-1-tan 25°tan 70°,∴tan 25°-tan 70°+tan 70°tan 25°=-1.10.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值;(2)求cos β的值.解 (1)∵α,β∈⎝ ⎛⎭⎪⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝ ⎛⎭⎪⎫-1010=91050. 11.已知cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,且π2<α<π,0<β< π2,求cos(α+β).解 由已知,得π2<α-β2<π,0<α2-β<π2,∴sin ⎝ ⎛⎭⎪⎫α-β2=459,cos ⎝ ⎛⎭⎪⎫α2-β=53, ∴cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β =cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2·sin ⎝ ⎛⎭⎪⎫α2-β =⎝ ⎛⎭⎪⎫-19×53+459×23=7527. 则cos(α+β)=2cos 2α+β2-1=-239729.12.若cos 2 α-cos 2β=a ,则sin(α+β)sin(α-β)等于( )A.-a 2B.a 2C.-aD.a答案 C解析 sin(α+β)sin(α-β)=(sin αcos β+cos αsin β)·(sin αcos β-cos αsin β)=sin 2αcos 2β-cos 2αsin 2 β=(1-cos 2α)cos 2β-cos 2α(1-cos 2β)=cos 2β-cos 2α=-a .13.已知sin 10°+m cos 10°=2cos 140°,则m =________.答案 - 3解析 由题意可得m =2cos 140°-sin 10°cos 10°=-2cos 40°-sin 10°cos 10°=-2cos (30°+10°)-sin 10°cos 10°=-3cos 10°cos 10°=- 3.14.(2021·合肥质检)已知函数f (x )=cos 2x +sin ⎝ ⎛⎭⎪⎫2x -π6. (1)求函数f (x )的最小正周期;(2)若α∈⎝ ⎛⎭⎪⎫0,π2,f (α)=13,求cos 2α.解 (1)∵f (x )=cos 2x +32sin 2x -12cos 2x =32sin 2x +12cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π6, ∴函数f (x )的最小正周期T =2π2=π.(2)由f (α)=13,可得sin ⎝ ⎛⎭⎪⎫2α+π6=13. ∵α∈⎝ ⎛⎭⎪⎫0,π2,∴2α+π6∈⎝ ⎛⎭⎪⎫π6,7π6. 又∵0<sin ⎝ ⎛⎭⎪⎫2α+π6=13<12, ∴2α+π6∈⎝ ⎛⎭⎪⎫5π6,π. ∴cos ⎝⎛⎭⎪⎫2α+π6=-223. ∴cos 2α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π6-π6 =cos ⎝ ⎛⎭⎪⎫2α+π6cos π6+sin ⎝ ⎛⎭⎪⎫2α+π6·sin π6 =1-266.。
§4.1任意角、弧度制及任意角的三角函数最新考纲考情考向分析1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3。
理解任意角三角函数(正弦、余弦、正切)的定义.以理解任意角三角函数的概念、能进行弧度与角度的互化和扇形弧长、面积的计算为主,常与向量、三角恒等变换相结合,考查三角函数定义的应用及三角函数的化简与求值,考查分类讨论思想和数形结合思想的应用意识.题型以选择题为主,低档难度。
1.角的概念(1)角的分类(按旋转的方向)角错误!(2)象限角(3)终边相同的角所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为S={β|β=α+k·360°,k∈Z}.2.弧度制(1)定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是零.(2)角度制和弧度制的互化:180°=π rad,1°=错误!rad,1 rad=错误!°. (3)扇形的弧长公式:l=|α|r,扇形的面积公式:S=错误!lr=错误!|α|r2.3.任意角的三角函数的定义α为任意角,α的终边上任意一点P (异于原点)的坐标(x ,y ),它与原点的距离OP =r =错误! (r >0),则sin α=y r ;cos α=错误!;tan α=错误!;cot α=错误!;sec α=错误!;csc α=错误!.4.三角函数在各象限的符号规律及三角函数线(1)三角函数在各象限的符号:象限符号函数Ⅰ Ⅱ Ⅲ Ⅳsin α,csc α + + - -cos α,sec α + - - +tan α,cot α + - + -(2)三角函数线:正弦线 如图,角α的正弦线为错误!。
余弦线 如图,角α的余弦线为错误!。
正切线 如图,角α的正切线为错误!.知识拓展三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√"或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P的位置无关.(√) (3)不相等的角终边一定不相同.(×)(4)若α为第一象限角,则sin α+cos α〉1。
高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。
