(对数与对数函数)含有答案-人教版
- 格式:doc
- 大小:1.83 MB
- 文档页数:10
第二课时对数的运算1.下列等式成立的是( C )(A)log2(8-4)=log28-log24(B)=log2(C)log28=3log22(D)log2(8+4)=log28+log24解析:由对数的运算性质易知C正确.2.对于a>0且a≠1,下列说法中正确的是( C )①若M=N,则log a M=log a N;②若log a M=log a N,则M=N;③若log a M2=log a N2,则M=N;④若M=N,则log a M2=log a N2.(A)①③ (B)②④ (C)② (D)①②③④解析:①中当M=N≤0时,log a M,log a N都没有意义,故不正确;②正确;③中当M,N互为相反数且不为0时,也有log a M2=log a N2,此时M≠N,不正确;④中当M=N=0时,log a M2,log a N2都没有意义,故不正确.综上知选C.3.若lg m=b-lg n,则m等于( D )(A)(B)10bm(C)b-10n (D)解析:由题知lg m+lg n=b,即lg(mn)=b,解得10b=mn,所以m=.故选D.4.设lg 2=a,lg 3=b,则log512等于( C )(A) (B) (C)(D)解析:log512=====.故选C.5.设a,b,c都是正数,且3a=4b=6c,则( B )(A)=+(B)=+(C)=+(D)=+解析:设3a=4b=6c=t,则a=log 3t,b=log 4t,c=log 6t.所以=log t 3,=log t 4,=log t 6.所以+=log t 9+log t 4=2log t 6=.选B. 6.已知log 32=a,3b=5,则log 3由a,b 表示为( A )(A)(a+b+1) (B)(a+b)+1(C)(a+b+1) (D)a+b+1 解析:由3b=5得b=log 35,所以log 3=log 330=(log 33+log 32+log 35)=(1+a+b).故选A.7.若x 1,x 2是方程(lg x)2+(lg 2+lg 3)·lg x+lg 2·lg 3=0的两根,则x 1x 2等于( C ) (A)lg 2+lg 3 (B)lg 2·lg 3(C) (D)-6解析:由题知lg x 1+lg x 2=-(lg 2+lg 3)=-lg 6,则lg(x 1x 2)=-lg 6=lg ,故x 1x 2=,选C.8.已知x,y,z 都是大于1的正数,m>0,且log x m=24,log y m=40,log xyz m=12,则log z m 的值为( B )(A) (B)60 (C) (D)解析:log m (xyz)=log m x+log m y+log m z=,而log m x=,log m y=,故log m z=-log m x-log m y=--=,即log z m=60.故选B.9.已知2lg(x+y)=lg 2x+lg 2y,则= .解析:因为2lg(x+y)=lg 2x+lg 2y,所以lg(x+y)2=lg(4xy),所以(x+y)2=4xy,即(x-y)2=0.所以x=y,所以=1.答案:110.已知log34·log48·log8m=log416,则m= .解析:由题知··=log416=log442=2,所以=2,即lg m=2lg 3=lg 9,所以m=9.答案:911.已知=(a>0),则lo a= .解析:因为=(a>0),所以=,所以a=()3,故lo a=lo()3=3.答案:312.若lg a,lg b是方程2x2-4x+1=0的两根,则(lg)2= .解析:由题知则(lg)2=(lg a-lg b)2=(lg a+lg b)2-4lg a·lg b=22-4×=2.答案:213.求下列各式的值:(1)4lg 2+3lg 5-lg;(2)log220-log25+log23·log34;(3);(4)已知log189=a,18b=5,用a,b表示log3645的值.解:(1)原式=4lg 2+3lg 5+lg 5=4lg 2+4lg 5=4.(2)原式=log2+log23·=log24+log24=2log24=4.(3)原式====.(4)因为log189=a,18b=5,所以log185=b,于是log3645======.14.解下列关于x的方程:(1)lg=lg(x-1);(2)log4(3-x)+log0.25(3+x)=log4(1-x)+log0.25(2x+1).解:(1)原方程等价于解之得x=2.经检验x=2是原方程的解,所以原方程的解为x=2.(2)原方程可化为log4(3-x)-log4(3+x)=log4(1-x)-log4(2x+1).即log4=log4.整理得=,解之得x=7或x=0.当x=7时,3-x<0,不满足真数大于0的条件,故舍去.x=0满足,所以原方程的解为x=0.15.已知二次函数f(x)=(lg a)x2+2x+4lg a的最小值为3,求(log a5)2+log a2·log a50的值. 解:因为f(x)=(lg a)x2+2x+4lg a存在最小值3,所以lg a>0,f(x)min=f(-)=4lg a-=3,即4(lg a)2-3lg a-1=0,则lg a=1,所以a=10,所以(log a5)2+log a2·log a50=(lg 5)2+lg 2·lg 50=(lg 5)2+lg 2(lg 5+1)=(lg 5)2+lg 2lg 5+lg 2=lg 5(lg 2+lg 5)+lg 2=lg 5+lg 2=1.16.若2.5x=1 000,0.25y=1 000,则-等于( A )(A)(B)3(C)-(D)-3解析:因为x=log2.51 000,y=log0.251 000,所以==log1 0002.5,同理=log1 0000.25,所以-=log1 0002.5-log1 0000.25=log1 00010==.故选A.17.已知log2x=log3y=log5z<0,则,,的大小排序为( A )(A)<<(B)<<(C)<<(D)<<解析:x,y,z为正实数,且log2x=log3y=log5z<0,所以=2k-1,=3k-1,=5k-1,可得,=21-k>1,=31-k>1,=51-k>1.即1-k>0,因为函数f(x)=x1-k单调递增,所以<<.故选A.18.已知log a x=2,log b x=3,log c x=6,则log(abc)x的值为.解析:因为log a x=2,log b x=3,log c x=6,则a2=x,b3=x,c6=x,所以a=,b=,c=,所以abc==x,所以log(abc)x=log x x=1.答案:119.下列给出了x与10x的七组近似对应值:第组解析:由指数式与对数式的互化可知,10x=N⇔x=lg N,所以第一组、第三组对应值正确.又显然第六组正确,因为lg 8=3lg 2=3×0.301 03=0.903 09,所以第五组对应值正确.因为lg 12=lg 2+lg 6=0.301 03+0.778 15=1.079 18,所以第四组、第七组对应值正确.所以只有第二组错误.答案:二20.若a,b是方程2(lg x)2-lg x4+1=0的两个实根,求lg(ab)·(log a b+log b a)的值.解:原方程可化为2(lg x)2-4lg x+1=0.设t=lg x,则方程化为2t2-4t+1=0,所以t1+t2=2,t1·t2=.又因为a,b是方程2(lg x)2-lg x4+1=0的两个实根,所以t1=lg a,t2=lg b,即lg a+lg b=2,lg a·lg b=.所以lg(ab)·(log a b+log b a)=(lg a+lg b)·(+)=(lg a+ lg b)·=(lg a+lg b)·=2×=12,即lg(ab)·(log a b+log b a)=12.。
第六节对数与对数函数学习要求:1.理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.2.通过具体实例,了解对数函数的概念.能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.3.知道对数函数y=log a x与指数函数y=a x(a>0,且a≠1)互为反函数.1.对数的概念(1)对数的定义一般地,如果①a x=N(a>0,且a≠1) ,那么数x叫做以a为底N的对数,记作②x=log a N ,其中③a叫做对数的底数,④N叫做对数的真数.(2)几种常见的对数对数形式特点记法一般对数底数为a(a>0且a≠1) ⑤ log a N常用对数底数为10 ⑥ lg N自然对数底数为e ⑦ ln N2.对数的性质与运算法则(1)对数的性质(i)负数和0无对数.(ii)1的对数等于0,即log a1=0(a>0且a≠1).(iii)log a a=1(a>0且a≠1).▶提醒a log a N=⑧N ;log a a N=⑨N (a>0且a≠1). (2)换底公式及其推论换底公式:⑩ log b N =log a Nlog a b(a,b均大于0且不等于1).推论:log a b=1log b a ,lo g a m bn=nmlog a b(a>0且a≠1,b>0且b≠1,m,n∈R,且m≠0),log a b·log b c·log c d= log a d (a,b,c均大于0且不等于1,d大于0).(3)对数的运算法则如果a>0且a≠1,M>0,N>0,那么log a(MN)= log a M+log a N ,log a MN= log a M-log a N ,log a M n=n log a M (n∈R).3.对数函数的图象与性质a>1 0<a<1图象性质定义域:(0,+∞)值域:R图象恒过点(1,0),即x =1时,y =0当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 是(0,+∞)上的增函数是(0,+∞)上的减函数▶提醒 当对数函数的底数a 的大小不确定时,需分a >1和0<a <1两种情况进行讨论. 4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =loga x (a >0,且a ≠1)互为反函数,它们的图象关于直线 y =x 对称.知识拓展1.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),函数图象只在第一、四象限.1.判断正误(正确的打“√”,错误的打“✕”).(1)log a(MN)=log a M+log a N.()(2)函数y=log a x2与函数y=2log a x相等.()(3)对数函数y=log a x(a>0,且a≠1)在(0,+∞)上是增函数.()(4)函数y=ln1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.()答案(1)✕(2)✕(3)✕(4)√2.(新教材人教A版必修第一册P127T3改编)log29×log34+2log510+log50.25=()A.0B.2C.4D.6答案 D3.(新教材人教A版必修第一册P133例3改编)已知a=ln 3,b=log3e,c=logπe,则下列关系正确的是()A.c<b<aB.a<b<cC.b<a<cD.b<c<a答案 A4.(新教材人教A版必修第一册P159T1改编)图中曲线是对数函数y=log a x的图象,已知a取√3,43,35,110四个值,则对应于C1,C2,C3,C4的a值依次为()A.√3,43,35,110B.√3,43,110,35C.43,√3,35,110D.43,√3,110,35答案 A5.已知函数f(x)=log a(2x-a)在区间[23,34]上恒有f(x)>0,则实数a的取值范围是.答案(12,1)对数式的化简与求值1.(多选题)设a,b,c都是正数,且4a=6b=9c,则()A.ab+bc=2acB.ab+bc=acC.2c =2a+1bD.1c=2b−1a答案AD∵a,b,c都是正数, 故可设4a=6b=9c=M,∴a=log4M,b=log6M,c=log9M,则1a =log M4,1b=log M6,1c=log M9.∵log M4+log M9=2log M6,∴1a +1c=2b,即1c=2b−1a,去分母整理得,ab+bc=2ac.故选AD.2.计算:2log 23+2log 31-3log 77+3ln 1= . 答案 0解析 原式=3+2×0-3×1+3×0=0. 3.计算:(lg 14-lg25)×10012= . 答案 -20解析 原式=(lg 2-2-lg 52)×10012=lg (122×52)×10=lg 10-2×10=-2×10=-20.4.计算:(1-log 63)2+log 62·log 618log 64= .答案 1 解析 原式 =1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.名师点评1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数,然后逆用对数的运算法则,化为同底对数真数的积、商、幂再运算.3.a b=N⇔b=log a N(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.对数函数的图象及应用典例1(1)(2020安徽亳州二模)在同一个平面直角坐标系中,函数f(x)=1a x 与g(x)=lg ax的图象可能是()(2)(2020宁夏银川模拟)已知函数f(x)=|ln x|,若0<a<b,且f(a)=f(b),则2a+b的取值范围是()A.(2√2,+∞)B.[2√2,+∞)C.(3,+∞)D.[3,+∞)答案(1)A(2)B解析(1)由题意a>0且a≠1,所以函数g(x)=lg ax单调递减,故排除B、D;对于A、C,由函数f(x)=1a x 的图象可知0<a<1,对于函数g(x)=lg ax,g(1)=lg a<0,故A正确,C错误.(2)f(x)=|ln x|的图象如下:因为0<a<b且f(a)=f(b),所以|ln a|=|ln b|且0<a<1,b>1,所以-ln a=ln b,即ab=1,易得2a+b≥2√2ab=2√2,当且仅当2a=b,即a=√22,b=√2时等号成立.故选B.名师点评1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.常把一些对数型方程、不等式问题转化为相应的函数图象问题,利用数形结合法求解.1.(2020广东惠州模拟)当a >1时,在同一坐标系中,函数g (x )=a -x 与f (x )=-log a x 的图象大致是( )答案 D 因为a >1,所以g (x )=a -x=(1a )x为R 上的减函数,且过(0,1);f (x )=-log a x 为(0,+∞)上的减函数,且过(1,0), 故只有D 选项符合.2.(2020陕西榆林三模)设x 1、x 2、x 3均为实数,且e -x 1=ln x 1,e -x 2=ln(x 2+1),e -x 3=lg x 3,则( ) A.x 1<x 2<x 3 B.x 1<x 3<x 2 C.x 2<x 3<x 1 D.x 2<x 1<x 3 答案 D 因为e -x 1=ln x1⇒(1e )x 1=ln x 1,e-x 2=ln(x 2+1)⇒(1e )x 2=ln(x 2+1),e-x 3=lg x3⇒(1e )x 3=lg x 3,所以作出函数y =(1e )x,y 1=ln x ,y 2=ln(x +1),y 3=lg x 的函数图象,如图所示:由图象可知函数y 2,y 1,y 3与y 的交点A ,B ,C 的横坐标依次为x 2,x 1,x 3,即有x 2<x 1<x 3.故选D .对数函数的性质及应用角度一 比较对数值的大小典例2 (2020课标Ⅲ理,12,5分)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A.a <b <cB.b <a <cC.b <c <aD.c <a <b 答案 A a =log 53∈(0,1),b =log 85∈(0,1),则ab =log 53log 85=log53·log58<(log 53+log 582)2=(log 5242)2<1,∴a <b.又∵134<85,∴135<13×85,两边同取以13为底的对数得log 13135<log 13(13×85),即log 138>45, ∴c >45. 又∵55<84,∴8×55<85,两边同取以8为底的对数得log 8(8×55)<log 885, 即log 85<45,∴b <45.综上所述,c >b >a ,故选A . 角度二 解简单的对数不等式典例3 若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A.(0,1) B.(0,12)C.(12,1)D.(0,1)∪(1,+∞)答案 C 由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a 2a <0,所以0<a <1,且2a >1,∴a >12.故a 的取值范围是(12,1).角度三 与对数函数有关的复合函数问题典例4 已知函数f (x )=log a (ax 2-x ).(1)若a =12,求f (x )的单调区间; (2)若f (x )在区间[2,4]上是增函数,求实数a 的取值范围.解析 (1)当a =12时,f (x )=lo g 12(12x 2-x),由12x 2-x >0,得x 2-2x >0,解得x <0或x >2,所以函数f (x )的定义域为(-∞,0)∪(2,+∞),利用复合函数单调性可得函数f (x )的增区间为(-∞,0),减区间为(2,+∞).(2)令g (x )=ax 2-x ,则函数g (x )的图象开口向上,对称轴为x =12a 的抛物线,①当0<a<1时,要使函数f(x)在区间[2,4]上是增函数, 则g(x)=ax2-x在[2,4]上单调递减,且g(x)min=ax2-x>0,即{12a≥4,g(4)=116a-14>0,此不等式组无解.②当a>1时,要使函数f(x)在区间[2,4]上是增函数, 则g(x)=ax2-x在[2,4]上单调递增,且g(x)min=ax2-x>0,即{12a≤2,g(2)=4a-2>0,解得a>12,又a>1,∴a>1.综上实数a的取值范围为(1,+∞).名师点评(1)确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.(2)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.(3)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,并且真数必须为正.1.(2020课标Ⅲ文,10,5分)设a=log32,b=log53,c=23,则()A.a <c <bB.a <b <cC.b <c <aD.c <a <b答案 A 因为a =log 32=log 3√83<log3√93=23=c , b =log 53=log 5√273>log5√253=23=c ,所以a <c <b.故选A .2.若a >b >0,0<c <1,则 ( ) A.log a c <log b c B.log c a <log c bC.a c <b cD.c a >c b答案 B ∵0<c <1,∴当a >b >1时,log a c >log b c ,故A 项错误;∵0<c <1,∴y =log c x 在(0,+∞)上单调递减,又a >b >0,∴log c a <log c b ,故B 项正确;∵0<c <1,∴y =x c 在(0,+∞)上单调递增,又∵a >b >0,∴a c >b c ,故C 项错误;∵0<c <1,∴y =c x 在(0,+∞)上单调递减,又∵a >b >0,∴c a <c b ,故D 项错误.故选B .3.若函数f (x )=log a (x 2+32x)(a >0,a ≠1)在区间(12,+∞)上恒有f (x )>0,则f (x )的单调递增区间为 .答案 (0,+∞)解析 令M =x 2+32x ,当x ∈12,+∞时,M ∈(1,+∞),因为f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =(x +34)2−916,因此M 的单调递增区间为(-34,+∞).又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).A组基础达标1.(2020课标Ⅰ文,8,5分)设a log34=2,则4-a= ()A.116B.19C.18D.16答案 B2.(多选题)设a=log0.20.3,b=log20.3,则()A.1a <1bB.ab<0C.a+b<0D.ab<a+b 答案BCD3.已知a=log2e,b=ln 2,c=lo g1213,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b答案 D4.(多选题)已知函数f(x)=lg(x2+ax-a-1),则下列论述中正确的是()A.当a=0时, f(x)的定义域为(-∞,-1)∪(1,+∞)B.当a=0时,f(x)一定有最小值C.当a=0时, f(x)的值域为RD.