列方程解题
- 格式:docx
- 大小:11.24 KB
- 文档页数:1
第十一讲:列方程解题例1. 夏天的夜晚,亮亮同时点燃两支粗细不同,长度相同的蚊香。
粗蚊香燃完要3小时,细蚊香燃完要2小时,问点燃多少小时后,粗蚊香的长度是细蚊香长度的2倍?例2. 学校图书馆新买了文艺书和连环画126本,文艺书本数的61比连环画的92少7本,图书馆新买文艺书和连环画各多少本?例3. 新昌茶叶店新运到一级茶叶和二级茶叶一批,其中二级茶叶的数量是一级茶叶的21,一级茶叶的买进价是每千克 24.8元,二级茶叶的买进价是16元。
现在照买进价加价12.5%出售,当二级茶叶全部卖完,一级茶叶剩下31时,共盈利460元。
那么,运到的一级茶叶有多少千克?例4.甲、乙两个工厂,甲厂人数是乙厂人数的54,因工作需要,工人进行部分调整,从乙厂调36人到甲厂,这时乙厂人数是甲厂人数的54,问甲、乙两厂原来各有多少人?例4. 从甲市到乙市有一条公路,它分为三段。
在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车的速度是每小时50千米。
已知第一段公路的长恰好是第三段的长的2倍。
现在有两辆汽车分别从甲、乙两市同时出发,相向而行,1小时20分后,在第二段的31处(从甲到乙方向的31处)相遇。
那么甲、乙两市相距多少千米?例5. 要把长1米的铜管锯成38毫米和长90毫米两种规格的小铜管,每锯一次要损耗1毫米铜管,那么,只有当锯得的这两种规格的小铜管段数分别是多少,才能使损耗最少?第十一讲:列方程解题练习 姓名_____________ 2011.7.81.吃晚饭时突然停电了,妈妈点上两支粗细不同的蜡烛,过了一会儿,来电了,妈妈将两支蜡烛同时吹灭。
已知两支蜡烛的长度相等,粗蜡烛全部点完要24分钟,细蜡烛全部点完要12分钟,熄灭时粗蜡烛是细蜡烛长度的2倍。
问停电多少分钟?2.甲、乙两个长方体水池装满了水,甲、乙两个水池的长不等、宽不等,高相等,它们的出水管每小时的排水量也相等,打开出水管,甲池10小时可将水排空,乙池6小时可将水排空。
列方程解应用题的一般步骤是:(1)审(2)找(3)设(4)列(5)解(6)答,而最关键的是第二步找等量关系,只有找出等量关系才可列方程,下面我来谈谈怎样找相等关系和设未知数。
一、怎样找等量关系(一)、根据数量关系找相等关系。
好多应用题都有体现数量关系的语句,即“…比…多…”、“ …比…少…”、“…是…的几倍”、“ …和…共…”等字眼,解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定相等关系。
例1:某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生相等关系:女生人数-男生人数=80例2:合唱队有80人,合唱队的人数比舞蹈队的3倍多15人,则舞蹈队有多少人相等关系:舞蹈队的人数×3+15=合唱队的人数例3:在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人相等关系:调动后甲处人数=调动后乙处人数×2解:设调x人到甲处,则调(20-x)人到乙处,由题意得:27+x=2(19+20-x),解得 x=17所以 20-x=20-17=3(人)答:应调往甲处17人,乙处3人。
(二)、根据熟悉的公式找相等关系。
单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工作效率×工作时间=工作总量,售价=原价×打折的百分数,利润=售价-进价,利润=进价×利润率,几何形体周长、面积和体积公式,都是解答相关方程应用题的工具。
例1:一件商品按成本价提高100元后标价,再打8折销售,售价为240元。
求这件商品的成本价为多少元相等关系:(成本价+100)×80%=售价例2:用一根长20cm的铁丝围成一个正方形,正方形的边长是多少相等关系:正方形的周长=边长×4例3:一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底。