题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。
这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。
题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。
这类题目需要熟练掌握各种诱导公式,以及灵活应用。
题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。
需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。
题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。
需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。
题型五:三角函数的周期性这类题目要求确定三角函数的周期。
需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。
题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。
需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。
题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。
需要掌握各种三角函数的恒等式,以及灵活应用。
2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。
湖北高三文科数学知识点湖北高三文科学生对数学的学习十分重视,因为数学是高考中的一门重要科目。
在数学知识点中,有一些部分对于湖北高三文科学生来说尤为重要,下面就对其中几个知识点进行讨论。
一、函数的基本概念和性质函数是高中数学中的重要概念,也是湖北高三文科学生需要掌握的知识点之一。
函数的概念是指将一个集合与另一个集合建立起对应关系的规则。
通过函数,我们可以描述和研究现实世界中的各种关系和变化。
函数有多种形式,比如显函数、隐函数和参数方程等。
湖北高三文科学生需要理解它们的特点和表示方法,并能够运用函数的性质解决实际问题。
二、三角函数与图像变换三角函数是湖北高三文科学生在数学学习中的重要知识点之一。
三角函数有正弦、余弦、正切等多种形式,它们在几何学、物理学和工程学中有广泛的应用。
湖北高三文科学生需要掌握三角函数的基本性质,并能够运用它们解决几何问题和相关的计算题。
此外,图像变换也是湖北高三文科学生需要了解的内容之一。
通过对函数图像进行平移、伸缩和翻转等操作,可以得到新的函数图像,这对于解决实际问题非常有帮助。
三、导数与微分导数与微分是湖北高三文科学生需要重点掌握的知识点之一。
导数是函数在某一点上的变化率,也可以理解为函数的瞬时变化率。
微分则是导数的一种几何解释,它描述了函数的局部性质。
湖北高三文科学生需要了解导数的定义和性质,并能够计算函数的导数。
通过求导,可以研究函数的变化规律,进而解决一些实际问题。
四、函数的极限与连续性函数的极限与连续性也是湖北高三文科学生需要重点学习的内容。
极限是描述函数逐渐趋于某一值的概念,它在微积分中有重要的应用。
连续性则是函数在某一区间上没有间断的特征。
湖北高三文科学生需要理解极限的概念和性质,并能够计算函数的极限。
同时,他们还需要理解连续函数的定义和判定条件,并能够判断函数的连续性。
五、统计与概率统计与概率是湖北高三文科学生需要了解的另一个数学知识点。
统计学研究了收集、处理和解释数据的方法和原理。
第4节 三角函数的图象与性质考试要求 1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值、图象与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin xy =cos xy =tan x图象定义域RR{x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 最小正周期 2π 2π π 奇偶性 奇函数 偶函数 奇函数 递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无 对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴方程x =k π+π2x =k π无1.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的周期T =2π|ω|,函数y =A tan(ωx +φ)的周期T =π|ω|.2.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12T ,相邻的对称中心与对称轴之间的距离是14T ,其中T 为周期,正切曲线相邻两对称中心之间的距离是12T ,其中T 为周期.3.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.1.思考辨析(在括号内打“√”或“×”)(1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( ) 答案 (1)× (2)× (3)× (4)√解析 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条. (2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 2.函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠π6B.