若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是[-4,+∞)答案AC对于A,当a=0时,解x2-1>0,有x∈(-∞,-1)∪(1,+∞),故A正确;对于B,当a=0时,f(x)=lg(x2-1),x2-1∈(0,+∞),此时f(x)=lg(x2-1)的值域为R,故B错误,C正确;对于D,若f(x)在区间[2,+∞)上单调递增,此时y=x2+ax-a-1的图象的对称轴的方程为直线x=-a 2,则-a2≤2,解得a≥-4.但当a=-4时,f(x)=lg(x2-4x+3)在x=2处无意义,故D错误.故选AC.5.(2020陕西西安高三二模)函数y=log5(x2+2x-3)的单调递增区间是.答案(1,+∞)解析由题意可知x2+2x-3>0,解得x<-3或x>1,即函数y=log5(x2+2x-3)的定义域为(-∞,-3)∪(1,+∞).令g(x)=x2+2x-3,则函数g(x)在(-∞,-3)上单调递减,在(1,+∞)上单调递增,根据复合函数的单调性,可得函数y=log5(x2+2x-3)的单调递增区间为(1,+∞).6.函数f(x)=e x-e-x+ln1+x1-x+1,若f(a)+f(1+a)>2,则a的取值范围是.答案(-12,0)解析由题意得, f(x)的定义域为(-1,1),关于原点对称设g(x)=f(x)-1=e x-e-x+ln1+x1-x,则g(-x)=e-x-e x+ln1-x1+x,则g(-x)+g(x)=0,所以g(x)是(-1,1)上的奇函数,因为f(a)+f(1+a)>2,所以f(1+a)-1>-f(a)+1,所以f(1+a)-1>-[f(a)-1],即g(1+a)>-g(a)=g(-a),因为y=e x-e-x单调递增,y=ln1+x1-x单调递增,所以g(x)单调递增,则{-1<a<1,-1<1+a<1,1+a>-a,即−12<a<0.故a的取值范围是(-12,0).7.已知函数f(x)=ln(2x2+ax+3).(1)若f(x)是定义在R上的偶函数,求a的值及f(x)的值域;(2)若f(x)在区间[-3,1]上是减函数,求a的取值范围.解析(1)因为f(x)是定义在R上的偶函数,所以f(x)=f(-x),所以ln(2x2+ax+3)=ln(2x2-ax+3),故a=0,所以f(x)=ln(2x2+3),定义域为R,符合题意.令t=2x2+3,则t≥3,所以ln t≥ln 3,故f(x)的值域为[ln 3,+∞).(2)设u(x)=2x2+ax+3,f(u)=ln u.因为f(x)在[-3,1]上是减函数,所以u(x)=2x2+ax+3在[-3,1]上是减函数,且u(x)>0在[-3,1]上恒成立,故{-a4≥1,u(x)min=u(1)=5+a>0,解得-5<a≤-4,即a的取值范围是(-5,-4].B组能力拔高8.(2020山西大同三模)在同一平面直角坐标系中,函数f(x)=2-ax,g(x)=log a(x+2)(a>0,且a≠1)的图象大致为()答案A由题意知,函数f(x)=2-ax(a>0,且a≠1)为减函数,当0<a<1时,函数f(x)=2-ax的零点为x=2a>2,且函数g(x)=log a(x+2)在(-2,+∞)上为减函数,故C,D均不正确;当a>1时,函数f(x)=2-ax的零点为x=2a <2,且x=2a>0,且g(x)=log a(x+2)在(-2,+∞)上是增函数,故B不正确,故选A.9.(多选题)(2020山东济南模拟)已知函数f(x)=lg(1|x-2|+1),则下列说法正确的是()A.f(x+2)是偶函数B.f(x+2)是奇函数C.f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D.f(x)没有最小值答案AD因为f(x)=lg(1|x-2|+1),所以f (x +2)=lg (1|x |+1),定义域为{x |x ≠0},关于原点对称,又f (-x +2)=lg (1|-x |+1)=lg (1|x |+1)=f (x +2),所以f (x +2)为偶函数,故A 说法正确,B 说法错误; f (x )=lg (1|x -2|+1)={lg (1x -2+1),x >2,lg (12-x +1),x <2.因为当x ∈(2,+∞)时,y =1x -2为减函数,所以y =1x -2+1为减函数,所以y =lg (1x -2+1)在区间(2,+∞)上为减函数,故C 说法错误;因为当x ∈(2,+∞)时,y =lg (1x -2+1)为减函数,且当x →+∞时,y →0,所以f (x )没有最小值,故D 说法正确.10.(2020辽宁高三三模)设f (x )为定义在R 上的奇函数,当x ≥0时, f (x )=log 3(x +1)+ax 2-a +1(a 为常数),则不等式f (3x +4)>-5的解集为 ( )A.(-∞,-1)B.(-1,+∞)C.(-∞,-2)D.(-2,+∞)答案 D 因为f (x )是定义在R 上的奇函数,所以f (0)=0,解得a =1,所以当x ≥0时,f (x )=log 3(x +1)+x 2.因为函数y =log 3(x +1)和y =x 2在x ∈[0,+∞)上都是增函数,所以f (x )在[0,+∞)上单调递增.由奇函数的性质可知,y =f (x )在R 上单调递增,因为f (2)=5,f (-2)=-5,所以f (3x +4)>-5⇒f (3x +4)>f (-2),即3x+4>-2,解得x>-2.11.(2020课标Ⅰ理,12,5分)若2a+log2a=4b+2log4b,则()A.a>2bB.a<2bC.a>b2D.a<b2答案B2a+log2a=22b+log2b<22b+log2(2b),令f(x)=2x+log2x,则f(a)<f(2b),又易知f(x)在(0,+∞)上单调递增,所以a<2b,故选B.12.(2020河北邢台模拟)若当x∈(1,2]时,不等式(x-1)2≤log a x恒成立,则实数a的取值范围为.答案(1,2]解析因为当x∈(1,2]时,不等式(x-1)2≤log a x恒成立,所以{a>1,log a2≥1,解得1<a≤2,故实数a的取值范围是(1,2].13.已知函数f(x)=3-2log2x,g(x)=log2x.(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;(2)如果对任意的x∈[1,4],不等式f(x2)·f(√x)>k·g(x)恒成立,求实数k的取值范围.解析(1)易知h(x)=(4-2log2x)·log2x=-2(log2x-1)2+2.因为x∈[1,4],所以log2x∈[0,2],故函数h(x)的值域为[0,2].(2)由f (x 2)·f (√x )>k ·g (x )可得(3-4log 2x )(3-log 2x )>k ·log 2x.令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2],即(3-4t )(3-t )>k ·t 对任意t ∈[0,2]恒成立.当t =0时,k ∈R;当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立, 即k <4t +9t -15恒成立.因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t -15的最小值为-3,即k <-3.综上,k 的取值范围是(-∞,-3).C 组 思维拓展14.(2020吉林长春高三模拟)若函数f (x )={log 12(3-x )m ,x <1,x 2-6x +m ,x ≥1的值域为R,则m 的取值范围为( )A.(0,8]B.(0,92]C.[92,8] D.(-∞,-1]∪(0,92]答案B①若m>0,则当x<1时, f(x)=lo g12(3-x)m单调递增,当x≥1时, f(x)=x2-6x+m=(x-3)2+m-9在(3,+∞)上单调递增,在[1,3)上单调递减,若函数f(x)的值域为R,则需f(3)=m-9≤m lo g12(3-1)=-m,解得0<m≤92;②若m≤0,则当x<1时,f(x)=lo g12(3-x)m单调递减或为常数函数,当x≥1时,f(x)=x2-6x+m=(x-3)2+m-9在(3,+∞)上单调递增,在[1,3)上单调递减,不满足函数f(x)的值域为R,舍去.综上,m的取值范围为(0,92],故选B.15.(2020山西运城高三模拟)已知函数f(x)=ln2+x2-x,g(x)=m(x-√4-x)+2,若∀x1∈[0,4],∃x2∈[0,1],使得f(x2)<g(x1),则实数m的取值范围是()A.[14ln3-12,1-12ln3]B.(14ln3-12,1-12ln3)C.(-12,1)D.[-12,1]答案C∀x1∈[0,4],∃x2∈[0,1],使得f(x2)<g(x1)等价于f(x)min<g(x)min.函数f(x)=ln2+x2-x=ln(2+x)-ln(2-x),-2<x<2.因为y=ln(2+x)与y=-ln(2-x)在[0,1]上为增函数,所以函数f(x)在[0,1]上为增函数,所以f(x)min=f(0)=0.易知函数y=x-√4-x在[0,4]上为增函数,则-2≤x-√4-x≤4.故当m>0时,-2m+2≤g(x)≤4m+2,因为f(x)min<g(x)min,所以0<-2m+2,解得0<m<1;当m=0时,g(x)min=2>0,满足f(x)min<g(x)min;<m<0.当m<0时,4m+2≤g(x)≤-2m+2,因为f(x)min<g(x)min,所以0<4m+2,解得-12 <m<1.综上可知,-12。
(对数与对数函数)含有答案-人教版命题人:张立洪 第 2 页 共 10 页高一数学基础训练(六)对数部分:一、选择题: 1.若312=x,则x 等于 (B ) A log 23 B log 231C log 2131 D log 3122.已知log a 8=23,则a 等于 ( D ) A 41 B 21 C2 D 4 3.下列选项中,结论正确的是 (C )A 若log 2x =10,则2x=10B 若2x =3,则log 32=xC 0log )(log 322= D 2332log = 4.以下四个命题:(1)若log x 3=3,则x=9;(2)若log 4x =21,则x=2; (3)若log 3x=0,则x=3;(4)若log 51x=-3,则x=125,其中真命题的个数是(B ) A 1个 B 2个 C 3个 D 4个 5.下列各式中,能成立的是 (D )A log 3(6-4)=log 36-log 34B log3(6-4)=4log 6log 33 C log 35-log 36=5log 5log 33 D log 23+log 210=log 25+log 26 6.下列各式中,正确的是 (D )A lg4-lg7=lg(4-7)B 4lg3=lg3⨯4C lg3+lg7=lg(3+7)D ln Ne N=7.如果()N a a =--3log1,那么a 的取值范围是(D )命题人:张立洪 第 3 页 共 10 页A .3<aB .31<<aC .1>a 且2≠aD .()()3,22,1Y 8.使0lg >x 成立的充要条件是(B )A .0>xB .1>xC .10>xD .101<<x 9.若log [log (log )]4320x =,则x -12等于(A )A. 142B. 122 C. 8 D. 4 10.若()x f x=10,那么()3f 等于(B )A .10log3B .3lgC .103 D .31014.已知x =2+1,则lo g 4(x 3-x -6)等于(B )A.23B.45C.0D.2115.下列等式成立的是(C ) A .()()[]()()5log 3log53log 222-+-=-- B .()()10log 210log222-=-C .()()[]5log 3log53log 222+=-- D .()32325log 5log -=- 16.计算lglg lg lg 3325325++=(A )A. 1B. 3C. 2D. 0 17.对数()12log 12-+的值为(B )A .1B .-1C .1/2D .-1/2 18.已知21366log log x =-,则x 的值是(B )A. 3B.2C.2或-2 D.3或219.若23=a,则6log 28log33-用a 的代数式可表示为(A )A .2-aB .()213a a +- C .25-a D .23a a - 20.已知23834xy ==,log ,则x y +2的值为(A )命题人:张立洪 第 4 页 共 10 页A. 3B. 8C. 4D. log 48 二、填空题:1.把下列指数形式写成对数形式:(1) 45=625 5log 6254= (2)62-=6412log164=-6(3)a3=27 3log 27=a (4) m)(31=5.73 13log5.73m=2.把下列对数式写成指数式(1) 3log 9=2 23=9 (2)5log 125=3 35=125(3)2log 41=-2 22-=14 (4)3log811=-4 43-=1813.利用对数的定义或性质求值:(1) log 3131=1; (2)log 111=0;(3) log 232=5;(4)log 9131=2;4.当底是9时,3的对数等于14命题人:张立洪 第 5 页 共 10 页5.如果对数lga 与lgb 互为相反数,那么a 与b 之间应满足ab=1;6.计算 (1)2log (74×25)=19;(2) lg5100=25;7.如果log094132=--x,则x=-2;8.满足等式()()2lg 2lg 1lg =-+-x x 的∈x {}3. 9.计算:=+50lg 2lg 5lg21.10.求值:=++++3log 15.222ln 1001lg25.6loge 132三、解答题:1.已知xlog 5a =,xlog 3b =,求ba x23+的值。
2.2 对数函数解读对数概念及运算对数是中学数学中重要的内容之一,理解对数的定义,掌握对数的运算性质是学习对数的重点内容.现梳理这部分知识,供同学们参考.一、对数的概念对数概念与指数概念有关,指数式和对数式是互逆的,即a b =N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a a b =b ;(2)a log a N =N .例1 计算:log 22+log 51+log 3127+9log 32. 分析 根据定义,再结合对数两个恒等式即可求值.解 原式=1+0+log 33-3+(3log 32)2=1-3+4=2.点评 解决此类问题关键在于根据幂的运算法则将指数式和对数式化为同底数.二、对数的运算法则常用的对数运算法则有:对于M >0,N >0.(1)log a (MN )=log a M +log a N ;(2)log a M N=log a M -log a N ; (3)log a M n =n log a M .例2 计算:lg 14-2lg 73+lg 7-lg 18. 分析 运用对数的运算法则求解.解 由已知,得原式=lg(2×7)-2(lg 7-lg 3)+lg 7-lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.点评 对数运算法则是进行对数运算的根本保证,同学们必须能从正反两方面熟练应用.三、对数换底公式根据对数的定义和运算法则 可以得到对数换底公式:log a b =log c b log c a(a >0且a ≠1,c >0且c ≠1,b >0). 由对数换底公式又可得到两个重要结论:(1)log a b ·log b a =1;(2)log an b m =m nlog a b . 例3 计算:(log 25+log 4125)×log 32log 35. 分析 在利用换底公式进行化简求值时,一般是根据题中对数式的特点选择适当的底数进行换底,也可选择以10为底进行换底. 解 原式=(log 25+32log 25)×log 322log 35=52log 25×12log 52=54. 点评 对数的换底公式是“同底化”的有力工具,同学们要牢记.通过上面讲解,同学们可以知道对数的定义是对数式和指数式互化的依据,正确进行它们之间的相互转换是解题的有效途径.对数的运算性质,同学们要熟练掌握,在应用过程中避免错误,将公式由“正用”“逆用”逐步达到“活用”的境界.数换底公式的证明及应用设a >0,c >0且a ≠1,c ≠1,N >0,则有log a N =log c N log c a,这个公式称为对数的换底公式,它在对数的运算中有着重要的应用,课本中没有给出证明,现证明如下:证明 记p =log a N ,则a p =N .**式两边同时取以c 为底的对数(c >0且c ≠1)得log c a p =log c N ,即p log c a =log c N .所以p =log c N log c a ,即log a N =log c N log c a. 推论1:log a b ·log b a =1.推论2:log an b m =m nlog a b (a >0且a ≠1,b >0). 例4 (1)已知log 189=a,18b =5,求log 3645的值;(2)求log 23·log 34·log 45·…·log 6364的值.解 (1)因为log 189=a,18b =5,所以lg 9lg 18=a . 所以lg 9=a lg 18,lg 5=b lg 18.所以log 3645=lg (5×9)lg 1829=lg 5+lg 92lg 18-lg 9 =b lg 18+a lg 182lg 18-a lg 18=b +a 2-a. (2)log 23·log 34·log 45·…·log 6364=lg 3lg 2·lg 4lg 3·lg 5lg 4·…·lg 64lg 63=lg 64lg 2=6lg 2lg 2=6. 点评 对数运算法则中,对数式都是同底的,凡不同底的对数运算,都需要用换底公式将底统一,一般统一成常用对数.例5 已知12log 8a +log 4b =52,log 8b +log 4a 2=7,求ab 的值. 解 由已知可得⎩⎨⎧16log 2a +12log 2b =52,13log 2b +log 2a =7, 即⎩⎪⎨⎪⎧ log 2a +3log 2b =15,3log 2a +log 2b =21.解得⎩⎪⎨⎪⎧log 2a =6,log 2b =3. 所以a =26,b =23.故ab =26·23=512.点评 发现底数“4”,“8”与“2”的关系,将底数统一成“2”,解决问题比较简单.此外还有下面的关系式:log N M =log a M log a N =log b M log b N; log a M ·log b N =log a N ·log b M ;log a M log b M =log a N log b N=log a b ;N log a M =M log a N .数函数图象及性质的简单应用对数函数图象是对数函数的一种表达形式,形象显示了函数的性质,为研究它的数量关系提供了“形”的直观性.它是探求解题思路、获得问题结果的重要途径.能准确地作出对数函数的图象是利用平移、对称的变换来研究复杂函数的性质的前提,而数形结合是研究与对数函数的有关问题的常用思想.一、求函数的单调区间例6 画出函数y =log 2x 2的图象,并根据图象指出它的单调区间.解 当x ≠0时,函数y =log 2x 2满足f (-x )=log 2(-x )2=log 2x 2=f (x ),所以y =log 2x 2是偶函数,它的图象关于y 轴对称.当x >0时,y =log 2x 2=2log 2x ,因此先画出y =2log 2x (x >0)的图象为C 1,再作出C 1关于y 轴对称的图象C 2,C 1与C 2构成函数y =log 2x 2的图象,如图所示.由图象可以知道函数y =log 2x 2的单调减区间是(-∞,0),单调增区间是(0,+∞). 点评 作图象时一定要考虑定义域,否则会导致求出错误的单调区间,同时在确定单调区间时,要注意增减区间的分界点,特别要注意区间的开与闭问题.二、利用图象求参数的值例7 若函数f (x )=log a (x +1)(a >0,a ≠1)的定义域和值域都是[0,1],则a 等于( ) A.13 B. 2 C.22 D .2 解析 当a >1时,f (x )=log a (x +1)的图象如图所示.f (x )在[0,1]上是单调增函数,且值域为[0,1],所以f (1)=1,即log a (1+1)=1,所以a =2,当0<a <1时,其图象与题意不符,故a 的值为2,故选D.答案 D点评 (1)当对数的底数不确定时要注意讨论;(2)注意应用函数的单调性确定函数的最值(值域).三、利用图象比较实数的大小例8 已知log m 2<log n 2,m ,n >1,试确定实数m 和n 的大小关系.解 在同一直角坐标系中作出函数y =log m x 与y =log n x 的图象如图所示,再作x =2的直线,可得m >n .点评 不同底的对数函数图象的规律是:(1)底都大于1时,底大图低(即在x >1的部分底越大图象就越接近x 轴);(2)底都小于1时,底大图高(即在0<x <1的部分底越大图象就越远离x 轴).四、利用图象判断方程根的个数例9 已知关于x 的方程|log 3x |=a ,讨论a 的值来确定方程根的个数.