五年级列方程应用题100道(有答案解析)1.___科技小组共有108人参加,其中男生人数是女生人数的1.4倍。
求参加科技小组的男、女生各有多少人。
2.体育比赛中,跳绳人数是踢毽子人数的3倍,已知踢毽子的人数比跳绳的人数少20人,求跳绳和踢毽子各有多少人。
3.某校五年级两个班共植树385棵,5(1)班植树棵树是5(2)班的1.5倍。
求两班各植树多少棵。
4.一支钢笔比一支圆珠笔贵6.8元,钢笔的价钱是圆珠笔价钱的4.4倍。
求钢笔和圆珠笔的价钱各是多少元。
5.食堂买来黄瓜和西红柿,黄瓜的质量是西红柿的1.2倍,黄瓜比西红柿多6.4千克。
求买来的西红柿多少千克。
6.用一根长54厘米的铁丝围成一个长方形,要使长是宽的2倍,求围成的长方形的长和宽各是多少?面积是多少?7.一只蜂鸟的体重是81克的1/40,求一只蜂鸟的重量。
8.一块长方形菜地的面积是180平方米,它的宽是12米,求长是多少米?9.食堂有一批大米,每袋25千克,用去6袋以后,还剩50千克,求这个食堂原来有多少千克大米?10.食堂有200千克大米,每袋25千克,用去一些后,还剩50千克,求用去了多少袋?11.幼儿园大班和小班共有10个小朋友,现在有60个苹果平均分给大班和小班的小朋友,每个小朋友可分得2个,求小班有多少个小朋友?12.___买了相同数量的2元和8角的邮票,共用去了42元,两种邮票各有多少张?13.甲、乙两车从相距280千米的两地同时出发,相向而行,经过4小时两车相遇。
甲车每小时行30千米,求乙车每小时行多少千米?14.商店购进120台数码摄像机,比购进的数码照相机的2倍少40台,求数码照相机有多少台?15.一根铁丝长54厘米,用它围成一个长方形,使长是宽的2倍,求长和宽各是多少厘米?16.强强和___共有奶糖40粒,强强比___少6粒,求强强有奶糖多少粒?17.三年前母亲的岁数是儿子的6倍,今年母亲33岁,求儿子今年几岁?18.奶奶买4袋牛奶和2个面包,付给售货员20元,找回5.2元,每个面包5.4元,求每袋牛奶多少元?19.去年___比他爸爸小28岁,今年爸爸的年龄是___的8倍,求___今年多少岁?20.一辆汽车第一天行了3小时,第二天行了5小时,第一天比第二天少行90千米,求平均每小时行多少千米?21.___和___相向而行,他们的相遇速度是80+45=125米/分钟。
列方程解应用题【例1】水果店运来的西瓜的个数是白兰瓜的个数的2倍,如果每天卖白兰瓜40个,西瓜50 个,若干天后卖完白兰瓜时,西瓜还剩360个。
水果店运来的西瓜和白兰瓜共多少个?【例2】有甲、乙两桶油,若从甲桶倒入乙桶15千克,则两桶油质量相等;若从乙桶倒入甲桶48千克后,则甲桶油是乙桶油质量的4倍。
甲桶原来有油多少千克?【例3】甲乙丙三人,甲的年龄是乙的2倍时,丙是20岁,当乙的年龄是丙的2倍时,甲35岁,那么甲65岁时,丙是多少岁?【例4】甲、乙、丙、丁四人今年分别是16、12、11、9岁。
问,多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?【例5】甲、乙、丙、丁四个人组成代表队参加数学比赛,甲得了88分,丙得了85分,丁得了90分,乙的分数比四个人的平均分多4分。
问乙的成绩是多少?【例6】414是三个数的和,这三个数分别能被5、6、7整除,所得的商相同。
问;这三个数分别是多少?商是多少?【例7】小余买了5元、1元2角、8角的三种邮票共20张,总值43元6角,其中5元和1元2角的邮票张数相同。
问:小余三种邮票各购多少张?【例8】某校五、六年级师生秋游去公园划竹筏,若每筏坐12人,则少3个竹筏;若每筏坐14人,则多出4个竹筏。
问:公园一共有几个竹筏?五年级师生共多少人?【例9】一架飞机所带燃料最多可飞行15.75小时。