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠-π12C.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π2+π6(k ∈Z )答案 D解析 由2x +π6≠k π+π2,k ∈Z ,得x ≠k π2+π6,k ∈Z . 3.下列函数中,是奇函数的是( ) A.y =|cos x +1| B.y =1-sin x C.y =-3sin(2x +π) D.y =1-tan x答案 C解析 选项A 中的函数是偶函数,选项B ,D 中的函数既不是奇函数,也不是偶函数;因为y =-3sin(2x +π)=3sin 2x ,所以是奇函数,选C. 4.(易错题)函数y =cos 2x +sin x 的值域为( )A.[-1,1]B.⎣⎢⎡⎦⎥⎤1,54 C.⎣⎢⎡⎦⎥⎤-1,54D.[0,1]答案 C解析 y =cos 2x +sin x =-sin 2x +sin x +1=-⎝ ⎛⎭⎪⎫sin x -122+54,∴当sin x =12时,y max =54. 当sin x =-1时,y min =-1.5.函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π4的最小正周期是________. 答案 π6.(易错题)函数y =tan ⎝ ⎛⎭⎪⎫x +π4的图象的对称中心是________.答案 ⎝ ⎛⎭⎪⎫k π2-π4,0,k ∈Z解析 由x +π4=k π2,k ∈Z ,得x =k π2-π4,k ∈Z ,∴对称中心是⎝ ⎛⎭⎪⎫k π2-π4,0,k ∈Z .考点一 三角函数的定义域和值域 1.函数y =sin x -cos x 的定义域为______. 答案 ⎣⎢⎡⎦⎥⎤2k π+π4,2k π+5π4(k ∈Z )解析 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示. 在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π+π4≤x ≤2k π+54π,k ∈Z . 2.函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π4-cos ⎝ ⎛⎭⎪⎫x -π4的最大值为________.答案2解析 f (x )=sin ⎝ ⎛⎭⎪⎫x -π4-cos ⎝ ⎛⎭⎪⎫x -π4=2sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x -π4-π4=2sin ⎝ ⎛⎭⎪⎫x -π2 =-2cos x ,所以当x =(2k +1)π(k ∈Z )时,f (x )max = 2.3.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x 的最小值为________.答案 -4解析 因为f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x =-cos 2x -3cos x =-2cos 2x -3cos x +1, 令t =cos x ,则t ∈[-1,1], 所以g (t )=-2t 2-3t +1.又函数g (t )图象的对称轴t =-34∈[-1,1],且开口向下,所以当t =1时,g (t )有最小值-4.综上,f (x )的最小值为-4.4.函数y =sin x -cos x +sin x cos x 的值域为________. 答案 ⎣⎢⎡⎦⎥⎤-12-2,1解析 设t =sin x -cos x , 则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t 22,且-2≤t ≤ 2. ∴y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-1+222. ∴函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.感悟提升 1.求三角函数的定义域通常要解三角不等式(组),解三角不等式(组)常借助三角函数线或三角函数的图象.2.求解三角函数的值域(最值)常见的几种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值);(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(4)一些复杂的三角函数,可考虑利用导数确定函数的单调性,然后求最值. 考点二 三角函数的周期性、奇偶性、对称性例1 (1)(2022·成都调研)在函数①y =cos|x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的函数有( ) A.①③B.①④C.②④D.②③(2)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( ) A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称(3)(2022·西安调研)已知函数f (x )=2sin(x +θ+π3)⎝ ⎛⎭⎪⎫θ∈⎣⎢⎡⎦⎥⎤-π2,π2是偶函数,则θ的值为________.答案 (1)D (2)C (3)π6解析 (1)①y =cos|x |=cos x ,最小正周期为2π,错误;②y =|cos x |,最小正周期为π,正确;③y =cos ⎝ ⎛⎭⎪⎫2x +π6,最小正周期为2π2=π,正确;④y =tan ⎝ ⎛⎭⎪⎫2x -π4最小正周期为π2,错误.