解 因为y =|log 3x |=⎩⎪⎨⎪⎧log 3x , x >1,-log 3x , 0<x <1, 在同一直角坐标系中作出函数与y =a 的图象,如图可知:(1)当a <0时,两个函数图象无公共点,所以原方程根的个数为0;(2)当a =0时,两个函数图象有一个公共点,所以原方程根有1个;(3)当a >0时,两个函数图象有两个公共点,所以原方程根有2个.点评 利用图象判断方程根的个数一般都是针对不能将根求出的题型,与利用图象解不等式一样,需要先将方程等价转化为两端对应的函数为基本函数(最好一端为一次函数),再作图象.若含有参数,要注意对参数的讨论,参数的取值不同,函数图象的位置也就不同,也就会引起根的个数不同. 三类对数大小的比较 一、底相同,真数不同 例10 比较log a 2与log a 33的大小.分析 底数相同,都是a ,可借助于函数y =log a x 的单调性比较大小.解 由(2)6=8<(33)6=9,得2<33.当a >1时,函数y =log a x 在(0,+∞)上是增函数,故log a 2<log a 33;当0<a <1时,函数y =log a x 在(0,+∞)上是减函数,故log a 2>log a 33.点评 本题需对底数a 的范围进行分类讨论,以确定以a 为底的对数函数的单调性,从而应用函数y =log a x 的单调性比较出两者的大小.二、底不同,真数相同例11 比较log 0.13与log 0.53的大小.分析 底数不同但真数相同,可在同一坐标系中画出函数y =log 0.1x 与y =log 0.5x 的图象,借助于图象来比较大小;或应用换底公式将其转化为同底的对数大小问题.解 方法一 在同一坐标系中作出函数y =log 0.1x 与y =log 0.5x 的图象,如右图.在区间(1,+∞)上函数y =log 0.1x 的图象在函数y =log 0.5x 图象的上方,故有log 0.13>log 0.53.方法二 log 0.13=1log 30.1,log 0.53=1log 30.5. 因为3>1,故y =log 3x 是增函数,所以log 30.1<log 30.5<0.所以1log 30.1>1log 30.5. 即log 0.13>log 0.53.方法三 因为函数y =log 0.1x 与y =log 0.5x 在区间(0,+∞)上都是减函数,故log 0.13>log 0.110=-1,log 0.53<log 0.52=-1,所以log 0.13>log 0.53.点评 方法一借助于对数函数的图象;方法二应用换底公式将问题转化为比较两个同底数的对数大小;方法三借助于中间值来传递大小关系.三、底数、真数均不同例12 比较log 323与log 565的大小. 分析 底数、真数均不相同,可通过考察两者的范围来确定中间值,进而比较大小. 解 因为函数y =log 3x 与函数y =log 5x 在(0,+∞)上都是增函数,故log 323<log 31=0,log 565>log 51=0, 所以log 323<log 565. 点评 当底数、真数均不相同时,可找中间量(如1或0等)传递大小关系,从而比较出大小.综上所述,比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论,如例10;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小,如例11;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较,如例12.学对数给你提个醒对数函数是函数的重要内容之一,由于同学们对概念、定义域、值域、图象等知识点掌握得不够好,经常出现解题错误,现将这些错误进行归纳并举例说明.一、忽视0没有对数例13 求函数y =log 3(1+x )2的定义域.错解 对于任意的实数x ,都有(1+x )2≥0,所以原函数的定义域为R .剖析 只考虑到负数没有对数.事实上,由对数的定义可知,零和负数都没有对数. 正解 {x |x ≠-1}二、忽视1的对数为0例14 求函数y =1log 2(2x +3)的定义域. 错解 由2x +3>0,得x >-32, 所以定义域为{x |x >-32}. 剖析 当2x +3=1时,log 21=0,分母为0没有意义,上述解法忽视了这一点.正解 {x |x >-32且x ≠-1}三、忽视底数的取值范围例15 已知log (2x +5)(x 2+x -1)=1,则x 的值是( )A .-4B .-2或3C .3D .-4或5错解 由2x +5=x 2+x -1,化简得x 2-x -6=0,解得x =-2或x =3.故选B.剖析 忽视了底数有意义的条件:2x +5>0且2x +5≠1.当x =-2时,2x +5=1,应舍去,只能取x =3.正解 C四、忽视真数大于零例16 已知lg x +lg y =2lg(x -2y ),求log 2x y的值. 错解 因为lg x +lg y =2lg(x -2y ),所以xy =(x -2y )2,即x 2-5xy +4y 2=0,所以x =y 或x =4y ,即x y =1或x y =4, 所以log 2x y =0,或log 2x y=4. 剖析 错误的原因在于忽视了原式中的三个对数式隐含的条件,x >0,y >0,x -2y >0,所以x >2y >0,所以x =y 不成立.正解 因为lg x +lg y =2lg(x -2y ),所以xy =(x -2y )2,即x 2-5xy +4y 2=0,所以x =y 或x =4y ,因为x >0,y >0,x -2y >0,所以x =y 应舍去,所以x =4y ,即x y=4, 所以log 2x y=4. 五、对数运算性质混淆例17 下列运算:(1)log 28log 24=log 284; (2)log 28=3log 22;(3)log 2(8-4)=log 28-log 24;(4)log 243·log 23=log 2(43×3).其中正确的有( ) A .4个 B .3个C .2个D .1个错解 A剖析 (1)log 28log 24真数8与4不能相除;(3)中log 2(8-4)不能把log 乘进去运算,没有这种运算的,运算log 284=log 28-log 24才是对的;(4)错把log 提出来运算了,也没有这种运算,正确的只有(2).正解 D六、忽视对含参底数的讨论例18 已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,求a 的值.错解 由题意得log a 4-log a 2=log a 2=1,所以a =2.剖析 对数函数的底数含有参数a ,错在没有讨论a 与1的大小关系而直接按a >1解题. 正解 (1)若a >1,函数y =log a x (2≤x ≤4)为增函数,由题意得log a 4-log a 2=log a 2=1,所以a =2,又2>1,符合题意.(2)若0<a <1,函数y =log a x (2≤x ≤4)为减函数,由题意得log a 2-log a 4=log a 12=1, 所以a =12,又0<12<1,符合题意, 综上可知a =2或a =12.巧借对数函数图象解题数形结合思想,就是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维相结合.通过对图形的认识、数形转化,来提高思维的灵活性、形象性、直观性,使问题化难为易、化抽象为具体.它包含“以形助数”和“以数辅形”两个方面.一、利用数形结合判断方程解的范围方程解的问题可以转化为曲线的交点问题,从而把代数与几何有机地结合起来,使问题的解决得到简化.例1 方程lg x+x=3的解所在区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,+∞)答案 C解在同一平面直角坐标系中,画出函数y=lg x与y=-x+3的图象(如图所示).它们的交点横坐标x0显然在区间(1,3)内,由此可排除选项A、D.实际上这是要比较x0与2的大小.当x0=2时,lg x0=lg 2,3-x0=1.由于lg 2<1,因此x0>2,从而判定x0∈(2,3).点评本题是通过构造函数用数形结合法求方程lg x+x=3的解所在的区间.数形结合,要在结合方面下功夫.不仅要通过图象直观估计,而且还要计算x0的邻近两个函数值,通过比较其大小进行判断.二、利用数形结合求解的个数例2 已知函数f(x)满足f(x+2)=f(x),当x∈[-1,1)时,f(x)=x,则方程f(x)=lg x的根的个数是________.解析构造函数g(x)=lg x,在同一坐标系中画出f(x)与g(x)的图象,如图所示,易知有4个根.答案 4点评本题学生极易填3,其原因是学生作图不标准,尤其是在作对数函数的图象时没有考虑到当x=10时,y=1.因此,在利用数形结合法解决问题时,要注意作图的准确性.三、利用数形结合解不等式例3 使log2x<1-x成立的x的取值范围是______________________________________.解析构造函数f(x)=log2x,g(x)=1-x,在同一坐标系中作出两者的图象,如图所示,直接从图象中观察得到x∈(0,1).答案(0,1)点评用数形结合的方法去分析解决问题,除了会读图外,还要会画图,绘制图形既是利用数形结合方法的需要,也是培养我们动手能力的需要.数函数常见题型归纳一、考查对数函数的定义例4 已知函数f (x )为对数函数,且满足f (3+1)+f (3-1)=1,求f (5+1)+f (5-1)的值.解 设对数函数f (x )=log a x (a >0,a ≠1),由已知得log a (3+1)+log a (3-1)=1,即log a [(3+1)×(3-1)]=1⇒a =2.所以f (x )=log 2x (x >0).从而得f (5+1)+f (5-1)=log 2[(5+1)×(5-1)]=2.二、考查对数的运算性质例5 log 89log 23的值是( ) A.23 B .1 C.32D .2 解析 原式=log 29log 28·1log 23=23·log 23log 22·1log 23=23. 答案 A三、考查指数式与对数式的互化例6 已知log a x =2,log b x =3,log c x =6,求log abc x 的值.解 由已知,得a 2=x ,b 3=x ,c 6=x ,所以a =x 12,b =x 13,c =x 16. 于是,有abc =x 12+13+16=x 1, 所以x =abc ,则log abc x =1.四、考查对数函数定义域和值域(最值)例7 (江西高考)若f (x )=1log 12(2x +1),则f (x )的定义域为( ) A.⎝⎛⎭⎫-12,0 B.⎝⎛⎦⎤-12,0 C.⎝⎛⎭⎫-12,+∞ D .(0,+∞) 答案 A解析 要使f (x )有意义,需log 12(2x +1)>0=log 121, ∴0<2x +1<1,∴-12<x <0. 例8 已知函数f (x )=2+log 3x (1≤x ≤9),则函数g (x )=f 2(x )+f (x 2)的最大值为________,最小值为________.解析 由已知,得函数g (x )的定义域为⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9⇒1≤x ≤3.且g (x )=f 2(x )+f (x 2) =(2+log 3x )2+2+log 3x 2=log 23x +6log 3x +6.则当log 3x =0,即x =1时,g (x )有最小值g (1)=6;当log 3x =1,即x =3时,g (x )有最大值g (3)=13.答案 13 6五、考查单调性例9 若函数f (x )=log a x (0<a <1)在区间[a,2a ]上的最大值是最小值的3倍,则a 为( )A.24B.22C.14D.12解析 由于0<a <1,所以f (x )=log a x (0<a <1)在区间[a,2a ]上递减,在区间[a,2a ]上的最大值为f (a ),最小值为f (2a ),则f (a )=3f (2a ),即log a a =3log a (2a )⇒a =24. 答案 A 六、考查对数函数的图象例10 若不等式x 2-log a x <0在(0,12)内恒成立,则a 的取值范围是________. 解析 由已知,不等式可化为x 2<log a x .所以不等式x 2<log a x 在(0,12)内恒成立,可转化为当x ∈(0,12)时, 函数y =x 2的图象在函数y =log a x 图象的下方,如图所示.答案 [116,1) 点评 不等式x 2<log a x 左边是一个二次函数,右边是一个对数函数,不可能直接求解,充分发挥图象的作用,则可迅速达到求解目的.巧比对数大小一、中间值法若两对数底数不相同且真数也不相同时,比较其大小通常运用中间值作媒介进行过渡. 理论依据:若A >C ,C >B ,则A >B .例11 比较大小:log 932,log 8 3. 解 由于log 932<log 93=14=log 822<log 83, 所以log 932<log 8 3. 点评 以14为纽带,建立起放缩的桥梁,解题时常通过观察确定中间值的选取. 二、比较法比较法是比较对数大小的常用方法,通常有作差和作商两种策略.理论依据:(1)作差比较:若A -B >0,则A >B ;(2)作商比较:若A ,B >0,且A B>1,则A >B . 例12 比较大小:(1)log 47,log 1221;(2)log 1.10.9,log 0.91.1.解 (1)log 47-log 1221=(log 47-1)-(log 1221-1)=log 474-log 1274=1log 744-1log 7412, 由于0<log 744<log 7412,所以1log 744>1log 7412,即log 47>log 1221. (2)由于log 1.10.9,log 0.91.1都小于零,所以|log 1.10.9||log 0.91.1|=(log 1.10.9)2=(-log 1.10.9)2 =(log 1.1109)2>(log 1.11110)2=1, 故|log 1.10.9|>|log 0.91.1|,所以log 1.10.9<log 0.91.1.点评 将本例(1)推广延伸为:若1<A <B ,C >0,则log A B >log AC (BC ),进而可比较形如此类对数的大小.三、减数法将对数值的大概范围确定后,两边同减去一个数,通过局部比较大小.理论依据:若A -C >B -C ,则A >B .例13 比较大小:log n +2(n +1),log n +1n (n >1).解 因为log n +2(n +1)-1=log n +2n +1n +2>log n +2n n +1>log n +1n n +1=log n +1n -1.所以log n +2(n +1)>log n +1n .点评 将本例推广延伸为:若1<A <B ,C >0,则log A +C (B +C )>log A B ,进而可比较形如此类对数的大小.四、析整取微法将对数的整数部分分别析取出来,通过比较相应小数部分的大小使得问题获解. 理论依据:若A =log a M =k +x ,B =log b N =k +y ,且x >y ,则A >B .例14 比较大小:log 123,log 138. 解 令log 123=-2+x ,log 138=-2+y , 于是2-(-2+x )=3,3-(-2+y )=8,则2-x -3-y =34-89<0,故2-x <3-y . 两边同时取对数,化简得x lg 2>y lg 3,则x y >lg 3lg 2>1,即x >y ,故log 123>log 138. 点评 这种方法便于操作,容易掌握,并且所涉及的知识又都是通性通法,有利于“回归课本,夯实基础”,此法值得深思.例15 对于函数y =f (x ),x ∈D ,若存在一常数c ,对任意x 1∈D ,存在惟一的x 2∈D ,使f (x 1)+f (x 2)2=c ,则称函数f (x )在D 上的均值为c .已知f (x )=lg x ,x ∈[10,100],则函数f (x )=lg x 在[10,100]上的均值为( )A.32B.34C.110D .10 分析 该题通过定义均值的方式命题,以定义给出题目信息,是当前的一种命题趋势.其本质是考查关于对数和指数的运算性质和对定义的理解与转化.解析 首先从均值公式可得lg (x 1x 2)=2c ,所以x 1x 2=102c =100c .因为x 1,x 2∈[10,100],所以x 1x 2∈[100,10 000].所以100≤100c ≤ 10 000.所以1≤c ≤2.从选项看可知成为均值的常数可为32.故选A.答案 A例16 函数y =|log 2x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度b -a 的最小值为( )A .3 B.34 C .2 D.23分析 对函数的性质的分析研究一直是高中数学的重点,尤其是二次函数、指数函数和对数函数等重点函数的形态研究.本题正是以函数y =log 2x 为基础而编制,从定性分析和定量的计算中刻划a ,b 的关系.结合函数的图象(图象是函数性质的立体显示)数形结合易于寻找、确定二者的关系.解析 画出函数图象如图所示.由log 2a =-2得a =14.由log 2b =2得b =4.数形结合知a ∈[14,1],b ∈[1,4].考虑函数定义域,满足值域[0,2]的取值情况可知,当b =1,a =14时,b -a 的最小值为1-14=34.故选B.答案 B解题要学会反思解题中的反思是完善解题思路的有效方法,面对一道较为综合的题,寻找解题思路时,想一步到位,往往不太现实;边解边反思,逐步产生完善、正确的解题思路,却是可行的,请看:题目:已知函数f (x )=log m x -3x +3,试问:是否存在正数α,β,使f (x )在[α,β]上的值域为[log m (β-4),log m (α-4)]?若存在,求出α,β的值;若不存在,说明理由.甲:在[α,β]上的值域为[log m (β-4),log m (α-4)],也就是⎩⎪⎨⎪⎧log mα-3α+3=log m (β-4),log mβ-3β+3=log m(α-4)⇒⎩⎪⎨⎪⎧αβ-5α+3β=9,αβ-5β+3α=9⇒α=β,与α<β矛盾,故不存在.乙:你的解答不全面,你的求解建立在一个条件的基础上,就是函数f (x )是增函数,而题目并没有说明这个函数是增函数呀!丙:没错,应该对m 进行讨论. 设0<α≤x 1<x 2≤β,由于x 1-3x 1+3-x 2-3x 2+3=6(x 1-x 2)(x 1+3)(x 2+3)<0,那么0<x 1-3x 1+3<x 2-3x 2+3.讨论:(1)若0<m <1,则log m x 1-3x 1+3>log m x 2-3x 2+3,即f (x 1)>f (x 2),得f (x )为减函数.(2)若m >1,则log m x 1-3x 1+3<log m x 2-3x 2+3,即f (x 1)<f (x 2),得f (x )为增函数. 若m 存在,当0<m <1时,则 ⎩⎪⎨⎪⎧log mβ-3β+3=log m(β-4),log mα-3α+3=log m(α-4)⇒⎩⎪⎨⎪⎧β2-2β-9=0,α2-2α-9=0. 显然α,β是方程x 2-2x -9=0的两根,由于此方程的两根中一根为正,另一根为负,与0<α<β不符,因此m 不存在;当m >1时,就是甲的解题过程,同样满足条件的α,β不存在.老师:乙和丙实质上是对甲的解法做了个反思.通过你们的讨论可以看出,反思的作用相当大,它可以使思路逐步完善,最终形成完美的解题过程.对数函数高考考点例析对数函数是高中数学函数知识的重要组成部分,关于对数函数的考查在高考中一直占有重要的地位.下面我们针对近几年高考中考查对数函数知识的几个着眼点作一一剖析,希望对大家的学习有所帮助.考点一 判断图象交点个数1.(湖南高考)函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3, x >1的图象和函数g (x )=log 2x 的图象的交点个数是( )A .1B .2C .3D .4解析 作出函数f (x )与g (x )的图象,如图所示,由图象可知:两函数图象的交点有3个. 答案 C考点二 函数单调性的考查2.(江苏高考)函数f (x )=log 5(2x +1)的单调增区间是________.解析 函数f (x )的定义域为⎝⎛⎭⎫-12,+∞,令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在⎝⎛⎭⎫-12,+∞上为增函数,所以函数y =log 5(2x +1)的单调增区间为⎝⎛⎭⎫-12,+∞. 答案 ⎝⎛⎭⎫-12,+∞考点三 求变量范围3.(辽宁高考)设函数f (x )=⎩⎪⎨⎪⎧21-x , x ≤1,1-log 2x , x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解析 当x ≤1时,由21-x ≤2,知x ≥0,即0≤x ≤1.当x >1时,由1-log 2x ≤2,知x ≥12,即x >1,所以满足f (x )≤2的x 的取值范围是[0,+∞).答案 D考点四 比较大小(一)图象法4.(天津高考)设a ,b ,c 均为正数,且2a =log 12a ,⎝⎛⎭⎫12b =log 12b ,⎝⎛⎭⎫12c=log 2c ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 解析由2a>0,∴log 12a >0,∴0<a <1.同理0<b <1,c >1, ∴c 最大在同一坐标系中作出y =2x ,y =⎝⎛⎭⎫12x ,y =log 12x 的图象如图所示, 观察得a <b .∴a <b <c . 答案 A (二)排除法当我们面临的问题不易从正面入手直接挑选出正确的答案或解题过程繁琐时,可以从反面入手,因为选择题的正确答案已在选项中列出,从而逐一考虑所有选项,排除其中不正确的,则剩下的就是正确的答案.5.(全国高考)若a =ln 22,b =ln 33,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 解析 首先比较a ,b , 即比较3ln 2,2ln 3的大小, ∵3ln 2=ln 8<ln 9=2ln 3, ∴a <b .故排除B 、D. 同理可得c <a . 答案 C (三)媒介法对于直接比较困难时,常插入媒介,以此为桥梁进行比较,常插入0或1.6.(山东高考)下列大小关系正确的是( ) A .0.43>30.4<log 40.3 B .0.43<log 40.3<30.4 C .log 40.3<0.43<30.4 D .log 40.3<30.4<0.43 解析 分析知0<0.43<1,30.4>30=1, log 40.3<log 41=0,故log 40.3<0.43<30.4.故选C. 答案 C (四)特值法对于有些有关对数不等式的选择题,通过取一些符合条件的特殊值验证,往往也能简便求解.7.(青岛模拟)已知0<x <y <a <1,则有( ) A .log a (xy )<0 B .0<log a (xy )<1 C .1<log a (xy )<2 D .log a (xy )>2解析 取x =18,y =14,a =12,代入log a (xy )检验即可得D.答案 D。