飞机去时顺风,飞行速度每小时1500千米,返回时逆风,速度是每小时1200千米。
问:这架飞机最多飞出去多少千米就要往回飞?【例10】一个三位数的数字是由大到小的顺序排列的三个连续整数,这个三位数除以3所得的商比这个三位数的百位数与个位数交换后所得新的三位数小238,求原来的三位数。
【例11】东西两镇相距3450米,甲、乙从东镇,丙从西镇同时出发相向而行,甲、乙、丙速度分别是每分钟45、50、60米,那么多少分钟后乙正好在甲、丙的中间?【例12】小余买两种练习本若干本,单价分别是1元和1元5角,共付出12元,问:两种本子各买了多少本?消去法解题【例1】甲买了8盒糖和5盒蛋糕共用去171元,乙买了5盒糖和2盒蛋糕共用去90元。
完整版)五年级奥数:列方程解应用题XXX教育:列方程解应用题(一)列方程解应用题是小学数学的一项重要内容,它是一种新的解题方法,不同于传统的算术方法。
算术方法要求通过四则运算,逐步求出未知量,而列方程解应用题则是用字母来代替未知数,根据等量关系,列出含有未知数的等式,也就是方程,然后解出未知数的值。
这样做的优点是可以使未知数直接参加运算。
列方程解应用题的关键在于能够正确地设立未知数,找出等量关系,从而建立方程。
而找出等量关系,又在于熟练运用数量之间的各种已知条件。
掌握了这两点,就能正确地列出方程。
列方程解应用题的一般步骤如下:1.确定未知数及其表示方法;2.找出应用题中数量之间的相等关系,列方程;3.解方程;4.检验,写出答案。
下面是几个例题及其解法:例1.一个数的5倍加上10等于它的7倍减去6,求这个数。
解:设这个数为x,则方程为5x+10=7x-6,解得x=8.例2.两块地一共100公顷,第一块地的4们比第二块地的3倍多120公顷。
这两块地各有多少公顷?解:设第一块地为x公顷,则第二块地为(100-x)公顷。
由已知条件可得:4x=3(100-x)+120,解得x=60,第一块地为60公顷,第二块地为40公顷。
例3.琅琊路小学少年数学爱好者俱乐部五年级有三个班,一班人数是三班人数的1.12倍,二班比三班少3人,三个班共有153人。
三个班各有多少人?解:设三个班的人数分别为x、y、z,则由已知条件可得:x=1.12zy=z-3x+y+z=153代入第三个式子得:1.12z+z-3+1.12z+z-3=153,解得z=50,y=47,x=56.例4.被除数与除数的和是98,如果被除数与除数都减去9,那么,被除数是除数的4倍。
求原来的被除数和除数。
解:设除数为x,则被除数为98-x。
由已知条件可得:98-x-9=x-9,解得x=29,被除数为69,除数为29.练与思考:1.列方程解应用题,有时需要求的未知数有两个或两个以上,此时应视具体情况,设对解题有利的未知数为x,根据数量关系用含有x的式子来表示另一个未知数。
十一列方程解题(二)学海探究1.学校买篮球和排球共24个,用了1950元。
篮球的单价是90元/个,排球的单价是75元/个。
篮球、排球各买了多少个?2.买5个排球比买3个篮球多付105元,1个篮球比1个排球贵15元。
求篮球、排球的单价。
3.运输队要运800件瓷器,按规定完好无损每件付运费6元,如果损坏,不但不能得到运费,每一件要赔8元。
货物运完后共得运费4730元。
运输途中损坏瓷器多少件?4.停车场上停着4轮汽车、3轮摩托车共24辆,86个轮子。
摩托车和汽车各有多少辆?5.某小学举行一次数学竞赛,共15题,每做对一题得8分,每做错一题扣4分,奇奇做了全部题目共得72分,他做对了几道题。
6.某船在水上航行,第一天行8小时,第二天比第一天以每小时快6千米的速度行了5小时,比第一天少行60千米。
两天各行了多少千米?7.李老师生产一批零件,原计划20天完成,因改进操作方法,每天多加工10个,他又多工作4天,结果比原计划多生产560个,原计划每天生产多少个?8.梨、苹果、橘和柿子共100个,如果梨的个数加4,苹果的个数减4,橘的个数乘4,柿子的个数除以4,所得的个数相等。