故选D.(2)由题意知f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33,所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,当x =π3时,x +π6=π2,所以直线x =π3为对称轴,点⎝ ⎛⎭⎪⎫π3,0不为对称中心,A 错误,C 正确;当x =2π3时,x +π6=5π6,所以点⎝ ⎛⎭⎪⎫2π3,0不为对称中心,B 错误;当x =π6时,x +π6=π3,所以直线x =π6不为对称轴,D 错误,故选C. (3)∵函数f (x )为偶函数, ∴θ+π3=k π+π2(k ∈Z ).又θ∈⎣⎢⎡⎦⎥⎤-π2,π2,∴θ+π3=π2,解得θ=π6,经检验符合题意.感悟提升 1.求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ)或y =A cos(ωx +φ)或y =A tan(ωx +φ)(A ,ω,φ为常数,A ≠0)的形式,再分别应用公式T =2π|ω|或T =π|ω|求解.2.三角函数型奇偶性判断除可以借助定义外,还可以借助其图象与性质,对y =A sin(ωx +φ)代入x =0,若y =0则为奇函数,若y 为最大或最小值则为偶函数.若y =A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ),若y =A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z ).3.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.训练1 (1)(2022·河南名校联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2 022x +π4+cos ⎝ ⎛⎭⎪⎫2 022x -π4的最大值为M ,若存在实数m ,n ,使得对任意实数x 总有f (m )≤f (x )≤f (n )成立,则M ·|m -n |的最小值为( ) A.π2 022B.π1 011C.π505D.3π1 011(2)已知函数f (x )=cos(ωx +φ)(ω>0,|φ|<π2)的最小正周期为4π,且∀x ∈R 有f (x )≤f ⎝ ⎛⎭⎪⎫π3成立,则f (x )图象的对称中心是________,对称轴方程是________.答案 (1)B (2)⎝ ⎛⎭⎪⎫2k π+4π3,0,k ∈Z x =2k π+π3,k ∈Z解析 (1)令α=2 022x +π4,则f (x )=sin α+cos ⎝ ⎛⎭⎪⎫α-π2=sin α+sin α=2sin α=2sin ⎝ ⎛⎭⎪⎫2 022x +π4,其最小正周期T =2π2 022=π1 011.由题意可知,M =2,|m -n |min =12T ,∴M |m -n |的最小值为π1 011.故选B.(2)由f (x )=cos(ωx +φ)的最小正周期为4π,得ω=12,因为f (x )≤f ⎝ ⎛⎭⎪⎫π3恒成立,所以f (x )max =f ⎝ ⎛⎭⎪⎫π3,即12×π3+φ=2k π(k ∈Z ).又∵|φ|<π2,所以φ=-π6,故f (x )=cos ⎝ ⎛⎭⎪⎫12x -π6,令12x -π6=π2+k π(k ∈Z ),得x =4π3+2k π(k ∈Z ),故f (x )图象的对称中心为⎝ ⎛⎭⎪⎫2k π+4π3,0,k ∈Z . 令12x -π6=k π(k ∈Z ),得x =2k π+π3(k ∈Z ),故f (x )图象的对称轴方程是x =2k π+π3,k ∈Z . 考点三 三角函数的单调性 角度1 求三角函数的单调区间例2 (1)函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π6(x ∈[0,π])的单调递增区间为( )A.⎣⎢⎡⎦⎥⎤0,5π6B.⎣⎢⎡⎦⎥⎤0,2π3C.⎣⎢⎡⎦⎥⎤5π6,πD.⎣⎢⎡⎦⎥⎤2π3,π (2)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调递减区间为________.答案 (1)C (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )解析 (1)由2k π-π≤x +π6≤2k π,k ∈Z ,解得2k π-7π6≤x ≤2k π-π6,k ∈Z .∵x ∈[0,π],∴5π6≤x ≤π,∴函数f (x )在[0,π]的单调递增区间为⎣⎢⎡⎦⎥⎤5π6,π,故选C.(2)f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝ ⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z . 故所求函数的单调递减区间为 ⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ). 角度2 利用单调性比较大小例3 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c答案 A解析 a =f ⎝ ⎛⎭⎪⎫π7=2cos 13π42,b =f ⎝ ⎛⎭⎪⎫π6=2cos π3,c =f ⎝ ⎛⎭⎪⎫π4=2cos 5π12,因为y =cos x 在[0,π]上递减, 又13π42<π3<5π12,所以a >b >c .角度3 根据三角函数的单调性求参数例4 (1)已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (x )在区间⎝ ⎛⎭⎪⎫π5,5π8上单调递增,则φ的取值范围是________.