经典例题透析类型一、指数式与对数式互化及其应用1.将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化.解:(1);(2);(3);(4);(5);(6).总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x的值:(1)(2)(3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x=100=102,于是x=2;(4)由.类型二、利用对数恒等式化简求值2.求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数3.已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a举一反三:【变式1】求值(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.6. 求下列函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求下列函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a¹1,kÎR).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)若a>2,则函数定义域为(k,+∞);(ii)若0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)若a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)的定义域为[,4]. 类型七、函数图象问题7.作出下列函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较下列各组数中的两个值大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5;(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9 解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b1>b2,即.举一反三:【变式1】(2011 天津理7)已知则()A.B.C.D.解析:另,,,在同一坐标系下作出三个函数图像,由图像可得又∵为单调递增函数,∴故选C.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x1<x2 则又∵y=log2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断下列函数的奇偶性. (1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握.类型十、对数函数性质的综合应用12.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u能取遍一切正数的条件是.解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a≠0时,有a>1.∴a的取值范围为a>1.(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或0≤a≤1,∴a的取值范围为0≤a≤1.13.已知函数h(x)=2x(x∈R),它的反函数记作g(x),A、B、C三点在函数g(x)的图象上,它们的横坐标分别为a,a+4,a+8(a>1),记ΔABC的面积为S.(1)求S=f(a)的表达式;(2)求函数f(a)的值域;(3) 判断函数S=f(a)的单调性,并予以证明;(4)若S>2,求a的取值范围.解:(1)依题意有g(x)=log2x(x>0).并且A、B、C三点的坐标分别为A(a,log2a),B(a+4,log2(a+4)),C(a+8,log2(a+8)) (a>1),如图.∴A,C中点D的纵坐标为〔log2a+log2(a+8)〕∴S=|BD|·4·2=4|BD|=4log2(a+4)-2log2a-2log2(a+8).(2)把S=f(a)变形得:S=f(a)=2〔2log2(a+4)-log2a-log2(a+8)〕=2log2=2log2(1+).由于a>1时,a2+8a>9,∴1<1+<,又函数y=log2x在(0,+∞)上是增函数,∴0<2log2(1+)<2log2,即0<S<2log2.(3)S=f(a)在定义域(1,+∞)上是减函数,证明如下:任取a1,a2,使1<a1<a2<+∞,则:(1+)-(1+)=16()=16·,由a1>1,a2>1,且a2>a1,∴a1+a2+8>0,+8a2>0,+8a1>0,a1-a2<0,∴1<1+<1+,再由函数y=log2x在(0,+∞)上是增函数,于是可得f(a1)>f(a2)∴S=f(a)在(1,+∞)上是减函数.(4)由S>2,即得,解之可得:1<a<4-4.。
高一数学对数与对数函数试题答案及解析1.将转化为对数形式,其中错误的是().A.B.C.D.【答案】D【解析】将转化为对数式应为,即;由换底公式,得;;故选项A,B,C正确;而选项D:,错误;故选D.【考点】指数式与对数式的互化、换底公式.2.已知则的值等于( )A.B.C.D.【答案】A【解析】因为,所以因此【考点】对数式化简3.在对数函数中,下列描述正确的是()①定义域是、值域是R ②图像必过点(1,0).③当时,在上是减函数;当时,在上是增函数.④对数函数既不是奇函数,也不是偶函数.A.①②B.②③C.①②④D.①②③④【答案】D【解析】对数函数的性质可结合函数图像来进行理解.单调性,对称性都可由图可以清楚的感知.【考点】对数函数的性质.4.已知且,函数,,记(1)求函数的定义域及其零点;(2)若关于的方程在区间内仅有一解,求实数的取值范围.【答案】(1),0;(2)【解析】(1)均有意义时,才有意义,即两个对数的真数均大于0.解关于x的不等式即可得出的定义域,函数的零点,即,整理得,对数相等时底数相同所以真数相等,得到,基础x即为函数的零点(2)即,,应分和两种情况讨论的单调性在求其值域。
有分析可知在这两种情况下均为单调函数,所以的值域即为。
解关于m的不等式即可求得m。
所以本问的重点就是讨论单调性求其值域。
试题解析:(1)解:(1)(且),解得,所以函数的定义域为 2分令,则(*)方程变为,,即解得, 3分经检验是(*)的增根,所以方程(*)的解为,所以函数的零点为, 4分(2)∵函数在定义域D上是增函数∴①当时,在定义域D上是增函数②当时,函数在定义域D上是减函数 6分问题等价于关于的方程在区间内仅有一解,∴①当时,由(2)知,函数F(x)在上是增函数∴∴只需解得:或∴②当时,由(2)知,函数F(x)在上是减函数∴∴只需解得: 10分综上所述,当时:;当时,或(12分)【考点】对数函数的定义域,函数的零点,复合函数单调性5.式子的值为.【答案】5【解析】根据对数公式,可知,=5+0=5【考点】对数公式6.,则 ( )A.B.C.D.【答案】B【解析】由得故选B【考点】对数运算7.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.8.计算的结果为___________.【答案】1.【解析】由对数恒等式知,根据对数运算法则知,∴.【考点】对数的运算及对数恒等式.9.。
高一数学对数与对数函数试题答案及解析1.若,,则().A.B.0C.1D.2【答案】A【解析】令,即;所以.【考点】复合函数求值.2.函数的定义域是().A.[2,+∞)B.(2,+∞)C.(﹣∞,2]D.(﹣∞,2)【答案】D【解析】要使有意义,则,即,所以定义域为.【考点】函数的定义域.3.函数在区间上恒为正值,则实数的取值范围是()A.B.C.D.【答案】B【解析】解:由题意,且在区间上恒成立.即恒成立,其中当时,,所以在区间单调递增,所以,即适合题意.当时,,与矛盾,不合题意.综上可知:故选B.【考点】1、对数函数的性质;2:二次函数的性质.4.求的值是 .【答案】【解析】【考点】对数运算公式5.已知函数为常数).(Ⅰ)求函数的定义域;(Ⅱ)若,,求函数的值域;(Ⅲ)若函数的图像恒在直线的上方,求实数的取值范围.【答案】(Ⅰ);(Ⅱ);(Ⅲ)且【解析】(1)对数中真数大于0(2)思路:要先求真数的范围再求对数的范围。
求真数范围时用配方法,求对数范围时用点调性(3)要使函数的图像恒在直线的上方,则有在上恒成立。
把看成整体,令即在上恒成立,转化成单调性求最值问题试题解析:(Ⅰ)所以定义域为(Ⅱ)时令则因为所以,所以即所以函数的值域为(Ⅲ)要使函数的图像恒在直线的上方则有在上恒成立。
令则即在上恒成立的图像的对称轴为且所以在上单调递增,要想恒成立,只需即因为且所以且【考点】(1)对数的定义域(2)对数的单调性(3)恒成立问题6.已知,且,,则等于A.B.C.D.【答案】D【解析】故选:D.【考点】对数的运算7.已知,函数,若实数、满足,则、的大小关系为 .【答案】【解析】因为所以函数在R上是单调减函数,因为,所以根据减函数的定义可得:.故答案为:.【考点】对数函数的单调性与特殊点;不等关系与不等式.8.已知函数,则实数t的取值范围是____.【答案】【解析】令,值域为由题意函数的值域为则是函数值域的子集所以即【考点】对数函数图象与性质的综合应用.9.计算:=.【答案】【解析】根据题意,由于可以变形为,故可知结论为【考点】指数式的运用点评:主要是考查了指数式的运算法则的运用,属于基础题。
一、选择题1.将指数式2a =b 写成对数式为A .log 2b =aB .log a b =2C .log 2a =bD .log b 2=a【答案】A【解析】指数式2a =b 所对应的对数式是:log 2b =a .故选A .2.若log a b •log 3a =5,则b =A .a 3B .a 5C .35D .53 【答案】C3.如果log 3x =log 6x ,那么x 的值为A .1B .1或0C .3D .6【答案】A【解析】∵log 3x =log 6x ,36log 1log 1==0,而对数函数3log y x =,6log y x =在x >0时,具有单调性,因此x =1.故选A .4.1411log 9+1511log 3= A .lg3B .–lg3C .1lg3D .–1lg3【答案】C 【解析】原式=191log 4+131log 5=131log 2+131log 5=131log 10=log 310=1lg3.故选C .5.若x =12log 16,则x = A.–4 B .–3 C .3 D .4【答案】A【解析】∵x =12log 16,∴2–x =24,∴–x =4,解得x =–4.故选A .6.log 8127等于A .34B .43C .12D .13【答案】A【解析】log 8127=3lg334lg34=.故选A . 7.计算lg (103–102)的结果为A .1B .32C .90D .2+lg9【答案】D8.若x log 34=1,则4x +4–x 的值为A .3B .4C .174D .103【答案】D【解析】∵x log 34=1,∴43log x =1,则4x =3,∴4x +4–x =3+11033=,故选D . 9.273log 16log 4的值为 A .2 B .32 C .1 D .23【答案】D【解析】原式=164332734433log 2log log 23log log 3==.故选D .二、填空题10.已知log 3(log 2x )=1,那么x 的值为__________.【答案】8【解析】由log 3(log 2x )=1,得log 2x =3,解得x =8.故答案为:8.11.已知lg2=a ,lg3=b ,用a ,b 的代数式表示lg12=__________.【答案】2a +b【解析】lg12=lg (3×4)=lg3+2lg2=2a +b .故答案为:2a +b .12.求值:2log 510+log 50.25–log 39=__________.【答案】0【解析】原式=()25log 100.25⨯–2=25log 5–2=2–2=0.故答案为:0.13.若lg2=a ,lg3=b ,则log 418=__________.(用含a ,b 的式子表示)【答案】22a b a+14.若log 32=log 23x ,则x =__________.【答案】223(log ) 【解析】∵log 32=log 23x ,∴32321log log x =,∴223(log )x =.故答案为:223(log ). 三、解答题15.计算(log 43+log 83)(log 32+log 92)的值.【解析】(log 43+log 83)(log 32+log 92)=lg3lg3lg2lg2lg4lg8lg3lg9⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=lg3lg3lg2lg22lg23lg2lg32lg3⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ =1111524364+++=. 16.解方程:log 2(x –1)+log 2x =1.【解析】∵log 2(x –1)+log 2x =1,∴log 2(x –1)x =1, ∴x (x –1)=2,解得x =–1或x =2,经检验,得x =–1是增根,x =2是原方程的解,∴x =2.17.计算:(1)lg 12–lg 58+lg12.5–log 89•log 34+0.5log 32; (2)0.21log 35-–(log 43+log 83)(log 32+log 92).(2)0.21log 35-–(log 43+log 83)(log 32+log 92) =5÷51log 35–(log 6427+log 649)(log 94+log 92)=15–5362lg3lg2lg2lg3⨯ =15–1512=554. 18.解关于x 的方程:lg (x 2+1)–2lg (x +3)+lg2=0.【解析】∵lg (x 2+1)–2lg (x +3)+lg2=0,∴()2221lg (3)x x ++=0,∴()2221(3)x x ++=1,解得x =–1或x =7,经检验满足条件.∴方程的根为:x =–1或x =7.。
《换底公式》课时作业1.log 49343等于( ) A .7 B .2 C.23 D.32答案 D解析 log 49343=lg343lg49=3lg72lg7=32.2.log 29×log 34=( ) A.14 B.12 C .2 D .4 答案 D解析 log 29×log 34=lg9lg2×lg4lg3=2lg3lg2×2lg2lg3=4.3.log 89log 23=( ) A.23 B.32 C .1 D .2 答案 A解析 原式=lg9lg8lg3lg2=2lg33lg2lg3lg2=23,故选A.4.log 2353可以化简为( ) A .log 25 B .log 52 C .log 85 D .log 2125答案 A5.若log 23·log 3m =12,则m =( )A .2 B. 2 C .4 D .1答案 B解析 ∵log 23·log 3m =log 2m =12,∴m =2 12=2,故选B.6.若f (e x )=x ,则f (5)等于( ) A .log 5e B .ln5 C .e 5 D .5e答案 B7.已知lg2=a ,lg3=b ,则log 36=( ) A.a +b aB.a +b bC.a a +bD.b a +b 答案 B8.设a =log 32,那么log 38-2log 36用a 表示为( ) A .a -2 B .5a -2 C .3a -(1+a )2 D .3a -a 2-1 答案 A解析 原式=3log 32-2(1+log 32)=a -2. 9.log 24+log 33=________. 答案 92解析 原式=log 24log 22+log 3312=212+12=92.10.2513log 527+4log 1258=________. 答案 2 30411.若a >0,a 23 =49,则log 23 a =________.答案 312.若4a =25b =10,则1a +1b =________.答案 213.(log 32)2-log 34+1+log 94=________. 答案 114.已知log 62=p ,log 65=q ,则lg5=________.(用p ,q 表示) 答案q p +q解析 方法一:lg5=log 65log 610=q log 62+log 65=qp +q.方法二:⎩⎨⎧lg2lg6=p ,lg5lg6=q ⇒{ 1-lg5=p lg6,lg5=q lg6⇒lg5=qp +q .15.若log a b ·log b c ·log c 3=2,则a 的值为________. 答案316.计算下列各式的值. (1)(log 32+log 92)(log 43+log 83); (2)log 2732·log 6427+log 92·log 427.解析 (1)原式=(log 32+12log 32)×(12log 23+13log 23)=32log 32×56log 23=54.(2)原式=53log 32×36log 23+12log 32×12log 2332=56+12log 32×34log 23=56+38=2924. 17.已知log 142=a ,用a 表示log27.解析 方法一:∵log 142=a ,∴log 214=1a .∴1+lo g 27=1a .∴log 27=1a -1.∴log 27=log 27log 22=log 272.∴log 27=2log 27=2(1a -1)=2(1-a )a .方法二:log 142=log 22log 214=2log 27+2=a ,∴2=a (log 27+2),即log 27=2(1-a )a. 方法三:log 27=log 27log 22=log 2712=2log 27=2(log 214-log 22)=2(1a -1)=2(1-a )a .1.若2.5x =1 000,0.25y =1 000,则1x -1y =( )A.13 B .3 C .-13D .-3答案 A解析 ∵x =log 2.51 000,y =log 0.251 000, ∴1x =log 1 0002.5,1y=log 1 0000.25. ∴1x -1y =log 1 0002.5-log 1 0000.25=log 1 00010=13,故选A. 2.log 43·log 13 432=________.答案 -58解析 原式=log 43·(-14log 332)=-14×log 432=-14×log 2225=-14×52=-58. 3.lg9=a,10b =5,用a ,b 表示log 3645为________. 答案a +b a -2b +2解析 由已知b =lg5,则log 3645=lg45lg36=lg5+lg9lg4+lg9=a +b a +2lg2=a +b a +2(1-b )=a +b a -2b +2.4.