电力电子建模ch5_逆变器的建模与控制
- 格式:ppt
- 大小:2.64 MB
- 文档页数:44
电力电子器件的建模与控制随着电力电子技术的不断发展,电力电子器件在工业、航空、船舶、军事等领域中的应用日益广泛。
电力电子器件的建模与控制是电力电子技术的重要研究方向。
本文将从建模与控制两个方面对电力电子器件进行探讨。
一、电力电子器件的建模建立电力电子器件的数学模型是研究电力电子器件必不可少的一步。
通过建模,可以分析电路的性能、控制器的设计和控制策略的优化。
下面将介绍常用的电力电子器件的建模方法。
1.硅控整流器模型硅控整流器是一种常见的电力电子器件。
硅控整流器的模型可使用平均值模型来建立。
该模型假设输电电压和输出电流是恒定的,并考虑了开关器件的导通与关闭时间。
该模型的参数包括输入电压、输出电流、开关器件的电阻和电容等参数。
2.IGBT模型IGBT是一种常见的功率晶体管。
IGBT的模型可使用双极性晶体管模型来建立。
该模型假设管子中的电荷可以被充电和放电,并将管子的行为分为两个状态:导通状态和截止状态。
该模型的参数包括输电电压、支路电阻、门控电源电压、漏极电流等参数。
3.电容模型电容是一种基本的电力电子器件。
电容的模型可以使用电容模型来建立。
该模型假设电容器可以储存电荷,并导致电势差的变化。
该模型的参数包括电容量、电势差、储能能量等参数。
二、电力电子器件的控制通过控制器对电力电子器件进行控制,可以实现对电路的控制和优化。
在控制器的设计与开发过程中,我们通常需要考虑以下三个方面的内容:1.控制器的输出控制器的输出是控制电路的关键。
输出应具有良好的稳定性和准确性,并且应相应地响应输入信号。
2.控制器的输入控制器的输入是从传感器、计算机或其他控制器获得的信号。
输入信号应被正确识别和处理,并被传递给控制器以支持合理的控制策略。
3.控制器的策略为实现良好的控制性能,必须实施合理的控制策略。
控制策略应该基于目标性能指标,例如输出电流和功率,恰当地融合传感器技术、控制算法和装置等。
总结电力电子器件的建模与控制是电力电子技术发展的关键。
三相逆变器的建模及其控制屈百达;潘文英【摘要】功率开关的动作使三相逆变器成为一种典型的切换系统,常规的控制方法基本是从线性系统出发设计的,但是这些方法不能有效地反应逆变器的内在特性.因此在考虑逆变器的混杂特性的基础上,直接从切换理论出发,构建三相逆变器的数学模型,并给出了一种切换控制方法.该算法不需要复杂的坐标变换和解耦运算,就可以实现交流信号的有效跟踪,使得三相逆变具有了更高质量的正弦输出电流,仿真实验验证了该算法的有效性.【期刊名称】《电源技术》【年(卷),期】2014(038)002【总页数】4页(P345-348)【关键词】三相逆变器;切换系统;数学模型【作者】屈百达;潘文英【作者单位】江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122;江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122【正文语种】中文【中图分类】TM464三相电压型逆变器应用于多种场合,例如静止无功补偿器、不间断电源、配电网的发电系统、电机的控制等。
在能源紧缺的当今世界,逆变器及其控制技术的研究具有重要的意义,并且越来越受到关注。
功率开关器件的存在,使得电力电子电路在工作时同时包含连续和离散两种状态。
对于三相逆变器,由于开关模态的多元化,使得其在建模过程更加复杂,逆变器的实际工作过程可以描述为在特定切换规则的控制下不同的连续子系统之间的切换。
近年来,切换系统的提出为电力电子电路分析和设计提供了新的视角。
从系统理论的角度讨论,大多数电力电子电路是属于切换系统,系统在切换开关的控制下在几个子系统中切换,每个子系统都有动态行为。
由于切换系统的非连续性,其结构模型具有分段特性,传统的控制理论无法对非线性系统直接设计控制。
目前,大部分逆变器基本采用的是电压型逆变器拓扑结构,控制方式多为线性控制,例如滞环电流控制、直接功率控制[1]、空间矢量调制(SVPWM)控制[2]等。
而这些基于理想等效设计的控制策略无法准确得到逆变器的运动规律,因而需要对其控制性能进行分析[3]。
电力电子系统建模与控制一、课程说明课程编号:090407Z10课程名称:电力电子系统建模与控制/Modeling and Analysis of Power Electronics System课程类别:专业课学时/学分:48(8)/3先修课程:电力电子技术,自动控制原理适用专业:电气工程及其自动化、电气工程卓越工程师、自动化课程类别:专业课教材、教学参考书:1.《电力电子系统建模与控制》,徐得鸿主编,机械工业出版社,2006年1月2.《电力电子学》,陈坚编著,高等教育出版社,2002年2月3.《电力电子装置及系统》,杨荫福等清华大学出版社,2006年9月4.《矩阵式变换器技术及其应用》,孙凯等编著,机械工业出版社,2007年9月二、课程设置的目的意义电力电子系统建模及控制是电气工程及其自动化、自动化专业的一门重要的专业课。