(2)(2022·山西高三测评)已知函数f (x )=sin x 2+3cos x2在(-a ,a )(a >0)上单调递增,则a 的取值范围是________. 答案 (1)⎣⎢⎡⎦⎥⎤π10,π4 (2)⎝ ⎛⎦⎥⎤0,π3 解析 (1)因为函数f (x )=-2sin(2x +φ)在区间⎝ ⎛⎭⎪⎫π5,5π8上单调递增,所以函数y =2sin(2x +φ)在区间⎝ ⎛⎭⎪⎫π5,5π8上单调递减,又因为y =2sin(2x +φ)的单调递减区间为π2+2k π≤2x +φ≤3π2+2k π,k ∈Z ,解得π4+k π-φ2≤x ≤3π4+k π-φ2,k ∈Z ,所以π4+k π-φ2≤π5,5π8≤3π4+k π-φ2,k ∈Z ,所以π10+2k π≤φ≤π4+2k π,k ∈Z ,因为|φ|<π,所以令k =0,解得π10≤φ≤π4,所以φ的取值范围是⎣⎢⎡⎦⎥⎤π10,π4.(2)f (x )=sin x 2+3cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2+π3,由-π2+2k π≤x 2+π3≤π2+2k π(k ∈Z ),得-5π3+4k π≤x ≤π3+4k π(k ∈Z ),所以⎩⎪⎨⎪⎧a ≤π3,-a ≥-5π3,又a >0,所以a ∈⎝ ⎛⎦⎥⎤0,π3.感悟提升 1.已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.2.已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.训练2 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是________. (2)(2022·中原名校联盟联考)若函数f (x )=3sin ⎝ ⎛⎭⎪⎫x +π10-2在区间⎣⎢⎡⎦⎥⎤π2,a 上单调,则实数a 的最大值是________.答案 (1)⎝ ⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z (2)7π5 解析 (1)由-π2+k π<x 2-π6<π2+k π,k ∈Z ,得2k π-2π3<x <2k π+4π3,k ∈Z ,所以函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是⎝ ⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z . (2)法一 令2k π+π2≤x +π10≤2k π+3π2,k ∈Z ,即2k π+2π5≤x ≤2k π+7π5,k ∈Z ,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤2π5,7π5上单调递减, 所以a 的最大值为7π5.法二 因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10,又f (x )在⎣⎢⎡⎦⎥⎤π2,a 上单调,π2+π10<a +π10≤3π2,即π2<a ≤7π5,所以a 的最大值为7π5. 三角函数中ω的求解在三角函数的图象与性质中ω的求解是近年高考的一个热点内容,但因其求法复杂,涉及的知识点多,历来是我们复习中的难点.一、结合三角函数的单调性求解例1 若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,23 B.⎣⎢⎡⎦⎥⎤0,32 C.⎣⎢⎡⎦⎥⎤23,3 D.⎣⎢⎡⎦⎥⎤32,3 答案 D解析 令π2+2k π≤ωx ≤3π2+2k π(k ∈Z ),得π2ω+2k πω≤x ≤3π2ω+2k πω,因为f (x )在⎣⎢⎡⎦⎥⎤π3,π2上单调递减, 所以⎩⎪⎨⎪⎧π2ω+2k πω≤π3,π2≤3π2ω+2k πω,得6k +32≤ω≤4k +3. 又ω>0,所以k ≥0.又6k +32≤4k +3,得0≤k ≤34.又k ∈Z ,所以k =0.即32≤ω≤3.故选D.二、结合三角函数的对称性、周期性求解例2 (2021·兰州质量预测)设函数f (x )=3sin ωx +cos ωx (ω>0),其图象的一条对称轴在区间⎝ ⎛⎭⎪⎫π6,π3内,且f (x )的最小正周期大于π,则ω的取值范围是( ) A.⎝ ⎛⎭⎪⎫12,1 B.(0,2) C.(1,2) D.[1,2) 答案 C解析 f (x )=3sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0), 令ωx +π6=k π+π2(k ∈Z ),解得x =π3ω+k πω(k ∈Z ),由于函数f (x )图象的一条对称轴在区间⎝ ⎛⎭⎪⎫π6,π3内, 因此有π6<π3ω+k πω<π3(k ∈Z )成立,即3k +1<ω<6k +2(k ∈Z ),由f (x )的最小正周期大于π,得2πω>π且ω>0,解得0<ω<2,综上可得1<ω<2.故选C.三、结合三角函数的最值求解例3 已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________.答案 (-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞解析 显然ω≠0.若ω>0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,-π3ω≤ωx ≤π4ω, 因为函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2, 所以-π3ω≤-π2,解得ω≥32.