四种水果各多少个?牛刀小试1.某公司为员工购买衬衫和羊毛衫各用去810元,每件羊毛衫的价钱是衬衫的3倍,购买衬衫比羊毛衫多18件,求羊毛衫和衬衫的单价。
想:总价相同,羊毛衫的单价是衬衣的3倍,那么购买衬衣的件数是羊毛衫的多少倍?2.王师傅加工1500个零件后改进技术,使工作效率提高到原来的3倍。
后来又加工1500个零件,比改进技术前少用20小时,改进技术前后每小时各加工多少个零件?想:(1)改进技术后的工作效率是原来工作效率的3倍,那么原来加工1500个零件的时间是现在的几倍?(2)改进技术后加工1500个零件比原来少用20小时,照现在的工作效率,这20小时能加工多少个零件?3.强强从家到学校相距1050米,步行需要的时间是骑自行车的3倍。
列一元一次方程解应用题解题指导一、在列方程解应用题时应注意以下几点:(1)重视分析,先分析题意,找出已知数、未知数以及能反映应用题全部含义的相等关系;不要先急于用字母表示未知数及列出与它有关的式子,因为这样做就同算术解法的探索性—致了。
(2)用字母x表示未知数时,可直接设未知数,也可简接设未知数。
(3)列方程要注意三个条件:一是两边必须是同类的量;二是单位要一致;三是两边是等量(但不是恒等量,否则列出方程后也解不对)。
二、确定相等关系的三种方法:(1)从有关数量的比较的关键字句。
如大、小、多、少、倍、分等中发现相等关系;(2)注意变化中的不变量,寻找隐含的相等关系;(3)利用基本数量关系借助直线型示意图、实物图、表格等辅助于段,沟通不同量之间的关系;三、各类常用的基本数量关系和相等关系:(一)“和、差、倍、分”问题:这类问题:主要是正确理解“是几倍”、“增加了几倍”、“增加到几倍”、“多”、“少”等关键词浯的意思;练习:2、某公司去年的流动资金比前年增加了2倍,今年的流动资金又增加到去年的2倍,这公司最近三年的流动资金是1000万元,问这公司前年的流动资金是多少?(二)行程问题:基本关系式:路程=速度×时间常见的三种类型:相遇问题:相遇时间×速度和=路程和;甲走的路程 + 乙走的路程=总路程追及问题:追及时间×速度差=被追及距离;快者走的路程—慢者走的路程=被追及距离航行问题:顺水速度=静水中航行速度 + 水流速度逆水速度=静水中航行速度—水流速度练习:1、甲、乙两站间的路程为450 Km。
一列慢车从甲站开出,每小时行驶65 Km;一列快车从乙站开出,每小时行驶85 Km。
(1)两车同时开出,相向而行,多少小时相遇?(2)快车先开30分,两车相向而行,慢车行驶了多少小时两车相遇?2、张三、李四骑自行车同时从相距65千米的两地相向而行,2小时相遇。
张三比李四每小时多骑2.5千米,求:李四的时速为多少?3、甲、乙两架飞机同时从相距750千米的两个机场相向飞行,飞了半小时到达同一中途机场。
五年级数学培优:列方程解题列方程解题(一)1、2a+3a=7x-5x=4h-6h+3h=2b+7b=7x+3x=3y+5y-2y=x+2x=15a-a=c+5c-2c=2、一个加数=减数=被减数=一个因数=被除数=除数=3、解方程并写出检验过程.x-7.5+2.5=103x-4.5×5=1.24、某数的3倍加上它本身,和是16.4,求这个数.1、解方程.2x-4.8=7x-17.1 4.4x-16.2=8.8-0.6x2、某数的3倍加上1等于这个数加上7,求某数.3、三个连续奇数的和等于990,其中最大的一个奇数是多少?4、在下表中,用长方形框出两行四个数,使这四个数的和是388,这四个数分别是多少?48 49 50 51 52 53 5455 56 57 58 59 60 6162 63 64 65 66 67 6869 70 71 72 73 74 75……5、两块地一共100公顷,第一块地的4倍比第块地的3倍多120公顷,这两块地各有多少公顷?6、甲、乙两个数的和是271,已知甲数除以乙数是商5余1,甲、乙两个数各是多少?通过本次学习,我的收获是第一部分必做题1、(☆)解方程.