本课程重点介绍电力电子系统的动态模型的建立方法和控制系统的设计方法,并详细介绍开关电源、逆变器、UPS电源、DC/DC电源及矩阵变换器装置的基本组成、控制方式及其设计思想。
电力电子器件、装置及系统的建模与控制技术涉及功率变换技术、电工电子技术、自动控制理论等,是一门多学科交叉的应用性技术。
通过本课程的学习,使学生具有电力电子系统的设计和系统分析的能力,有利于促进我国电力电子产品和电源产品性能的提高。
三、课程的基本要求知识:掌握DC/DC、三相变流器、逆变器和矩阵变换器等电力电子变换器的动态建模方法;掌握DC/DC、三相变流器、逆变器和矩阵变换器等系统的控制方法;掌握开关电源、逆变器、UPS电源、DC/DC电源及矩阵变换器装置的基本组成、控制方式和设计思想。
能力:提高学生理论联系实际的能力,提高分析、发现、研究和解决问题的能力。
素质:通过电力电子系统建模控制系统的的分析与设计,着力于提升学生理论联系实践、理论应用于实践的综合素质。
四、教学内容、重点难点及教学设计五、实践教学内容和基本要求六、考核方式及成绩评定教学过程中采取讲授、讨论、分析、课外作业的方式进行,注重过程考核,考核方式包括:笔试、作业、讨论、辩论、课内互动等,过程考核占总评成绩的。
电力电子建模分析及控制器设计的一般过程
电力电子建模分析及控制器设计的一般过程包括以下几个步骤:
1. 系统建模:首先需要对电力电子系统进行建模,根据其特性以及控制要求选择适当的建模方式,例如,根据等效电路模型可以得到系统的状态方程,根据矢量控制原理可以设计SVPWM 控制器。
2. 系统分析:利用系统建模得到的状态方程和控制器,进行系统分析,得到一些关键性能指标,如系统的稳定性、动态响应特性、电流、电压、功率等等。
3. 控制器设计:根据系统分析的结果,进行控制器的设计。
控制器设计中需要考虑各种约束因素,如硬件实现的限制、成本、可靠性等等。
一般控制器又可以分为模拟控制和数字控制两种,模拟控制主要包括比例积分控制、模糊控制、滑模控制等等,数字控制主要包括基于DSP、FPGA、ARM等处理器架构的数字控制器。
4. 仿真验证:在设计完控制器之后,需要进行仿真验证,进一步验证控制器的性能,优化参数,并进行测试改进工作。
5. 硬件实现:将控制器进行硬件实现,对原理图进行电路设计,制作PCB板、采购必要的器件、调试、测试,直至系统实现。
6. 系统测试:对系统进行全面测试,验证其性能是否符合设计要求,并对性能进行总结,实现完善。
以上是电力电子建模分析及控制器设计的一般过程,实际过程中可以根据具体应用需求进行适当调整。
电力电子系统仿真设计报告题目:基于PWM逆变器的设计与仿真指导老师:杨小玲院系:电气三班姓名:吴明学号:08230318时间:2011.12摘要现在大量应用的逆变电路中,绝大部分都是PWM型逆变电路。
通过对PWM型逆变电路进行研究,首先建立了逆变器单极性控制和双极性控制所需的电路模型,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和三相桥式电压型逆变电路的工作原理进行了分析,运用MATLAB中的SIMULINK对电路进行了仿真,并给出了仿真结果波形,证实了MATLAB软件的简便直观、高效快捷和真实准确性。
关键词:SPWM;PWM;逆变器;MATLAB目录引言 (4)第一章对仿真软件以及设计内容及技术要求简单介绍 (5)1.1对仿真软件MATLAB的介绍 (5)1.2设计内容 (6)1.1.1设计的内容: (6)1.1.2PWM逆变器的电路参数要求 (6)1.2设计技术要求 (6)1.2.1仿真任务要求: (6)1.2.2设计的总体要求 (6)第二章对电力电子器件的简单介绍 (7)2.1.电力电子中常用的器件做简单的介绍: (7)第三章 PWM逆变器电路的设计和工作原理 (12)3.1、SPWM逆变器调制原理 (12)3.2、SPWM控制方式 (13)3.2.1单极性SPWM调制方法 (13)3.2.2双极性SPWM调制方法 (14)3.3调制法 (15)第四章. PWM逆变器电路的电路仿真及分析 (19)4.1PWM技术逆变器原理 (19)4.2于PWM技术逆变器及其仿真 (19)4.2.1GBT在MATLAB中的实现 (19)4.2.2PWM发生器 (21)4.3.3相单极性PWM仿真 (22)第五章心得体会与总结 (32)参考文献33引言电力电子学是由电力学,电子学和控制理论三个学科交叉而形成的,电力电子技术的应用范围十分广泛。