计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258).解析 方法一:原式=(log 253+log 225log 24+log 25log 28)(log 52+log 54log 525+log 58log 5125) =(3log 25+2log 252log 22+log 253log 22)(log 52+2log 522log 55+3log 523log 55)=(3+1+13)log 25·(3log 52)=13log 25·log 22log 25=13.方法二:原式=(lg125lg2+lg25lg4+lg5lg8)(lg2lg5+lg4lg25+lg8lg125)=(3lg5lg2+2lg52lg2+lg53lg2)(lg2lg5+2lg22lg5+3lg23lg5)=(13lg53lg2)(3lg2lg5)=13.5.已知2x =3,log 483=y ,求x +2y 的值.解析 ∵x =log 23,y =12(log 28-log 23),∴x +2y =log 23+3-log 23=3.6.已知lg 87=a ,lg 5049=b ,用a ,b 表示lg2,lg7.解析 ∵lg 87=a ,∴3lg2-lg7=a .①∵lg5049=b ,∴2-lg2-2lg7=b .② 由①②可得lg2=2a -b +27,lg7=6-a -3b7.《对数函数的概念、图像和性质》课时作业1.函数y =log (x -1)(3-x )的定义域为( ) A .(1,3) B .(-∞,3) C .(1,2)∪(2,3) D .(-∞,1)答案 C解析 由{ x -1>0,x -1≠1,3-x >0,得1<x <3且x ≠2,故选C. 2.log 43,log 34,log 3443的大小顺序是( )A .log 34<log 43<log 34 43B .log 34>log 43>log 34 43C .log 34>log 34 43>log 43D .log 34 43>log 34>log 43答案 B解析 ∵log 34>1,0<log 43<1,log 3443<0,∴选B.3.若log a 23<1,则a 的取值范围是( )A .(0,23)B .(23,+∞)C .(23,1)D .(0,23)∪(1,+∞)答案 D解析 ∵log a 23<1=log a a ,当a >1时,⎩⎨⎧a >1,23<a ,得a >1;当0<a <1时,⎩⎨⎧0<a <1,23>a ,得0<a <23.综上,选D.4.如图,曲线是对数函数y =lo g a x 的图像,已知a 的取值有43,3,35,110,则相应c 1,c 2,c 3,c 4的a 的值依次是( )A.3,43,110,35B.3,43,35,110C.43,3,35,110D.43,3,110,35 答案 B解析 利用例2中关于图像的结论,亦可用特殊值法,例如令x =2,则比较log 43 2,log 32,log 35 2,log 1102的大小.5.若log a (π-3)<log b (π-3)<0,a ,b 是不等于1的正数,则下列不等式中正确的是( ) A .b >a >1 B .a <b <1 C .a >b >1 D .b <a <1答案 A解析 ∵0<π-3<1,log a (π-3)<log b (π-3)<0, ∴a ,b ∈(1,+∞)且b >a ,∴选A.6.设P =log 23,Q =log 32,R =log 2(log 32),则( ) A .R <Q <P B .P <R <Q C .Q <R <P D .R <P <Q 答案 A解析 P >1,0<Q <1,∵0<log 32<1, ∴log 2(log 32)<0,∴P >Q >R .7.若0<a <1,则函数y =log a (x +5)的图像不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 A解析 ∵y =log a (x +5)过定点(-4,0)且单调递减, ∴不过第一象限,选A.8.已知f (x 5)=lg x ,则f (2)等于( ) A .lg2 B .lg32 C .lg 132 D.15lg2答案 D解析 令x 5=2,∴x =2 15. ∴f (2)=lg2 15 =15lg2,故选D.9.函数y =1log 0.5(4x -3)的定义域为( )A .(34,1)B .(34,+∞)C .(1,+∞)D .(34,1)∪(1,+∞)答案 A10.若集合A =⎩⎨⎧⎭⎬⎫x |log 12x ≥12,则∁R A =( )A .(-∞,0]∪⎝⎛⎭⎫22,+∞ B.⎝⎛⎭⎫22,+∞ C .(-∞,0]∪[22,+∞) D .[22,+∞) 答案 A11.函数y =a x 与y =-log a x (a >0且a ≠1)在同一坐标系中的图像只可能是( )答案 A12.函数y =log a (x -2)+3(a >0且a ≠1)恒过定点______. 答案 (3,3)13.比较大小,用不等号连接起来. (1)log 0.81.5________log 0.82; (2)log 25________log 75; (3)log 34________2; (4)log 35________log 64. 答案 (1)> (2)> (3)< (4)>14.求不等式log 2(2x -1)<log 2(-x +5)的解集.解析 ∵{ 2x -1>0,-x +5>0,2x -1<-x +5,得12<x <2.∴不等式的解集为{x |12<x <2}.15.求函数y =2-xlg (x +3)的定义域.解析 要使函数有意义,必须且只需{ 2-x ≥0,x +3>0,x +3≠1,即{ x ≤2,x >-3,x ≠-2.∴-3<x <-2或-2<x ≤2.∴f (x )的定义域为(-3,-2)∪(-2,2]. ►重点班·选做题16.函数y =log 2x 和y =lo g 124x 的图像关于直线( )对称( )A .x =1B .x =-1C .y =1D .y =-1答案 D17.若正整数m 满足10m -1<2512<10m ,则m =______. (lg2≈0.301 0) 答案 155解析 由10m -1<2512<10m ,得m -1<512lg2<m . ∴m -1<154.12<m ,∴m =155.1.已知f (x )=1+lg(x +2),则f -1(1)的值是( ) A .1+lg3 B .-1 C .1 D .1+lg2 答案 B2.求下列函数定义域. (1)f (x )=lg(x -2)+1x -3;(2)f (x )=log x +1(16-4x ).思路点拨 (1)真数要大于0,分式的分母不能为0,(2)底数要大于0且不等于1,真数要大于0.解析 (1)由{ x -2>0,x -3≠0,得x >2且x ≠3. ∴定义域为(2,3)∪(3,+∞). (2)由⎩⎪⎨⎪⎧ 16-4x >0x +1>0x +1≠1,即⎩⎪⎨⎪⎧x <4x >-1x ≠0,解得-1<x <0或0<x <4. ∴定义域为(-1,0)∪(0,4).。
9对数与对数函数1.对数的概念如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作□01x=log a N,其中□02a叫做对数的底数,□03N叫做真数.2.对数的性质与运算法则(1)对数的性质①a log aN=□01N(a>0,且a≠1);②log a a N=□02N(a>0,且a≠1);③零和负数没有对数.(2)对数的运算法则(a>0,且a≠1,M>0,N>0)①log a(M·N)=□03log a M+log a N;②log a MN=□04logaM-logaN;③log a M n=□05n log a M(n∈R).(3)对数的换底公式log a b=log c blog c a(a>0,且a≠1;c>0,且c≠1;b>0).3.对数函数的图象与性质指数函数y=a x(a>0,且a≠1)与对数函数□01y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线□02y=x对称.5.对数运算的一般思路(1)转化:①利用a b=N⇔b=log a N(a>0,且a≠1)对题目条件进行转化.②利用换底公式化为同底数的对数运算.(2)恒等式:关注log a1=0,log a a N=N,a log aN=N的应用..(3)拆分:将真数化为积、商或底数的指数幂形式,正用对数的运算法则化简.如举例说明3.(4)合并:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂的运算.6.对数函数图象的特征(1)底数与1的大小关系决定了图象的升降,即a>1时,图象上升;0<a<1时,图象下降.(2)对数函数在同一直角坐标系中的图象如图,其中图象的相对位置与底数大小有关,图中0<c <d <1<a <b .在x 轴上侧,图象从左到右相应的底数由小变大; 在x 轴下侧,图象从右到左相应的底数由小变大. (无论在x 轴的上侧还是下侧,底数都按顺时针方向变大) 7.利用对数函数的图象可求解的三类问题(1)对数型函数图象的识别.解此类问题应从对数函数y =log a x 的图象入手,抓住图象上的三个关键点(a,1),(1,0),⎝ ⎛⎭⎪⎫1a ,-1,特别地要注意a >1和0<a <1的两种不同情况.(2)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(3)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.8.比较对数值大小的方法 若底数相同,真数不同:若底数为同一常数,可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论若底数不同,真数相同:可以先用换底公式化为同底后,再进行比较若底数与真数都不同:常借助1,0等中间量进行比较9.求解对数不等式的两种类型及方法 类型方法:形如log a x >log a b借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论 形如log a x >b需先将b 化为以a 为底的对数式的形式,再借助y =log a x 的单调性求解10.解与对数函数有关的函数性质问题的三个关注点(1)定义域,所有问题都必须在定义域内讨论. (2)底数与1的大小关系.(3)复合函数的构成,即它是由哪些基本初等函数复合而成的.练习一1.(1)若MN>0,则log a(MN)=log a M+log a N.( )(2)若a,b均大于零且不等于1,则log a b=1log b a.( )(3)函数y=log a x2与函数y=2log a x是相等函数.( )(4)若M>N>0,则log a M>log a N.( )答案(1)×(2)√(3)×(4)×2.有下列结论:①lg (lg 10)=0;②lg (ln e)=0;③若lg x=1,则x=10;④若log22=x,则x=1;⑤若log m n·log3m=2,则n=9.其中正确结论的序号是________.答案①②③④⑤解析lg (lg 10)=lg 1=0,故①正确;lg (ln e)=lg 1=0,故②正确;③④正确;log m n·log3m=log3nlog3m·log3m=log3n=2,故n=9,故⑤正确.3.计算log29×log34+2log510+log50.25等于( )A.0 B.2 C.4 D.6 答案 D解析log29×log34+2log510+log50.25=2log23×log24log23+log5(102×0.25)=4+2=6.4.设2a=5b=m,且1a+1b=2,则m等于( )A.10 B.10 C.20 D.100 答案 A解析由2a=5b=m,得a=log2m,b=log5m,所以1a+1b=log m2+log m5=log m10=2,所以m=10.5.已知f(x)是奇函数,且当x<0时,f(x)=-e ax,若f(ln 2)=8,则a=________.答案-3解析设x>0,则-x<0.∵当x<0时,f(x)=-e ax,∴f(-x)=-e-ax.∵f(x)是奇函数,∴f(x)=-f(-x)=e-ax,∴f(ln 2)=e-a ln 2=(e ln 2)-a=2-a.又f(ln 2)=8,∴2-a=8,∴a=-3.6.设35x=49,若用含x的式子表示log535,则log535=________.答案2 2-x解析因为35x=49,所以x=log3549=log549log535=2log57log535=2log5355log535=2log535-1log535,解得log535=22-x.7.已知lg a+lg b=0(a>0且a≠1,b>0且b≠1),则函数f(x)=a x与g(x)=-log b x的图象可能是( )答案 B解析因为lg a+lg b=0,所以lg (ab)=0,所以ab=1,即b=1a,故g(x)=-log b x=-log 1ax=logax,则f(x)与g(x)互为反函数,其图象关于直线y=x对称,结合图象知,B正确.8.设实数a,b是关于x的方程|lg x|=c的两个不同实数根,且a<b<10,则abc的取值范围是________.答案(0,1)解析由图象可知0<a<1<b<10,又|lg a|=|lg b|=c,所以lg a=-c,lg b=c,即lg a=-lg b,lg a+lg b=0,所以ab=1,于是abc=c,而0<c<1.故abc的取值范围是(0,1).9.设函数f (x )=⎩⎨⎧log 2x ,x >0,log 12-x ,x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 答案 C解析 若a >0,则log 2a >log 12a ,即2log 2a >0,所以a >1.若a <0,则log 12(-a )>log 2(-a ),即2log 2(-a )<0,所以0<-a <1,所以-1<a <0.综上知,实数a 的取值范围是(-1,0)∪(1,+∞). 10.若函数f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.答案 (1,2]解析 当x ≤2时,f (x )=-x +6≥4. 因为f (x )的值域为[4,+∞),所以当a >1时,3+log a x >3+log a 2≥4, 所以log a 2≥1,所以1<a ≤2;当0<a <1时,3+log a x <3+log a 2,不符合题意. 故a ∈(1,2].11.函数f (x )=log 2x ·log 2(2x )的最小值为________. 答案 -14解析 f (x )=12log 2x ·2log 2(2x )=log 2x (log 22+log 2x )=log 2x +(log 2x )2=⎝⎛⎭⎪⎫log 2x +122-14,所以当log 2x =-12,即x =22时,f (x )取得最小值-14.12.若实数a 满足log a 23>1>log 14a ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫23,1 B.⎝ ⎛⎭⎪⎫23,34 C.⎝ ⎛⎭⎪⎫34,1 D.⎝⎛⎭⎪⎫0,23答案 A解析由log a23>1>log 14a ,得⎩⎪⎨⎪⎧log a23>1, ①log 14a <1, ②由①得,当a >1时,a <23,此时a ∈∅;当0<a <1时,a >23,则23<a <1.由②得,a >14.因此23<a <1.13.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10-10.1答案 A解析 由题意知,m 1=-26.7,m 2=-1.45,代入所给公式得-1.45-(-26.7)=52lg E 1E 2,所以lg E 1E 2=10.1,所以E 1E 2=1010.1.故选A. 14.已知函数f (x )=ln x +ln (2-x ),则( ) A .f (x )在(0,2)上单调递增 B .f (x )在(0,2)上单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称答案 C解析f(x)的定义域为(0,2).f(x)=ln x+ln (2-x)=ln [x(2-x)]=ln (-x2+2x).设u=-x2+2x,x∈(0,2),则u=-x2+2x在(0,1)上单调递增,在(1,2)上单调递减.又y=ln u在其定义域上单调递增,∴f(x)=ln (-x2+2x)在(0,1)上单调递增,在(1,2)上单调递减.∴A,B错误.∵f(x)=ln x+ln (2-x)=f(2-x),∴f(x)的图象关于直线x=1对称,∴C正确.∵f(2-x)+f(x)=[ln (2-x)+ln x]+[ln x+ln (2-x)]=2[ln x+ln (2-x)],不恒为0,∴f(x)的图象不关于点(1,0)对称,∴D错误.故选C.15.已知函数y=log a(x-1)(a>0,且a≠1)的图象过定点A,若点A也在函数f(x)=2x+b的图象上,则f(log23)=________.答案-1解析函数y=log a(x-1)(a>0,且a≠1)的图象过定点A(2,0),因为点A在函数f(x)=2x+b的图象上,所以22+b=0,所以b=-4.f(x)=2x-4.所以f(log23)=2log23-4=3-4=-1.16.已知函数y=log a x(2≤x≤4)的最大值比最小值大1,则a的值为________.答案2或1 2解析①当a>1时,y=log a x在[2,4]上为增函数.由已知得log a4-log a2=1,所以log a2=1,所以a=2.②当0<a<1时,y=log a x在[2,4]上为减函数.由已知得log a2-log a4=1,所以log a 12=1,所以a=12.综上可知,a的值为2或1 2 .17.若函数f(x)=log a(x2-ax+1)(a>0且a≠1)没有最小值,则a的取值范围是________.答案(0,1)∪[2,+∞)解析当0<a<1时,函数f(x)=log a(x2-ax+1)(a>0且a≠1)没有最小值,当a>1时,若函数f(x)=log a(x2-ax+1)(a>0且a≠1)没有最小值,则x2-ax+1≤0有解,所以Δ=a2-4≥0,解得a≥2,综上可知,a的取值范围是(0,1)∪[2,+∞).。