若ω<0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,π4ω≤ωx ≤-π3ω, 因为函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2, 所以π4ω≤-π2,解得ω≤-2.综上所述,符合条件的ω的取值范围是(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞.1.下列函数中,是周期函数的为( )A.f (x )=sin |x |B.f (x )=tan |x |C.f (x )=|tan x |D.f (x )=(x -1)0 答案 C解析 对于C ,f (x +π)=|tan(x +π)|=|tan x |=f (x ),所以f (x )是周期函数,其余均不是周期函数.2.(2021·西安调研)函数y =3tan ⎝ ⎛⎭⎪⎫2x +π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π-π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π,k ∈Z 答案 C解析 要使函数有意义,则2x +π4≠k π+π2,k ∈Z ,即x ≠k 2π+π8,k ∈Z ,所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π+π8,k ∈Z ,故选C. 3.函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π6的图象的一条对称轴方程为( ) A.x =π6 B.x =5π12C.x =2π3D.x =-2π3答案 B解析 令2x +π6=k π(k ∈Z ),则x =k π2-π12,k ∈Z ,当k =1时,x =5π12,故选B.4.已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫2x +π6+φ⎝ ⎛⎭⎪⎫|φ|<π2为奇函数,则φ=( ) A.-π6 B.-π3 C.π6 D.π3答案 D解析 因为f (x )为奇函数,所以π6+φ=k π+π2,则φ=k π+π3,k ∈Z ,又|φ|<π2,所以φ=π3.5.若f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4,则( ) A.f (1)>f (2)>f (3)B.f (3)>f (2)>f (1)C.f (2)>f (1)>f (3)D.f (1)>f (3)>f (2)答案 A解析 由π2≤2x -π4≤3π2,可得3π8≤x ≤7π8,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤3π8,7π8上单调递减,由于1<3π8<2,且3π8-1<2-3π8,故f (1)>f (2).由于3π8<2<7π8<3,且7π8-2>3-7π8,故f (2)>f (3),所以f (1)>f (2)>f (3),故选A.6.(2022·南昌模拟)已知函数f (x )=sin(2x +φ)(0<φ<π)的图象关于点B ⎝ ⎛⎭⎪⎫π6,0对称,则下列选项中能使得g (x )=cos(x +φ) 取得最大值的是( )A.x =-2π3B.x =-π6C.x =π3D.x =5π12答案 A解析 因为f (x )=sin(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫π6,0对称,所以2×π6+φ=k π(k ∈Z ),得φ=k π-π3(k ∈Z ),又φ∈(0,π),所以当k =1时,φ=2π3,所以g (x )=cos(x +φ)=cos ⎝ ⎛⎭⎪⎫x +2π3取得最大值时,x +2π3=2k 1π(k 1∈Z ),得x =2k 1π-2π3(k 1∈Z ),令k 1=0得x =-2π3.故选A.7.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π6+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为________.答案 6π5解析 由函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π6+1(x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,又ω∈(1,2),∴ω=53,∴函数f (x )的最小正周期为2π53=6π5. 8.(2022·合肥调研)已知函数f (x )=⎪⎪⎪⎪⎪⎪tan ⎝ ⎛⎭⎪⎫12x -π6,则下列说法正确的是________(填序号).①f (x )的周期是π2;②f (x )的值域是{y |y ∈R ,且y ≠0};③直线x =5π3是函数f (x )图象的一条对称轴;④f (x )的单调递减区间是(2k π-2π3,2k π+π3),k ∈Z .答案 ④解析 函数f (x )的周期为2π,①错;f (x )的值域为[0,+∞),②错,当x =5π3时,12x -π6=2π3≠k π2,k ∈Z ,∴x =5π3不是f (x )的对称轴,③错;令k π-π2<12x -π6<k π,k ∈Z ,可得2k π-2π3 <x <2k π+π3,k ∈Z ,∴f (x )的单调递减区间是⎝ ⎛⎭⎪⎫2k π-2π3,2k π+π3,k ∈Z ,④正确. 9.