其不仅应用于一般的工业,同时广泛应用于电力系统,交通运输,通讯系统以及新能源系统。
电力电子课程设计逆变器的设计(2009-04-22 11:23:45)标签:教育分类:课程设计概述随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。
对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。
因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。
电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。
目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。
IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。
它的并联不成问题,由于本身的关断延迟很短,其串联也容易。
尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。
在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。
该调制方法的最大缺点是它的4个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。
本文针对正弦波输出变压变频电源SPWM调制方式及数字化控制策略进行了研究,以TMS320F240数字信号处理器为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。
一、正弦波逆变器的设计要求和主电路形式电力系统变电站和调度所的继电保护和综合自动化管理设备有的是单相交流供电的,其中有一部分是不能长时间停电的。
普通UPS设备因受内置蓄电池容量的限制,供电时间比较有限,而直流操作电源所带的蓄电池容量一般都比较大,所以需要一套逆变电源将直流电逆变成单相交流电。
第一章概述1.1. 参考资料(1)现代电力电子技术,林渭勋,机械工业出版社(2)电力电子系统建模及控制,徐德鸿,机械工业出版社(3)现代电力电子技术基础,赵良炳,清华大学出版社(4)现代逆变技术及其应用,李爱文等,科学出版社1.2. 现代电力电子学的定义及其意义现代电力电子学:以高频技术处理电力电子技术问题。
现代电力电子学的意义:电能变换、频率变换更自由、性能和效率更高,具体体现为:(1)网侧和输出侧的谐波得到了有效的改善;(2)网侧功率因数可方便地予以控制;(3)加快了电力电子系统的动态响应;(4)大幅度降低原材料消耗;(5)有效地控制环境噪声污染。
1.3 常用的现代电力电子器件1.3.1 电力二极管(1)普通整流二极管,工作在1KHz以下。
(2)快恢复二极管,trr在几个微秒-几百纳秒(3)超快恢复二极管,trr小于100纳秒(4)肖特基二极管,trr为几十纳秒,正向电压降较低,但耐压较低(小于100V)1.3.2 全控型器件第二章现代电力电子变换电路的常见形式2.1. 电力电子变换系统的基本结构图2.1 电力电子变换器基本结构图(1) 输入电路一般为整流电路、滤波电路等。
(2) 控制电路完成变换器特定任务的控制,如PWM、SPWM;根据参考量(REF)和反馈量完成闭环运算和修改控制力度;根据保护电路的状态决定开通或封锁变换器。
(3) 辅助电源提供控制电路的工作电源(4) 输出电路一般为整流电路、滤波电路。
(5) 保护电路1)输入过压、欠压保护(可自恢复)。
2)输出过压、欠压保护(一般不自恢复)。
3)过载、过热保护(一般可在降温后自恢复)。
4)过流、短路(不可自恢复)。
2.变换电路一般有DC-DC、DC-AC(逆变)、AC-AC、AC-DC。
2.2. 非隔离式DC-DC 变换电路 2.2.1. 升压变换(Boost 电路)电路原理图见图2.2,仿真模型见EX2_1,(δ=Tton,称为占空比,Duty Circle ) 电感电流连续时,根据开通和关断期间储能和释能相等的原理Vi*IL*ton=(Vo-Vi)*IL*toff则可得到输出电压计算公式为V o=toffT Vi图2.2 Boost 电路原理图图2.3 Boost 电路电感电流连续时的电感电流、V DS 和负载电压波形图2.3为Vi=100V,δ=50%情况下的电感电流、V DS和输出电压波形。