2.2 对数函数2.2.1 对数与对数运算知识点一:对数的概念与性质1.以下说法不正确的是A .0和负数没有对数B .对数值可以是任意实数C .以a(a >0,a ≠1)为底1的对数等于0D .以3为底9的对数等于±22.设log 34·log 48·log 8m =log 416,那么m 等于A.92B .9C .18D .27 3.2211+log 52⋅的值等于A .2+ 5B .2 5C .2+52 D .1+52 4.若log 31-2x 9=0,则x =__________. 5.给出以下三个命题:①对数的真数是非负数;②若a >0且a ≠1,则log a 1=0;③若a >0且a ≠1,则log a a =1.其中正确命题的序号是__________.知识点二:指数式与对数式的互化6.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx ,则x =100;④若e =lnx ,则x =e 2.其中正确的是A .①③B .②④C .①②D .③④7.下列指数式与对数式互化不正确的一组是A .e 0=1与ln1=0B .813-=12与log 812=-13C .log 39=2与912=3 D .log 77=1与71=78.已知lg3=α,lg4=β,求10α+β、10α-β、10-2α、105β.9.已知log a 2=m ,log a 3=n ,求a 2m +n .知识点三:对数的运算性质及换底公式10.若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数为 ①log a x·log a y =log a (x +y) ②log a x -log a y =log a (x -y) ③log ax y=log a x÷log a y ④log a (xy)=log a x·log a yA .0B .1C .2D .311.log 56·log 67·log 78·log 89·log 910的值为A .1B .lg5 C.1lg5D .1+lg2 12.若a >0,a 23=49,则log 23a =__________. 13.设3a =4b =36,求2a +1b的值.能力点一:求值问题14.计算2log 525+3log 264-8log 71的值为A .14B .8C .22D .2715.2log a (M -2N)=log a M +log a N ,则M N的值为 A.14B .4C .1D .4或1 16.(2010河南洛阳高一期中)华南虎是我国一级保护动物,为挽救濒临物种,国家建立了华南虎繁殖基地,第一年(1986年)只有20只,由于科学的人工培养,华南虎的数量y(只)与培养时间x(年)间的关系可近似符合y =alog 2(x +1),则到2016年时,预测华南虎约有__________只.17.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lgE -3.2,其中E(焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于__________颗广岛原子弹.18.求下列各式中的x 值:(1)log 8x =-23;(2)log x 27=34;(3)x =log 128.能力点二:对数运算性质的综合问题19.已知lga 、lgb 是方程2x 2-4x +1=0的两个根,则(lg a b)2的值是 A .4 B .3 C .2 D .120.lg2=a ,lg3=b ,用a 、b 表示lg 458=__________. 21.(1)lg2+lg5-lg8lg50-lg40; (2)log 34273log 5[412log 210-(33)23-7log 72].22.已知x ,y ,z 均大于1,a ≠0,log z a =24,log y a =40,log (xyz)a =12,求log x a.23.甲、乙两人解关于x 的方程:log 2x +b +c·log x 2=0,甲写错了常数b ,得到解为14和18;乙写错了常数c ,得到解为12和64,求b ,c 都正确的情况下该方程的解.答案与解析基础巩固1.D2.B ∵log 416=2,∴log 34·log 48·log 8m =2,即lgm =lg9.∴m =9,应选B.3.B 原式=21+log 22log 2 5.4.-4 由已知可得1-2x 9=1, ∴1-2x =9.∴2x =-8.∴x =-4.5.②③ ①对数的真数为正数,故①错;②∵a 0=1,∴log a 1=0,②对;③∵a 1=a ,∴log a a =1,③对.6.C 7.C8.解:由条件得10α=3,10β=4,则10α+β=10α·10β=12,10α-β=10α10β=34,10-2α=(10α)-2=19, 10β5=(10β)15=415. 9.解:log a 2=m ,log a 3=n ,由对数定义知a m =2,a n =3,∴(a m )2=4,即a 2m =4.∴a 2m +n =a 2m ·a n =4×3=12.10.A11.C 原式=lg6lg5·lg7lg6·lg8lg7·lg9lg8·lg10lg9=lg10lg5=1lg5. 12.3 a >0,由a 23=49,知(a 13)2=(23)2,∴a 13=23. 两端取对数得log 23a 13=log 2323=1,即13log 23a =1, ∴log 23a =3.13.解法一:由3a =4b =36,得log 336=a ,log 436=b ,∴由换底公式a =log 336=1log 363,b =log 436=1log 364.∴2a +1b=2log 363+log 364=log 3636=1. 解法二:对已知条件的两边取以6为底的对数,得alog 63=2blog 62=2,∴2a =log 63,1b=log 62. ∴2a +1b=log 63+log 62 =log 66=1.能力提升14.C 原式=2×2+3×6-8×0=22.15.B 由题意,得M >0,N >0,M -2N >0.故M N>2,显然只有B 符合条件. 16.100 当x =1时,y =alog 2(1+1)=20,∴a =20.∴y =20log 2(x +1),到2016年时,培养时间为(2 016-1 986)+1=31(年),则到2016年时,预测华南虎的数量约为y =20log 2(31+1)=100(只).17.1 000 设里氏8.0级,6.0级地震释放的能量分别为E 2,E 1,则8-6=23(lgE 2-lgE 1),即lg E 2E 1=3. ∴E 2E 1=103=1 000,即汶川大地震所释放的能量相当于1 000颗广岛原子弹.18.解:(1)由log 8x =-23,得 x =823-=(23) 23-=2-2=14. (2)由log x 27=34,得x 34=27=33, ∴x 14=3.∴x =34=81.(3)由x =log 128,得(12)x =8=23=(12)-3,∴x =-3. 19.C lga +lgb =2,lga·lgb =12,(lg a b)2=(lga -lgb)2=(lga +lgb)2-4lga·lgb =4-2=2. 20.1-4a +2b 原式=lg45-3lg2=lg5+2lg3-3lg2=1-4lg2+2lg3=1-4a +2b.21.解:(1)原式=lg 2×58lg 5040=lg 54lg 54=1. (2)原式=log 33433·log 5[22log 10-(332)23-77log 2] =(34log 33-log 33)log 5(10-3-2)=(34-1)·log 55=-14. 22.解:由log z a =24得log a z =124, 由log y a =40得log a y =140, 由log (xyz)a =12得log a (xyz)=112, 即log a x +log a y +log a z =112. ∴log a x +140+124=112, 解得log a x =160. ∴log x a =1log a x=60. 拓展探究23.解:由甲可知2142181log log 20,41log log 20,8b c b c ⎧++⋅=⎪⎪⎨⎪++⋅=⎪⎩即⎩⎨⎧ -2+b -12c =0,①-3+b -13c =0. ②由①-②,得1-16c =0,∴c =6. 由乙可知2122641log log 202log 64log 20b c b c ⎧++⋅=⎪⎨⎪++⋅=⎩ 即⎩⎪⎨⎪⎧-1+b -c =0, ③6+b +16c =0. ④由③+④×6,得7b +35=0, ∴b =-5.综上,方程为log 2x +6log x 2-5=0,即(log 2x)2-5log 2x +6=0, ∴log 2x =2或log 2x =3.∴x =4或x =8,即原方程的解为4或8.。
第6讲对数与对数函数[考纲解读] 1.理解对数的概念及其运算性质,能用换底公式将一般对数转化成自然对数或常用对数,熟悉对数在简化运算中的作用.2.理解对数函数的概念及对数函数的相关性质,掌握其图象通过的特殊点.(重点、难点)3.通过具体实例了解对数函数模型所刻画的数量关系,并体会对数函数是一类重要的函数模型.y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数.[考向预测] 从近三年高考情况来看,本讲为高考中的一个热点.预测2020年高考主要以考查对数函数的单调性的应用、最值、比较大小为主要命题方向,此外,与对数函数有关的复合函数也是一个重要的考查方向,主要以复合函数的单调性、恒成立问题呈现.1.对数2.对数函数的图象与性质续表3.反函数指数函数y =a x (a >0,且a ≠1)与对数函数□01y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线□02y =x 对称.1.概念辨析(1)log 2x 2=2log 2x .( )(2)函数y =log 2(x +1)是对数函数.( )(3)函数y =ln 1+x1-x 与y =ln (1+x )-ln (1-x )的定义域相同.( )(4)当x >1时,若log a x >log b x ,则a <b .( ) 答案 (1)× (2)× (3)√ (4)×2.小题热身(1)已知a >0,a ≠1,函数y =a x与y =log a (-x )的图象可能是( )答案 B解析 y =log a (-x )的定义域是(-∞,0),所以排除A ,C ;对于选项D ,由y =a x的图象知0<a <1,由y =log a (-x )的图象知a >1,矛盾,故排除D.故选B.(2)设a =log 213,b =e -12 ,c =ln π,则( )A .c <a <bB .a <c <bC .a <b <cD .b <a <c 答案 C解析 a =log 213<0,b =e - 12 ∈(0,1),c =ln π>1,所以a <b <c .(3)有下列结论:①lg (lg 10)=0;②lg (ln e)=0;③若lg x =1,则x =10;④若log 22=x ,则x =1;⑤若log m n ·log 3m =2,则n =9.其中正确结论的序号是________.答案 ①②③④⑤解析 lg (lg 10)=lg 1=0,故①正确;lg (ln e)=lg 1=0,故②正确;③④正确;log m n ·log 3m =log 3nlog 3m·log 3m =log 3n =2,故n =9,故⑤正确.(4)若函数y =f (x )是函数y =2x的反函数,则f (2)=________. 答案 1解析 由已知得f (x )=log 2x ,所以f (2)=log 22=1.题型 一 对数式的化简与求值1.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x+1,x ≤0,则f [f (1)]+f ⎝⎛⎭⎪⎫log 312的值是________.答案 5解析 因为f (1)=log 21=0,所以f [f (1)]=f (0)=2. 因为log 312<0,所以f ⎝ ⎛⎭⎪⎫log 312=3-log 312 +1 =3log 32+1=2+1=3.所以f [f (1)]+f ⎝ ⎛⎭⎪⎫log 312=2+3=5.2.计算下列各式: (1)lg 2+lg 5-lg 8lg 50-lg 40;(2)log 34273log 5[4 12 log 210-(33) 23 -7log 72].解 (1)原式=lg 2×58lg 5040=lg54lg 54=1.=⎝ ⎛⎭⎪⎫34log 33-log 33·log 5(10-3-2) =⎝ ⎛⎭⎪⎫34-1log 55=-14.3.已知log 189=a,18b=5,试用a ,b 表示log 3645. 解 因为log 189=a,18b=5,所以log 185=b ,于是log 3645=log 1845log 1836=log 189×51+log 182=a +b 1+log 18189=a +b2-a.对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.如举例说明2(1).(3)转化:a b=N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.如举例说明3中18b=5的变形.计算下列各式:(1)计算(lg 2)2+lg 2·lg 50+lg 25的结果为________; (2)若lg x +lg y =2lg (2x -3y ),则log 32 xy 的值为________;(3)计算:(log 32+log 92)·(log 43+log 83)=________. 答案 (1)2 (2)2 (3)54解析 (1)原式=lg 2(lg 2+lg 50)+lg 52=lg 2×lg 100+2lg 5=2(lg 2+lg 5)=2lg 10=2. (2)由已知得lg (xy )=lg (2x -3y )2,所以xy =(2x -3y )2,整理得4x 2-13xy +9y 2=0,即4⎝ ⎛⎭⎪⎫x y 2-13×x y+9=0,解得x y =1或x y =94.由x >0,y >0,2x -3y >0可得xy=1,不符合题意,舍去,所以log 32 x y =log 3294=2.(3)原式=⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9·⎝ ⎛⎭⎪⎫lg 3lg 4+lg 3lg 8=⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3·⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2=3lg 22lg 3·5lg 36lg 2=54. 题型 二 对数函数的图象及应用1.(2019·某某模拟)函数f (x )=lg (|x |-1)的大致图象是( )答案 B解析 易知f (x )为偶函数,且f (x )=⎩⎪⎨⎪⎧lg x -1,x >1,lg -x -1,x <-1,当x >1时,y =lg x 的图象向右平移1个单位,可得y =lg (x -1)的图象,结合选项可知,f (x )的大致图象是B.2.当0<x ≤12时,4x<log a x ,则a 的取值X 围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝ ⎛⎭⎪⎫22,1 C .(1,2) D .(2,2) 答案 B解析 构造函数f (x )=4x和g (x )=log a x ,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的草图(图略),可知,若g (x )经过点⎝ ⎛⎭⎪⎫12,2,则a =22,所以a 的取值X 围为⎝ ⎛⎭⎪⎫22,1. 条件探究1 若举例说明2变为:若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,某某数a 的取值X围.解 若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x和函数y =log a x 在⎝ ⎛⎦⎥⎤0,12上有交点,由图象知⎩⎪⎨⎪⎧0<a <1,log a 12≤2,解得0<a ≤22. 条件探究2 若举例说明2变为:若不等式x 2-log a x <0对x ∈⎝ ⎛⎭⎪⎫0,12恒成立,某某数a的取值X 围.解 由x 2-log a x <0得x 2<log a x ,设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈⎝ ⎛⎭⎪⎫0,12时,不等式x 2<log a x 恒成立,只需f 1(x )=x 2在⎝ ⎛⎭⎪⎫0,12上的图象在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示,要使x 2<log a x 在x ∈⎝ ⎛⎭⎪⎫0,12上恒成立,需f 1⎝ ⎛⎭⎪⎫12≤f 2⎝ ⎛⎭⎪⎫12, 所以有⎝ ⎛⎭⎪⎫122≤log a 12,解得a ≥116,所以116≤a <1.即实数a 的取值X 围是⎣⎢⎡⎭⎪⎫116,1.条件探究3 若举例说明2变为:当0<x ≤14时,x <log a x ,某某数a 的取值X 围.解 若x <log a x 在x ∈⎝ ⎛⎦⎥⎤0,14时成立,则0<a <1,且y =x 的图象在y =log a x 图象的下方,如图所示,由图象知14<log a 14, 所以⎩⎪⎨⎪⎧0<a <1,a12 >14,解得116<a <1.即实数a 的取值X 围是⎝ ⎛⎭⎪⎫116,1.1.对数函数图象的特征(1)底数与1的大小关系决定了图象的升降,即a >1时,图象上升;0<a <1时,图象下降.(2)对数函数在同一直角坐标系中的图象如图,其中图象的相对位置与底数大小有关,图中0<c <d <1<a <b .在x 轴上侧,图象从左到右相应的底数由小变大; 在x 轴下侧,图象从右到左相应的底数由小变大. (无论在x 轴的上侧还是下侧,底数都按顺时针方向变大) 2.利用对数函数的图象可求解的三类问题(1)对数型函数图象的识别.解此类问题应从对数函数y =log a x 的图象入手,抓住图象上的三个关键点(a,1),(1,0),⎝ ⎛⎭⎪⎫1a,-1,特别地要注意a >1和0<a <1的两种不同情况.(2)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(3)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.如举例说明2.1.已知lg a +lg b =0(a >0且a ≠1,b >0且b ≠1),则函数f (x )=a x与g (x )=-log b x 的图象可能是( )答案 B解析 因为lg a +lg b =0,所以lg (ab )=0,所以ab =1,即b =1a,故g (x )=-log b x=-log 1ax =log a x ,则f (x )与g (x )互为反函数,其图象关于直线y =x 对称,结合图象知,B 正确.2.设实数a ,b 是关于x 的方程|lg x |=c 的两个不同实数根,且a <b <10,则abc 的取值X 围是________.答案 (0,1)解析 由图象可知0<a <1<b <10,又因为|lg a |=|lg b |=c ,所以lg a =-c ,lg b =c , 即lg a =-lg b ,lg a +lg b =0, 所以ab =1,于是abc =c ,而0<c <1. 故abc 的取值X 围是(0,1). 题型 三 对数函数的性质及应用角度1 比较对数值的大小1.(2018·某某高考)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b 答案 D解析 因为e =2.71828…>2,所以a =log 2e>log 22=1;b =ln 2<ln e =1;又因为c =log 1213=log 23>log 22=1,又因为a =log 2e<log 23=c ,所以c >a >b .角度2 解对数不等式2.(2018·某某模拟)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12 -x ,x <0,若f (a )>f (-a ),则实数a 的取值X 围是( ) A .(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-1,0)∪(1,+∞) D .(-∞,-1)∪(0,1) 答案 C解析 若a >0,则log 2a >log 12 a ,即2log 2a >0,所以a >1.若a <0,则log 12 (-a )>log 2(-a ),即2log 2(-a )<0,所以0<-a <1,-1<a <0.综上知,实数a 的取值X 围是(-1,0)∪(1,+∞). 角度3 与对数函数有关的综合问题 3.已知函数f (x -3)=log ax6-x(a >0,且a ≠1). (1)判断f (x )的奇偶性,并说明理由; (2)当0<a <1时,求函数f (x )的单调区间.解 令x -3=u ,则x =u +3,于是f (u )=log a 3+u3-u (a >0,且a ≠1,-3<u <3),所以f (x )=log a 3+x 3-x(a >0,且a ≠1,-3<x <3).(1)因为f (-x )+f (x )=log a 3-x 3+x +log a 3+x3-x =log a 1=0,所以f (-x )=-f (x ).又定义域(-3,3)关于原点对称.所以f (x )是奇函数.(2)令t =3+x 3-x =-1-6x -3,则t 在(-3,3)上是增函数,当0<a <1时,函数y =log a t是减函数,所以f (x )=log a3+x3-x(0<a <1)在(-3,3)上是减函数, 即函数f (x )的单调递减区间是(-3,3).1.比较对数值大小的方法若底数为同一常数可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论若底数不同,真数相同 可以先用换底公式化为同底后,再进行比较 若底数与真数都不同 常借助1,0等中间量进行比较,如举例说明12.求解对数不等式的两种类型及方法 类型 方法形如 log a x >log a b 借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论形如 log a x >b 需先将b 化为以a 为底的对数式的形式,再借助y =log a x 的单调性求解3.解决与对数函数有关的综合问题单调性的步骤 一求求出函数的定义域二判判断对数函数的底数与1的关系,分a >1与0<a <1两种情况判断内层函数和外层函数的单调性,运用复合函数“同增异减”的原则判断函数的单调性,如举例说明3(2)1.(2016·全国卷Ⅰ)若a >b >1,0<c <1,则( ) A .a c<b cB .ab c<ba cC .a log b c <b log a cD .log a c <log b c 答案 C解析 解法一:由a >b >1,0<c <1,知a c>b c,A 错误; ∵0<c <1,∴-1<c -1<0,∴y =x c -1在x ∈(0,+∞)上是减函数,∴bc -1>ac -1,又ab >0,∴ab ·bc -1>ab ·ac -1,即ab c >ba c,B 错误;易知y =log c x 是减函数,∴0>log c b >log c a ,∴log b c <log a c ,D 错误;由log b c <log a c <0,得-log b c >-log a c >0,又a >b >1>0,∴-a log b c >-b log a c >0,∴a log b c <b log a c ,故C 正确.解法二:依题意,不妨取a =10,b =2,c =12.易验证A ,B ,D 错误,只有C 正确.2.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0log 2x ,x >0,若f [f (x )]≥-2,则x 的取值X 围为( )A .[-2,1]B .[42,+∞)C .[-2,1]∪[42,+∞) D.[0,1]∪[42,+∞) 答案 C解析 解法一:①若x ≤0,则f [f (x )]=log 22x=x ≥-2,所以-2≤x ≤0.②若x >1,则f [f (x )]=log 2(log 2x )≥-2,log 2x ≥2-2,x ≥2 14 =42,所以x ≥42. ③若0<x ≤1,则f [f (x )]=2log 2x=x ≥-2, 所以0<x ≤1.综上知,x 的取值X 围是[-2,1]∪[42,+∞). 解法二:作出函数f (x )的图象如下:由图象可知,若f [f (x )]≥-2,则f (x )≥14或f (x )≤0.再次利用图象可知x 的取值X 围是[-2,1]∪[42,+∞). 3.函数f (x )=log 2x ·log 2(2x )的最小值为________.答案 -14解析 f (x )=12log 2x ·2log 2(2x )=log 2x (log 22+log 2x ) =log 2x +(log 2x )2=⎝⎛⎭⎪⎫log 2x +122-14, 所以当log 2x =-12,即x =22时,f (x )取得最小值-14.。