(第3题写出检验过程)⑴4x+17.5=2x+22.5⑵12×0.5x+1.8=7×6 ⑶14×3+5x=60+2x2、(☆)⑴一个数的8倍加上10等于它的10倍减去8,求这个数.⑵两个数的和是100,差是8,求这两个数.3、(☆)被除数与除数的和是98,如果被除数与除数都减去9,那么被除数是除数的4倍,求原来的被除数和除数.4、(☆)某数的小数点向左移动了一位,比原来少了41.4,原来这个数是多少?5、(☆☆)五个连续偶数的和是240,这五个偶数中最小的一个是多少?6、(☆)三个连续偶数的和比其中最大的一个大10,这三个偶数的和是多少?7、(☆☆) A、B两个数的差是38,已知A除以B商3余2,求A和B.8、(☆☆)一个除法算式中商等于除数的6倍,除数又等于余数的6倍,而商、除数、余数的和等于516,这个算式的被除数是多少?9、(☆☆)在下表中,用三角形框出两行三个数,使这三个数的和是75,这三个数分别是多少?1 2 3 4 5 6 78 9 10 11 12 13 1415 16 17 18 19 20 2122 23 24 25 26 27 2829 30 31 32 33 34 35……第二部分选做题10、(☆☆)“一个数的4倍除以6,商5余5,求这个数.”如果列方程解这道题,那么下面哪些方程是正确的?为什么?①4x÷6-5=5②4x=6×5+5③4x÷6=5……5④(4x-5)÷6=511、(☆☆)小华看到一道题:“甲数是乙数的5倍,乙数比甲数少20,甲、乙两数各是多少?”就列出方程:“x-x÷5=20”.想一想:这个方程中的x表示哪个数?是否符合题意?12、(☆☆☆)一个三位数,十位上的数字是个位上数字的2倍,百位上的数字比十位上的数字大1.这样的三位数有哪些?13、(☆☆☆)一个两位数的十位上的数字比个位上的数字小1,如果十位上的数字扩大4倍,个位上的数字减去2,那么所得的两位数比原来大58,求原来的两位数.14、(☆☆☆)甲、乙、丙三个数的和是166,已知甲数除以乙数,乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?列方程解题㈡1、2个a的和是,2个a的积是.2、有a元钱,买4本练习本,每本b元,还剩元.3、甲数是a,乙数比它的3倍少4,乙数是.4、小兵今年a岁,小红今年(a+b)岁,3年后两人相差多少岁?1、正方体的棱长为a厘米,它的表面积是(),它的体积是(). 2、有两根同样长的铁丝,第一根用去6.5米,第二根用去0.9米,剩下的铁丝第一根是第二根的3倍,两根铁丝原来各长多少米?3、甲瓶有酒精128毫升,乙瓶有酒精13毫升,现往两瓶内注入等量的酒精,使甲瓶内的酒精是乙瓶的6倍,两瓶各应注入多少毫升的酒精?4、老王家养鸡是鸭的2倍,养鹅的只数比鸡的1.5倍少23只.如果鸭有a只,老王家养鹅多少只?5、商店运来苹果、梨子、桔子共600千克,苹果比梨子的2倍少80千克,桔子比梨子的3倍多20千克,三种水果各运来多少千克?通过本次学习,我的收获是第一部分必做题1、(☆)有两块布料,第一块148米,第二块100米,两块布各剪去同样的一段后,剩下的米数第一块是第二块的3倍,两块布各剪去多少米?2、(☆)五个孩子的年龄刚好一个比一个大1岁,如果中间一个孩子的年龄为x,则其余四个孩子的年龄分别用式子表示是()、()、()、(). 3、(☆)甲数是乙数的2倍,乙数是y,甲数是(),若甲数是y,则乙数是(). 4、(☆)连续三个偶数的中间一个数是2m,那么这三个偶数中,最大的是(),最小的是(),这三个偶数的和是().5、(☆☆)选择题.⑴妈妈今年a岁,儿子(a-24)岁,再过b年后,妈妈与儿子的年龄相差()岁.①a-b②a-24-b③a+b-(a-24) ④24⑵甲数是a,比乙数的2倍少b,表示乙数的式子是().