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤12,54 解析 由π2<x <π,ω>0得ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2,k ∈Z , 所以⎩⎪⎨⎪⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z , 解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-⎝ ⎛⎭⎪⎫2k +54≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈⎣⎢⎡⎦⎥⎤12,54. 10.已知函数f (x )=sin(2π-x )sin ⎝ ⎛⎭⎪⎫3π2-x -3cos 2x + 3. (1)求f (x )的最小正周期和图象的对称轴方程;(2)当x ∈⎣⎢⎡⎦⎥⎤0,7π12时,求f (x )的最小值和最大值. 解 (1)由题意,得f (x )=(-sin x )(-cos x )-3cos 2 x + 3=sin x cos x -3cos 2x + 3=12sin 2x -32(cos 2x +1)+ 3 =12sin 2x -32cos 2x +32=sin ⎝ ⎛⎭⎪⎫2x -π3+32, 所以f (x )的最小正周期T =2π2=π;令2x -π3=k π+π2(k ∈Z ),得x =k π2+5π12(k ∈Z ),故所求图象的对称轴方程为x =k π2+5π12(k ∈Z ).(2)当0≤x ≤7π12时,-π3≤2x -π3≤5π6,由函数图象(图略)可知, -32≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1. 即0≤sin ⎝ ⎛⎭⎪⎫2x -π3+32≤2+32. 故f (x )的最小值为0,最大值为2+32.11.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2) 求f (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6. ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ]. ∴f (x )∈[b ,3a +b ].又-5≤f (x )≤1,∴⎩⎪⎨⎪⎧b =-5,3a +b =1,解得⎩⎪⎨⎪⎧a =2,b =-5.(2)f (x )=-4sin ⎝ ⎛⎭⎪⎫2x +π6-1, 由-π2+2k π≤2x +π6≤π2+2k π得-π3+k π≤x ≤π6+k π,k ∈Z .由π2+2k π≤2x +π6≤32π+2k π得π6+k π≤x ≤23π+k π,k ∈Z .∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π6+k π,23π+k π(k ∈Z ), 单调递减区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π(k ∈Z ). 12.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象在⎣⎢⎡⎦⎥⎤0,π4内有且仅有一条对称轴,则实数ω的取值范围是( )A.(0,5)B.(0,5]C.[1,5)D.(1,5]答案 C解析 令ωx +π4=k π+π2,x =1ω⎝ ⎛⎭⎪⎫k π+π4,k ∈Z . ∵ω>0,由题意得⎩⎪⎨⎪⎧1ω×π4≤π4,1ω×5π4>π4,解得1≤ω<5.故选C. 13.(2022·贵阳模拟)已知函数f (x )=sin x +12sin 2x ,给出下列四个命题:①函数f (x )是周期函数;②函数f (x )的图象关于原点对称; ③函数f (x )的图象过点(π,0);④函数f (x )为R 上的单调函数.其中所有真命题的序号是________. 答案 ①②③解析 因为f (x +2π)=sin(x +2π)+12sin(2x +4π)=sin x +12sin 2x =f (x ),所以2π是函数f (x )的一个周期,所以①正确;因为f (-x )=sin(-x )+12sin(-2x )=-⎝ ⎛⎭⎪⎫sin x +12sin 2x =-f (x )(x ∈R ), 所以f (x )为奇函数,其图象关于原点对称,所以②正确;因为f (π)=sin π+12sin 2π=0,所以③正确;因为f (0)=0,f ⎝ ⎛⎭⎪⎫π2=1,f (π)=0, 所以f (x )不可能是单调函数,所以④错误.14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2, 求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时, 函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2,∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.。
高考文科数学必考知识点归纳精选全国高考文科数学必考知识点一、基本概念1.函数与曲线:定义函数与曲线,二次函数方程;二次曲线函数表达式;参数方程的图形;定义域和值域;一次函数与l2函数的性质;反函数的求解;函数和曲线变换;极坐标函数图形;求值点;联系函数和曲线。
2.三角函数:三角函数基本性质;弧度和角度的关系;周期性特点;正弦定理、余弦定理及其应用;正弦曲线以及余弦曲线的性质;三角函数变换;三角函数的值的计算。
3.解析几何:定义几何图形,平面直角坐标系;圆的性质;椭圆及其性质;双曲线的特点;点、直线、圆及其几何关系;不等式的图形表示;空间几何图形;解析几何方法解决几何问题;锐角三角形内角和外角的关系;三角函数与角度;等腰三角形及其特殊性质;空间三角形和其内角和外角关系;四边形面积;六边形面积;新结构和性质;特殊定点定理和性质。