§2.2对数函数2.2.1 对数与对数运算第1课时对数学习目标 1.理解对数的概念、掌握对数的性质(重、难点).2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程(重点).知识点1 对数1.对数(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.2.常用对数与自然对数【预习评价】(正确的打“√”,错误的打“×”)(1)根据对数的定义,因为(-2)4=16,所以log(-2)16=4.( )(2)对数式log32与log23的意义一样.( )(3)对数的运算实质是求幂指数.( )提示(1)×因为对数的底数a应满足a>0且a≠1,所以(1)错;(2)×log32表示以3为底2的对数,log23表示以2为底3的对数,所以(2)错;(3)√由对数的定义可知(3)正确.知识点2 对数的基本性质 (1)负数和零没有对数. (2)log a 1=0(a >0,且a ≠1). (3)log a a =1(a >0,且a ≠1). 【预习评价】若log 32x -33=1,则x =________;若log 3(2x -1)=0,则x =________.解析 若log 32x -33=1,则2x -33=3,即2x -3=9,x =6;若log 3(2x -1)=0,则2x -1=1,即x =1. 答案 6 1题型一 对数的定义【例1】 (1)在对数式y =log (x -2)(4-x )中,实数x 的取值范围是________; (2)将下列指数式化为对数式,对数式化为指数式. ①54=625;②log 216=4;③10-2=0.01;④log5125=6.(1)解析 由题意可知⎩⎪⎨⎪⎧4-x >0,x -2>0,x -2≠1,解得2<x <4且x ≠3.答案 (2,3)∪(3,4)(2)解 ①由54=625,得log 5625=4. ②由log 216=4,得24=16. ③由10-2=0.01,得lg 0.01=-2. ④由log5125=6,得(5)6=125.规律方法 指数式与对数式互化的思路(1)指数式化为对数式:将指数式的幂作为真数,指数作为对数,底数不变,写出对数式. (2)对数式化为指数式:将对数式的真数作为幂,对数作为指数,底数不变,写出指数式. 【训练1】 将下列指数式化为对数式,对数式化为指数式:(1)43=64;(2)ln a =b ;(3)⎝ ⎛⎭⎪⎫12m=n ;(4)lg 1000=3.解 (1)因为43=64,所以log 464=3;(2)因为ln a =b ,所以e b=a ;(3)因为⎝ ⎛⎭⎪⎫12m=n ,所以log 12n =m ; (4)因为lg 1 000=3,所以103=1 000. 题型二 利用指数式与对数式的互化求变量的值 【例2】 (1)求下列各式的值.①log 981=________.②log 0.41=________.③ln e 2=________. (2)求下列各式中x 的值. ①log 64x =-23;②log x 8=6;③lg 100=x ;④-ln e 2=x .(1)解析 ①设log 981=x ,所以9x =81=92,故x =2,即log 981=2;②设log 0.41=x ,所以0.4x =1=0.40,故x =0,即log 0.41=0;③设ln e 2=x ,所以e x =e 2,故x =2,即ln e 2=2. 答案 ①2 ②0 ③2(2)解 ①由log 64x =-23得x =64-23=43×(-23)=4-2=116; ②由log x 8=6,得x 6=8,又x >0,即x =816=23×16=2;③由lg 100=x ,得10x=100=102,即x =2; ④由-ln e 2=x ,得ln e 2=-x ,所以e -x=e 2, 所以-x =2,即x =-2.规律方法 对数式中求值的基本思想和方法 (1)基本思想.在一定条件下求对数的值,或求对数式中参数字母的值,要注意利用方程思想求解. (2)基本方法.①将对数式化为指数式,构建方程转化为指数问题. ②利用幂的运算性质和指数的性质计算.【训练2】 利用指数式、对数式的互化求下列各式中x 的值. (1)log 2x =-12;(2)log x 25=2;(3)log 5x 2=2.解 (1)由log 2x =-12,得2-12=x ,∴x =22. (2)由log x 25=2,得x 2=25. ∵x >0,且x ≠1,∴x =5. (3)由log 5x 2=2,得x 2=52,∴x =±5.∵52=25>0,(-5)2=25>0, ∴x =5或x =-5.题型三 利用对数的性质及对数恒等式求值 【例3】 (1)71-log 75;(2)100⎝⎛⎭⎪⎪⎫12lg 9-lg 2; (3)alog ab ·log bc(a ,b 为不等于1的正数,c >0).解 (1)原式=7×7-log 75=77log 75=75. (2)原式=10012lg 9×100-lg 2=10lg 9×1100lg 2=9×1102lg 2 =9×110lg 4=94.(3)原式=(alog ab )log bc=blog bc=c .规律方法 对数恒等式a log a N =N 的应用 (1)能直接应用对数恒等式的直接应用即可.(2)对于不能直接应用对数恒等式的情况按以下步骤求解.【训练3】 (1)设3log 3(2x +1)=27,则x =________.(2)若log π(log 3(ln x ))=0,则x =________. 解析 (1)3log 3(2x +1)=2x +1=27,解得x =13.(2)由log π(log 3(ln x ))=0可知log 3(ln x )=1,所以ln x =3,解得x =e 3. 答案 (1)13 (2)e 3课堂达标1.有下列说法:(1)只有正数有对数;(2)任何一个指数式都可以化成对数式;(3)以5为底25的对数等于±2;(4)3log 3(-5)=-5成立.其中正确的个数为( )A.0B.1C.2D.3解析 (1)正确;(2),(3),(4)不正确. 答案 B2.使对数log a (-2a +1)有意义的a 的取值范围为( ) A.a >12且a ≠1B.0<a <12C.a >0且a ≠1D.a <12解析 由题意知⎩⎪⎨⎪⎧-2a +1>0,a >0,a ≠1,解得0<a <12.答案 B3.方程lg(2x -3)=1的解为________.解析 由lg(2x -3)=1知2x -3=10,解得x =132.答案1324.计算:2log 23+2log 31-3log 77+3ln 1=________.解析 原式=3+2×0-3×1+3×0=0. 答案 05.把下列指数式化为对数式,对数式化为指数式. (1)2-3=18;(2)⎝ ⎛⎭⎪⎫17a =b ;(3)lg 11 000=-3;(4)ln 10=x .解 (1)由2-3=18可得log 218=-3;(2)由⎝ ⎛⎭⎪⎫17a=b 得log 17b =a ;(3)由lg 11 000=-3可得10-3=11 000;(4)ln 10=x 可得e x=10.课堂小结1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a ab =b ;(2)a log a N =N .2.在关系式a x=N 中,已知a 和x 求N 的运算称为求幂运算,而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化基础过关1.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2.其中正确的是( ) A.①③ B.②④ C.①②D.③④解析 lg(lg 10)=lg 1=0,ln(ln e)=ln 1=0,故①②正确;若10=lg x ,则x =1010,故③错误;若e =ln x ,则x =e e,故④错误. 答案 C2.log a b =1成立的条件是( ) A.a =b B.a =b 且b >0 C.a >0,a ≠1D.a >0,a =b ≠1解析 由log a b =1得a >0,且a =b ≠1. 答案 D3.设a =log 310,b =log 37,则3a -b 的值为( )A.107B.710C.1049D.4910解析 3a -b=3a÷3b=3log 310÷3log 37=10÷7=107.答案 A4.若log (1-x )(1+x )2=1,则x =________. 解析 由题意知1-x =(1+x )2, 解得x =0或x =-3.验证知,当x =0时,log (1-x )(1+x )2无意义, 故x =0时不合题意,应舍去.所以x =-3. 答案 -35.若log 3(a +1)=1,则log a 2+log 2(a -1)=________.解析 由log 3(a +1)=1得a +1=3,即a =2,所以log a 2+log 2(a -1)=log 22+log 21=1+0=1. 答案 16.将下列指数式化成对数式,对数式化成指数式. (1)35=243;(2)2-5=132;(3)log 1381=-4;(4)log 2128=7.解 (1)log 3243=5;(2)log 2132=-5;(3)⎝ ⎛⎭⎪⎫13-4=81;(4)27=128.7.求下列各式中的x 的值. (1)log x 27=32;(2)log 2x =-23;(3)log x (3+22)=-2; (4)log 5(log 2x )=0; (5)x =log 2719.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log x (3+22)=-2,得3+22=x -2, ∴x =(3+22)-12=2-1.(4)由log 5(log 2x )=0,得log 2x =1.∴x =21=2. (5)由x =log 2719,得27x=19,即33x=3-2, ∴x =-23.能力提升8.对于a >0且a ≠1,下列说法正确的是( )(1)若M =N ,则log a M =log a N ;(2)若log a M =log a N ,则M =N ;(3)若log a M 2=log a N 2,则M =N ;(4)若M =N ,则log a M 2=log a N 2.A.(1)(2)B.(2)(3)(4)C.(2)D.(2)(3)解析 (1)中若M ,N 小于或等于0时,log a M =log a N 不成立;(2)正确;(3)中M 与N 也可能互为相反数且不等于0;(4)中当M =N =0时不正确. 答案 C9.已知log 3(log 5a )=log 4(log 5b )=0,则a b的值为( ) A.1 B.-1 C.5D.15解析 由log 3(log 5a )=0得log 5a =1,即a =5,同理b =5,故a b=1. 答案 A 10.方程3log 2x =127的解是________. 解析 3log 2x =3-3,∴log 2x =-3,x =2-3=18.答案 1811.若正数a ,b 满足2+log 2a =3+log 3b =log 6(a +b ),则1a +1b=________.解析 设2+log 2a =3+log 3b =log 6(a +b )=k ,则a =2k -2,b =3k -3,a +b =6k ,即4a =2k,27b =3k ,所以108ab =6k,∴108ab =a +b ,∴108=1a +1b.答案 10812.(1)若f (10x)=x ,求f (3)的值; (2)计算23+log 23+35-log 39.解 (1)令t =10x,则x =lg t ,∴f (t )=lg t ,即f (x )=lg x ,∴f (3)=lg 3. (2)23+log 23+35-log 39=23·2log 23+353log 39 =23×3+359=24+27=51.13.(选做题)若log 2(log 12(log 2x ))=log 3(log 13(log 3y ))=log 5(log 15(log 5z ))=0,试确定x ,y ,z 的大小关系.解 由log 2(log 12(log 2x ))=0,得log 12(log 2x )=1,log 2x =12,x =212=(215)130.由log 3(log 13(log 3y ))=0,得log 13(log 3y )=1,log 3y =13,y =313=(310)130.由log 5(log 15(log 5z ))=0,得log 15(log 5z )=1,log 5z =15,z =515=(56)130.∵310>215>56,∴y >x >z .。
2.2.1 对数与对数运算(二)自主学习1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么,(1)log a (MN )=______________;(2)log a M N=____________;(3)log a M n =__________(n ∈R ).2.对数换底公式:________________________.对点讲练正确理解对数运算性质【例1】 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( )①log a x + log a y =log a (x +y ); ②log a x -log a y =log a (x -y );③log a x y=log a x ÷log a y ; ④log a (xy )=log a x ·log a y . A .0个 B .1个 C .2个 D .3个规律方法 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件.使用运算性质时,应牢记公式的形式及公式成立的条件.变式迁移1 (1)若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( )A .log a x =-log a 1xB .(log a x )n =n log a xC .(log a x )n =log a x nD .log a x =log a 1x(2)对于a >0且a ≠1,下列说法中正确的是( )①若M =N ,则log a M =log a N ;②若log a M =log a N ,则M =N ;③若log a M 2=log a N 2,则M =N ;④若M =N ,则log a M 2=log a N 2.A .①③B .②④C .②D .①②③④对数运算性质的应用【例2】 计算:(1)log 535-2log 573+log 57-log 51.8; (2)2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1.变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514; (2)(lg 5)2+lg 2·lg 50.换底公式的应用【例3】 设3x =4y =36,求2x +1y的值.规律方法 换底公式的本质是化同底,这是解决对数问题的基本方法.解题过程中换什么样的底应结合题目条件,并非一定用常用对数、自然对数.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ; (2)已知log 142=a ,用a 表示log 27.1.对于同底的对数的化简要用的方法是:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成两对数的和(差).2.对于常用对数的化简要创设情境充分利用“lg 5+lg 2=1”来解题.3.对于多重对数符号对数的化简,应从内向外逐层化简求值.4.要充分运用“1”的对数等于0,底的对数等于“1”等对数的运算性质.5.两个常用的推论:(1)log a b ·log b a =1;(2)log am b n =n mlog a b (a 、b >0且均不为1).课时作业一、选择题1.lg 8+3lg 5的值为( )A .-3B .-1C .1D .32.已知lg 2=a ,lg 3=b ,则log 36等于( )A.a +b aB.a +b bC.a a +bD.b a +b3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝⎛⎭⎫lg a b 2的值等于( ) A .2 B.12 C .4 D.144.若2.5x =1 000,0.25y =1 000,则1x -1y等于( ) A.13 B .3 C .-13D .-3 5.计算2log 525+3log 264-8log 71的值为( )A .14B .8C .22D .27二、填空题6.设lg 2=a ,lg 3=b ,那么lg 1.8=______________.7.已知log 63=0.613 1,log 6x =0.386 9,则x =____________.三、解答题8.求下列各式的值:(1)12lg 3249-43lg 8+lg 245; (2)(lg 5)2+2lg 2-(lg 2)2.9.已知log 189=a,18b =5,试用a ,b 表示log 365.2.2.1 对数与对数运算(二) 答案自学导引1.(1)log a M +log a N (2)log a M -log a N(3)n log a M2.log a b =log c b log c a对点讲练【例1】 A [对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的.] 变式迁移1 (1)A(2)C [在①中,当M =N ≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立. 在②中,当log a M =log a N 时,必有M >0,N >0,且M =N ,因此M =N 成立. 在③中,当log a M 2=log a N 2时,有M ≠0,N ≠0,且M 2=N 2,即|M |=|N |,但未必有 M =N .例如,M =2,N =-2时,也有log a M 2=log a N 2,但M ≠N .在④中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立. 所以,只有②成立.]【例2】 解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55=2log 55=2.(2)原式=lg 2(2lg 2+lg 5)+(lg 2-1)2=lg 2(lg 2+lg 5)+1-lg 2=lg 2+1-lg 2=1.变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514; (2)(lg 5)2+lg 2·lg 50.解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7) =1+log 57-1+2+log 52-log 52-log 57=2.(2)原式=(lg 5)2+lg 2·(lg 2+2lg 5)=(lg 5)2+2lg 5·lg 2+(lg 2)2=(lg 5+lg 2)2=1.【例3】 解 由已知分别求出x 和y .∵3x =36,4y =36,∴x =log 336,y =log 436,由换底公式得:x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364, ∴2x +1y=2log 363+log 364 =log 36(32×4)=log 3636=1.变式迁移3 解 (1)利用换底公式,得lg 4lg 3·lg 8lg 4·lg m lg 8=2, ∴lg m =2lg 3,于是m =9.(2)由对数换底公式,得log 27=log 27log 22=log 2712=2log 27=2(log 214-log 22) =2(1a -1)=2(1-a )a. 课时作业1.D [lg 8+3lg 5=lg 8+lg 53=lg 1 000=3.]2.B [log 36=lg 6lg 3=lg 2+lg 3lg 3=a +b b.] 3.A [由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12, ∴⎝⎛⎭⎫lg a b 2=(lg a -lg b )2 =(lg a +lg b )2-4lg a ·lg b=22-4×12=2.] 4.A [由指数式转化为对数式:x =log 2.51 000,y =log 0.251 000,则1x -1y =log 1 0002.5-log 1 0000.25=log 1 00010=13.] 5.C6.a +2b -12解析 lg 1.8=12lg 1.8 =12lg 1810=12lg 2×910=12(lg 2+lg 9-1)=12(a +2b -1). 7.2解析 由log 63+log 6x=0.613 1+0.386 9=1.得log 6(3x )=1.故3x =6,x =2.8.解 (1)方法一 原式=12(5 lg 2-2lg 7)-43·32lg 2+12(2lg 7+lg 5) =52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5) =12lg 10=12. 方法二 原式=lg 427-lg 4+lg 7 5 =lg 42×757×4=lg(2·5)=lg 10=12. (2)方法一 原式=(lg 5+lg 2)(lg 5-lg 2)+2lg 2=lg 10·lg 52+lg 4=lg ⎝⎛⎭⎫52×4=lg 10=1. 方法二 原式=(lg 10-lg 2)2+2lg 2-lg 22=1-2lg 2+lg 22+2lg 2-lg 22=1.9.解 ∵18b =5,∴log 185=b,又∵log 189=a ,∴log 365=log 185lg 1836=b log 18(18×2) =b 1+log 182=b 1+log 18189 =b 1+(1-log 189)=b 2-a.。