①2a+b ②2a-b ③(a+b)÷2 ④a÷2+b6、(☆☆)甲、乙两地相距540千米,一辆小轿车和一辆汽车分别从两地同时相向开出,小轿车每小时行a千米,汽车每小时行b千米.3小时后两车还没相遇,两车此时相距多少千米?7、(☆☆)甲、乙两地相距5千米,一辆客车和一辆货车分别从两地同时出发,相向而行,客车每小时行a千米,货车每小时行b千米,经过多少小时两车在某地相遇?8、(☆☆)甲、乙两列火车同时从东西两站相对开出,经5小时在途中相遇,相遇后,两车继续前进,又经过3.5小时,甲车到达西站,乙车离东站180千米,求东西两站之间相距多少千米?9、(☆☆)小星读一本书,第一天读12页,以后每天都比前一天多读6页,最后一天读了48页,他一共读了多少天?第二部分选做题10、(☆☆)第一只筐有280个桔子,第二只筐有40个桔子,每次从第一只筐取出8个放入第二个筐中,取多少次后,两筐桔子相等?11、(☆☆)用一元钱,买8分邮票和4分邮票共17张,问这两种邮票各买几张?12、(☆☆)把两个棱长为a分米的正方体铁块拼成一个长方体,这个长方体的表面积是多少?13、(☆☆)要运一堆土,如果每天运360车,需要a天才能运完,现在要提前b天完成任务,每天要运多少车?当a=30,b=5时,每天运多少车?14、(☆☆☆)一个正方形的边长是a厘米,若边长增加b厘米,则面积增加多少平方厘米?15、(☆☆☆)哥哥和弟弟共储蓄456元,如果哥哥给弟弟24元,那么两人的存款数相等,两人各存款多少元?16、(☆☆☆)百货大楼有两个仓库,乙仓库贮存的货物比甲仓库少210吨,又知甲仓库所存货物比乙仓库的3倍多10吨,两个仓库各贮存货物多少吨?列方程解题㈢1、a棵苹果树共收6千克苹果,平均每棵收苹果千克.2、甲数比乙数多4,如果乙数是a,那么甲数是.如果甲数是b,那么乙数是.3、小红给小明a张邮票后,两人邮票的张数同样多,小明原来比小红少张.4、每支铅笔b元,每支钢笔的价钱比铅笔贵5元.b+5表示;3b表示,3(b+5)表示,2b+5表示.1、一个长方形的宽是x米,长是宽的4倍,长是多少米?周长是多少米?面积是多少平方米?2、一个书架,上层放的书是下层的2.4倍,如果把上层的书拿56本到下层,这两层的书就同样多了.原来上、下层各有书多少本?3、甲种糖每千克8.8元,乙种糖每千克7.2元,用甲种糖5千克与多少千克乙种糖混合,才能使混合后的糖每千克8.2元?4、7千克花果的价钱与4千克香豆的价钱相等,1千克香豆比1千克花果贵3.6元,求香豆、花果单价之和.5、妈妈买回一袋桔子,按计划天数吃,如果每天吃6个,多出14个,如果每天吃8个,则少10个.妈妈一共买了多少个桔子?通过本次学习,我的收获是第一部分必做题1、(☆)一个长方形的周长是24厘米,长是宽的2倍,求长和宽各是多少厘米?2、(☆☆)一个长方体棱长之和是268厘米,其中长是宽的2倍,比高长8厘米.求长方体的体积.3、(☆)王小明有图书36本,李红有图书128本,李红送多少本图书给王小明后,两人的本数一样多?4、(☆☆)甲堆有煤205吨,乙堆有煤73吨,如果甲堆每天运走5吨,乙堆每天运进7吨,几天后两堆煤的重量相等?5、(☆☆)学校有一批树苗,分给五⑴班同学栽,如果只分给男生,每人3棵多4棵,如果只分给女生,则每人4棵少6棵,已知男生比女生多5人,这批树苗共有多少棵?第二部分选做题6、(☆☆)水果店装一些苹果,每筐装20千克就恰巧少一个筐,每筐装25千克恰巧多一个筐,求水果店有多少千克苹果?7、(☆☆☆)甲、乙两人暂付同样多的钱合买西瓜,结果甲拿走24千克,乙拿走15千克,这时甲应还给乙3.24元,每千克西瓜多少元?8、(☆☆)学校买了三张桌子和六把椅子,共付375元,每张桌子的价钱是每把椅子的3倍,每张桌子多少元?9、(☆☆☆)一架飞机所带的燃料最多可以用9小时,飞机去时顺风,每小时可飞行1500千米,返回时逆风,每小时可以飞行1200千米.这架飞机最多飞行出多少千米,就需要往回飞行?10、(☆☆☆)王老村小学体育器材室里的足球个数是排球的2倍,体育活动课上,每班借7个足球、5个排球,排球借完时,还有足球72个,体育器材室里原有足球、排球各多少个?。