4.统计:统计的基本概念;概率的含义;概率的计算;分类资料的相互关系;抽样分析;概率的判断;统计数据的分类;统计数据的计算;统计图的制作及其应用;回归分析;误差估计。
二、代数与方程1.代数:定义多项式;解题步骤和算法;系数;根;因式分解;乘法定理;互异因数;无穷序列求和;除号自由把法;十二项式;因式定理;求取代数方程的根;多项式的因式分解;代数的性质;多项式的奇偶性;分数的运算;平方根运算。
2.方程:定义方程;一元二次方程的求解;整式化简;同余方程;不等式及其解法;定义不等式;不等式解法;二元一次方程组;合并算法;解法及应用;三元一次方程组;连立方程解法;恒等变换;解三元一次方程组。
三、推理与证明1.数学推理:数学推理的基本概念;式子、条件、命题、证明;直觉猜想;演绎推理;证明方式和思路;言语推理;判断推理;数列的构造;数列的求和及其性质;模式推理;推理与逻辑;数学归纳法;归纳证明;归纳定理;反证法的应用;数论。
2.证明方法:数论的基本概念;数论的证明方法;数学分析的基本任务;证明的步骤和思路;数学初步证明;假设证明法;特例法;反证法;常数项法;例证法;椭圆函数的性质;变量分离法。
三角函数知识点
(一)基本初等函数Ⅱ(三角函数)
1.角度制与弧度制的互化:,23600π= ,1800π=
1 rad = ≈57.30°=57°18ˊ ; 1°= ≈0.01745(rad )
2.任意角的三角函数
设α是一个任意角,它的终边上一点p (x,y ), r=22y x +
(1)正弦sin α= 余弦cos α= 正切tan α= (2)各象限的符号:
sin α cos α tan α
3.同角三角函数的基本关系: (1)平方关系: (2)商数关系:
4.诱导公式:奇变偶不变,符号看象限
(1)sin (2kπ+α)= ,cos (2kπ+α)= ,tan(2kπ+α)= (k ∈Z) (2)sin (π+α)= ; cos(π+α)= ; tan(π+α)= (3)sin(−α)= ; cos(−α)= ; tan(−α)= (4)sin(π−α)= ; cos(π−α)= ; tan(π−α)= (5) sin(π2−α)= ; cos(π
2−α)=
(6) sin(π
2+α)= ; cos (π
2+α)=
5.正弦函数、余弦函数和正切函数的图象与性质
x
y
O
x
y O
+
y
O
sin y x = cos y x = tan y x =
图象
定义域 R R
,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭
值域
[]1,1-
[]1,1-
R
最值
当22
x k π
π=+
()k ∈Z
时,max 1y =;
当22
x k π
π=-()k ∈Z
时,min
1y =-.
当()2x k k π=∈Z 时,
max 1y =;
当2x k ππ=+()k ∈Z 时,
min 1y =-.
既无最大值也无最小值
周期性 2π
2π
π
奇偶性
奇函数
偶函数
奇函数
单调性
在2,22
2k k π
πππ⎡⎤
-
+
⎢⎥⎣
⎦
()k ∈Z 上是增函数;
在32,22
2k k π
πππ⎡⎤+
+
⎢⎥⎣
⎦ ()k ∈Z 上是减函数.
在[]()2,2k k k πππ-∈Z 上
是增函数;
在[]2,2k k πππ+()k ∈Z
上是减函数.
在,2
2k k π
πππ⎛
⎫
-
+
⎪⎝
⎭
()k ∈Z 上是增函数.
对称性
对称中心
()(),0k k π∈Z
对称轴
()2
x k k π
π=+
∈Z
对称中心
(),02k k ππ⎛
⎫+∈Z ⎪⎝
⎭
对称轴()x k k π=∈Z
对称中心
(),02k k π⎛⎫
∈Z ⎪⎝⎭
无对称轴
函
数 性 质
6.三角函数的伸缩变化,先平移后伸缩
sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)
平移个单位长度
得 的图象()ωωω
−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)
1
到原来的纵坐标不变 得 的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)
为原来的倍横坐标不变 得 的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得 的图象。
先伸缩后平移
sin y x =的图象(1)(01)
A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)
得 的图象(01)(1)
1
()
ωωω
<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得 的图象
(0)(0)
ϕϕϕω
><−−−−−−−→向左或向右平移
个单位
得 的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得 的图象。
(二)三角函数恒等变换 [补:辅助角公式、降幂公式]
7.三角函数公式:
(三)解三角形
8.正弦定理 :
9.余弦定理:
三角形面积定理. S = = = 补:
1.弧长及扇形面积公式
弧长公式:r l .α= 扇形面积公式:S=r l .2
1
α----是圆心角且为弧度制。
r-----是扇形半径
2.三角函数线
正弦线:MP; 余弦线:OM; 正切线: AT.
(3) 若 o<x<
2
,则sinx<x<tanx
16. 几个重要结论:3。