4.2对数与对数函数4.2.1对数运算 4.2.2对数运算法则必备知识基础练进阶训练第一层1.将(12)3=18化为对数式正确的是()A.log123=18B.log1218=3C.log1812=3D.log312=182.设a=log32,则log38-2log36用a表示的形式是() A.a-2B.3a-(1+a)2C.5a-2D.-a2+3a-13.计算log225·log322·log59的结果为()A.3B.4C.5D.64.若x=60,则1log3x+1log4x+1log5x的值为() A.1B.12C.2D.-15.求下列各式中x的值.(1)log5(log3x)=0;(2)-ln e2=x;(3)lg[log2(lg x)]=0;(4)log3(2x-1)=1;(5)4x-2x+1-3=0.6.计算下列各式的值:(1)1 2lg3249-43lg8+lg245;(2)lg52+23lg8+lg5·lg20+(lg2)2.关键能力综合练进阶训练第二层7.若lg x =m ,lg y =n ,则lg x -lg (y 10)2的值等于()A .12m -2n -2B .12m -2n -1C .12m -2n +1D .12m -2n +28.(多选)下列各等式正确的是()A .log 23×log 25=log 2(3×5)B .lg 3+lg 4=lg (3×4)C .log 2x y =log 2x -log 2y D .lg n m =1n lg m (m >0,n >1,n ∈N *)9.(多选)下列指数式与对数式互化正确的是()A .e 0=1与ln 1=0B .8-13=12与log 812=-13C .lg 100=2与100=10D .log 77=1与71=710.log 425-2log 4log 45·log 516的值是________.11.已知函数f (x )x +1,x <1,2-x ,x ≥1,f (f (0))=3a ,则a =________;f (log 2a )=________.12.(1)已知log 189,log 1854=b ,求182a -b 的值;(2)已知log x 27=31+log 3 ,求x 的值.核心素养升级练进阶训练第三层13.已知函数f (x )x ,x ≥4,x +2),x <4,则f (1+log 23)的值为()A .6B .12C .24D .3614.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =W log 2(1+S N ),它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计,按照香农公式,若不改变带宽W ,而将信噪比S N 从1000提升至5000,则C 大约增加了(附:lg 2≈0.3010)()A .20%B .23%C .28%D .50%参考答案与解析1.答案:B 解析:将(12)3=18化为对数式为log 1218=3.2.答案:A解析:∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1)=3a -2(a +1)=a -2.3.答案:D 解析:原式=lg 25lg 2·lg 22lg 3·lg 9lg 5=2lg 5lg 2·32lg 2lg 3·2lg 3lg 5=6.4.答案:A 解析:1log 360+1log 460+1log 560=log 603+log 604+log 605=log 60(3×4×5)=1.5.解析:(1)设t =log 3x ,则log 5t =0,∴t =1,即log 3x =1,∴x =3.(2)由-ln e 2=x ,得ln e 2=-x ,所以e -x =e 2,-x =2,x =-2.(3)∵lg [log 2(lg x )]=0,∴log 2(lg x )=1,∴lg x =2,∴x =102=100.(4)由题意得2x -1=3,∴x =2.(5)原方程可化为(2x )2-2·2x -3=0,∴(2x +1)(2x -3)=0,∴2x =3,∴x =log 23.6.解析:(1)原式=12(lg 25-lg 72)-43lg 3 +12lg (72×5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5=12lg 2+12lg 5=12(lg 2+lg 5)=12.(2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3.7.答案:D 解析:原式=12lg x -2(lg y -lg 10)=12m -2n +2.8.答案:BD解析:对于A ,log 23+log 25=log 2(3×5),不正确;对于B ,正确;对于C ,当x ,y 均为负数时,等式右边无意义;对于D ,lg n m =1n lg m 符合对数的运算法则,正确.故选BD.9.答案:ABD 解析:lg 100=2⇒102=100,100=10⇒log 10010=12,C 不正确,A ,B ,D 均正确.10.答案:1解析:log 425-2log 410+log 45·log 516=log 425-log 4100+lg 5lg 4×lg 16lg 5=log 425100+lg 16lg 4=log 414+log 416=-1+2=1.11.答案:21解析:f (0)=30+1=2,∴f (f (0))=f (2)=4a -2=3a ,∴a =2,f (log 2a )=f (log 22)=f (1)=2×12-1=1.12.答案:(1)32(2)3解析:(1)∵log 189=a ,log 1854=b ,∴18a =9,18b =54,∴182a -b =182a 18b =9254=32.(2)log x 27=31+log 32=3·3log 32=3×2=6.∴x 6=27,∴x 6=33,又x >0,∴x =3.13.答案:C解析:因为2<3<22,所以1<log 23<2,2<1+log 23<3,4<(1+log 23)+2<5,所以f (1+log 23)=f ((1+log 23)+2)=f (3+log 23)=23+log 23=23·3=24.14.答案:B 解析:根据题意,计算出log 25000log 21000的值即可.当S N =1000时,C =W log 21000,当S N =5000时,C =W log 25000,因为log 25000log 21000=lg 5000lg 1000=3+lg 53=4-lg 23≈3.6993≈1.23,所以将信噪比S N 从1000提升至5000,则C 大约增加了23%.。
经典例题透析类型一、指数式与对数式互化及其应用1.将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化.解:(1);(2);(3);(4);(5);(6).总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x的值:(1)(2)(3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x=100=102,于是x=2;(4)由.类型二、利用对数恒等式化简求值2.求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数3.已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a举一反三:【变式1】求值(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.6. 求下列函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求下列函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a¹1,kÎR).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)若a>2,则函数定义域为(k,+∞);(ii)若0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)若a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)的定义域为[,4].类型七、函数图象问题7.作出下列函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较下列各组数中的两个值大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5;(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9 当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9 解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b1>b2,即.举一反三:【变式1】(2011 天津理7)已知则()A.B.C.D.解析:另,,,在同一坐标系下作出三个函数图像,由图像可得又∵为单调递增函数,∴故选C.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x1<x2 则又∵y=log2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断下列函数的奇偶性. (1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握.类型十、对数函数性质的综合应用12.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u能取遍一切正数的条件是.解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a≠0时,有a>1.∴a的取值范围为a>1.(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或0≤a≤1,∴a的取值范围为0≤a≤1.13.已知函数h(x)=2x(x∈R),它的反函数记作g(x),A、B、C三点在函数g(x)的图象上,它们的横坐标分别为a,a+4,a+8(a>1),记ΔABC的面积为S.(1)求S=f(a)的表达式;(2)求函数f(a)的值域;(3) 判断函数S=f(a)的单调性,并予以证明;(4)若S>2,求a的取值范围.解:(1)依题意有g(x)=log2x(x>0).并且A、B、C三点的坐标分别为A(a,log2a),B(a+4,log2(a+4)),C(a+8,log2(a+8)) (a>1),如图.∴A,C中点D的纵坐标为〔log2a+log2(a+8)〕∴S=|BD|·4·2=4|BD|=4log2(a+4)-2log2a-2log2(a+8).(2)把S=f(a)变形得:S=f(a)=2〔2log2(a+4)-log2a-log2(a+8)〕=2log2=2log2(1+).由于a>1时,a2+8a>9,∴1<1+<,又函数y=log2x在(0,+∞)上是增函数,∴0<2log2(1+)<2log2,即0<S<2log2.(3)S=f(a)在定义域(1,+∞)上是减函数,证明如下:任取a1,a2,使1<a1<a2<+∞,则:(1+)-(1+)=16()=16·,由a1>1,a2>1,且a2>a1,∴a1+a2+8>0,+8a2>0,+8a1>0,a1-a2<0,∴1<1+<1+,再由函数y=log2x在(0,+∞)上是增函数,于是可得f(a1)>f(a2)∴S=f(a)在(1,+∞)上是减函数.(4)由S>2,即得,解之可得:1<a<4-4.。
(对数与对数函数)含有答案-人教版
命题人:张立洪 第 2 页 共 10 页
高一数学基础训练(六)
对数部分:
一、选择题: 1.若3
12=x
,则x 等于 (B ) A log 23 B log 2
3
1
C log 2
13
1 D log 3
12
2.已知log a 8=2
3,则a 等于 ( D ) A 41 B 2
1 C
2 D 4 3.下列选项中,结论正确的是 (C )
A 若log 2x =10,则2x=10
B 若2x =3,则log 32=x
C 0log )(log 3
22= D 23
3
2log = 4.以下四个命题:(1)若log x 3=3,则x=9;(2)若log 4x =21
,
则x=2; (3)若log 3
x=0,则x=3;(4)若log 5
1
x=-3,
则x=125,其中真命题的个数是(B ) A 1个 B 2个 C 3个 D 4个 5.下列各式中,能成立的是 (D )
A log 3(6-4)=log 36-log 34
B log3(6-4)=4
log 6
log 3
3 C log 35-log 36=5
log 5log 3
3 D log 23+log 210=log 25+log 26 6.下列各式中,正确的是 (D )
A lg4-lg7=lg(4-7)
B 4lg3=lg3⨯4
C lg3+lg7=lg(3+7)
D ln N
e N
=
7.如果()N a a =--3log
1
,那么a 的取值范围是(D )
命题人:张立洪第 3 页共 10 页
命题人:张立洪 第 4 页 共 10 页
A. 3
B. 8
C. 4
D. log 4
8 二、填空题:
1.把下列指数形式写成对数形式:
(1) 4
5=625 5log 6254= (2)6
2-=641
2
log
1
64
=-6
(3)a
3=27 3
log 27=a (4) m
)(3
1
=5.73 13
log
5.73m
=
2.把下列对数式写成指数式
(1) 3log 9=2 2
3=9 (2)5
log 125=3 3
5=125
(3)2log 41=-2 22-=14 (4)3
log
811=-4 4
3-=1
81
3.利用对数的定义或性质求值:
(1) log 3
131
=1; (2)log 111=0;(3) log 232=5;(4)log 9
131=2;
4.当底是9时,3的对数等于14
命题人:张立洪 第 5 页 共 10 页
5.如果对数lga 与lgb 互为相反数,那么a 与b 之间应满足ab=1;
6.计算 (1)2
log (7
4×25)=19;(2) lg
5
100
=25;
7.如果log
09
413
2=--
x
,则x=-2;
8.满足等式()()2lg 2lg 1lg =-+-x x 的∈x {}3. 9.计算:=
+50lg 2lg 5lg
2
1.
10.求值:=++++3log 15.222ln 1001lg
25.6log
e 132
三、解答题:
1.已知x
log 5a =,x
log 3b =,求b
a x
23+的值。
1125 2.若0
)](log [log
log 23
5
=x ,求x 的值;
x=8
3.计算)]81
log
[log
(log
4
6
3
4.求下列各式的值:
(1) 2000
lg
10; 2000 (2) 3log42
2 ;48
命题人:张立洪第 6 页共 10 页
命题人:张立洪 第 7 页 共 10 页
5.如果对数)
56(log
27
+++x x x 有意义,求x 的取值范围;
解:要使原函数有意义,则 2
6507071
x x x x ⎧++>⎪+>⎨⎪+≠⎩
解之得: -7<x<-6-6<x<-5-1或或x>
∴原函数的定义域为-7,
-6)(-6,
-5) (-1,+∞) 6.求值
(1)lg14-2lg 3
7+lg7-lg18 0 (2)9lg 243lg 52
(3)2.1lg 10
lg 38lg 27lg
-+ 32
7.化简2
2)4(lg 16lg 25lg )25(lg ++
==
2
====
8.已知2lg =a ,3lg =b ,试用b a ,表示75lg . 解:()lg752lg5lg321lg2lg322a b =+=-+=-+。
9.若a lg 、b lg 是方程0
1422
=+-x x 的两个实根,求
()2
lg lg ⎪
⎭
⎫
⎝⎛b a ab 的
值.
命题人:张立洪 第 8 页 共 10 页
解:∵lg a 、lg b 是方程2
2410
x
x -+=的两个实根,∴lg lg 2a b +=,
1lg lg 2
a b =。
∵
()()()()()2
22lg lg lg lg lg lg lg lg lg lg 4lg lg a ab a b a b a b a b a b b ⎛⎫
⎡⎤
=+-=++- ⎪⎣⎦⎝⎭
∴
()2
lg lg 4
a a
b b ⎛⎫
= ⎪⎝⎭。
对数函数部分
1.下列各函数中,在()2,0上为增函数的是(D ) A .()2log
5.0+=x y
B .1
log
22
-=x y C .
x
y 1log 3
= D .()5
4log 2
5.0+-=x x
y
2.函数()2
5
.045log x x y -+=的递增区间是(D ) A .()2,∞- B .()∞+,2 C .()2,1- D .()5,2 3.若函数()20
2lg 2
+-=x x
y 的定义域为[]10,0,则它的值域为(B )
A .[]2,2lg 1+
B .[]2,19lg
C .[]10,2lg 1+
D .[]10,19lg 4.若函数x
y 5
.0log
2=的值域为[]1,1-,则它的定义域为(A )
A .⎥⎦
⎤⎢⎣
⎡2,2
2
B .⎥⎦
⎤
⎢⎣
⎡2,21 C .[]1,1- D .[
)+∞
⎥⎦
⎤
⎝⎛∞-,222,
5.方程()x x 34log 2
=+的实根个数为(C )
A .0
B .1
C .2
D .3
6.当
时,函数
和
的图象只可能是(B )
命题人:张立洪 第 9 页 共 10 页
7.如果 ,那么 、 之间的关系是(B )
A .
B .
C .
D .
8.若函数
的值域是
,则这个函数的定义域(D )
A .
B .
C .
D .
二、填空题:
1.函数()x x f a
log =在区间[]π,2上的最大值比最小值大1,则
=
a 2π或2π
. 2.当⎪⎭
⎫ ⎝
⎛∈2
1,0x 时,函数()x
x y a a
log log 2
+-=有意义,则实数∈a 1,116⎡⎫
⎪⎢⎣⎭
.
3.函数y=lg(x-1)的反函数是y=10x
+1;
4.函数y=log 3(x 2
+3x-4)的定义域为{x|x<-4或x>1}; 三、解答题:
1.求函数f(x)=(5
1
)-x
-1的反函数; f -1
(x)=log 5(x+1),x>-1
命题人:张立洪 第 10 页 共 10 页
2.已知函数f(x)=log 2(-x 2
+3x-2)的定义域为P ,g(x)=
2
3
-
x +
log
)
4(3
1x -的定义域为Q ,求
P Q
P={x|1<x<2},Q={x|32≤
x<4},P Q={x|3
2
≤x<2};
3.函数]
4
5
)2(lg[2
+++=x k x y 的定义域为一切实数,求k 的取
值范围。
22
k <<。