静止无功补偿技术
- 格式:ppt
- 大小:7.35 MB
- 文档页数:129
SVG的原理、特点及优势1、静止无功补偿技术介绍静止无功补偿技术经历了3代:第1代为机械式投切的无源补偿装置,属于慢速无功补偿装置,在电力系统中应用较早,目前仍在应用;第2代为晶闸管投切的静止无功补偿器(SVC),属无源、快速动态无功补偿装置,出现于20世纪70年代,国外应用普遍,我国目前有一定应用,主要用于配电系统中,输电网中应用很少;第3代为基于电压源换流器的静止同步补偿器(Static Synchronous Compensator,STATCOM),亦称SVG,属快速的动态无功补偿装置,国外从20世纪80年代开始研究,90年代末得到较广泛的应用。
早期的无功补偿装置主要是无源装置,方法是在系统母线上并联或者在线路中串联一定容量的电容器或者电抗器。
这些补偿措施改变了网络参数,特别是改变了波阻抗、电气距离和系统母线上的输入阻抗。
无源装置使用机械开关,它不具备快速性、反复性、连续性的特点,因而不能实现短时纠正电压升高或降落的功能。
20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者的混合装置(TCR+TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展。
SVC可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。
SVC 作为系统补偿时可以连续调节并与系统进行无功功率交换,同时还具有较快的响应速度,它能够维持端电压恒定。
SVC虽然能对系统无功进行有效的补偿,但是由于换流元件关断不可控,因而容易产生较大的谐波电流,而且其对电网电压波动的调节能力不够理想。
随着大功率全控型电力电子器件GTO、IGBT及IGCT的出现,特别是相控技术、脉宽调制技术(PWM)、四象限变流技术的提出使得电力电子逆变技术得到快速发展,以此为基础的无功补偿技术也得以迅速发展。
静止同步补偿器,作为FACTS家族最重要的成员,在美国、德国、日本、中国相继得到成功应用。
电压型的STATCOM(SVG)直流侧采用直流电容为储能元件,通过逆变器中电力半导体开关的通断将直流侧电压转换成交流侧与电网同频率的输出电压。
SVC 静止无功补偿原理解析(二)一、静止无功补偿简述静止无功补偿器(SVC )于20 世纪70 年代兴起,现在已经发展成为很成熟的FACTS 装置,其被广泛应用于现代电力系统的负荷补偿和输电线路补偿(电压和无功补偿),在大功率电网中,SVC 被用于电压控制或用于获得其它效益,如提高系统的阻尼和稳定性等;这类装置的典型代表有:晶闸管控制电抗器(TCR )和晶闸管投切电容器(TSC )。
静止同步无功补偿器是目前技术最为先进的无功补偿装置。
它不再采用大容量的电容器,电感器来产生所需无功功率,而是通过电力电子器件的高频开关实现对无功补偿技术质的飞跃,特别适用于中高压电力系统中的动态无功补偿静止无功补偿器是一种没有旋转部件,快速、平滑可控的动态无功功率补偿装置。
它是将可控的电抗器和电力电容器(固定或分组投切)并联使用。
电容器可发出无功功率(容性的),可控电抗器可吸收无功功率(感性的)。
通过对电抗器进行调节,可以使整个装置平滑地从发出无功功率改变到吸收无功功率(或反向进行),并且响应快速。
二、SVC的组成部分1.固定电容器和固定电抗器组成的一个无功补偿加滤波支路,该部分适当选择电抗器和电容器容量,可滤除电网谐波,并补偿容性无功,将电网补偿到容性状态。
2•固定电抗器3.可控硅电子开关可控硅用来调节电抗器导通角,改变感性无功输出来抵补偿滤波支路容性无功,并保持在感性较高功率因数。
三、(SVC)静止无功补偿装置的用途静止无功补偿器(SVC)是一种由电容器和各种类型的电抗器组成的无功补偿装置,用电子开关来实现无功功率的快速平滑控制。
SVC的应用可以分为2个方面:系统补偿和负荷补偿。
当作为系统补偿时,他的作用主要有:维持输电线路上节点的电压,减小线路上因为功率流动变化造成的电压波动,并提高输电线路有功功率的传输容量和电网的静态稳定性;在网络故障情况下,快速稳定电压,维持线路输电能力,提高电网的暂态稳定性;增加系统的阻尼,抑制电网的功率振荡;在输电线路末端进行无功功率补偿和电压支持,提高电压稳定性等等。
ASVG是目前最为先进的无功补偿技术,基于电压源型变流器的补偿装置实现了无功补偿方式的飞跃,它不再采用大量的电容、电感器件,而是通过大功率电力电子器件的高频开关实现无功能量的变换功能特点提高线路输电稳定性在长距离输电线路上安装SVG装置,不但可以在正常运行状态下补偿线路的无功损耗,抬高线路电压,提高有效输电容量,而且可以在系统故障情况下提供及时的无功调节,阻尼系统振荡,提高输电系统的稳定性。
维持受电端电压,加强系统电压稳定性对于负荷中心而言,由于负载容量大,又没有大型的无功电源支撑,因此容易造成电网电压偏低甚至发生电压崩溃的稳定事故。
而SVG具有快速的无功功率调节能力,可以维持负荷侧电压,提高负荷侧供电系统的电压稳定性。
补偿系统无功功率,提高功率因数,降低线损,节能降耗电力系统中的大量负荷,如异步电动机、电弧炉、轧机以及大容量的整流设备等,在运行中需要大量的无功,同时,输配电网络中的变压器、线路阻抗等也会产生一定的无功,导致系统功率因数低。
对电力系统而言,负荷的低功率因数会增加供电线路的能量损耗和电压降落,降低了电压质量,同时,无功也会导致发电、输电、供电设备的利用率低;对于电力用户而言,低功率因数会增加电费支出,加大生产成本。
抑制电压波动和闪变电压波动和闪变主要是负荷的急剧变化引起的。
负荷的急剧变化导致负荷电流产生对应的剧烈波动,剧烈波动的电流使系统电压损耗快速变化,从而引起受电端电网电压闪变。
引起电压闪变的典型负荷有电弧炉、轧钢机、电力机车等。
SVG能够快速地提供变化的无功电流,以补偿负荷变化引起的电压波动和闪变现象。
目前,抑制电压波动和闪变的最佳方案是采用SVG。
抑制三相不平衡配电网中存在着大量的三相不平衡负载,典型的如电力机车牵引负荷和交流电弧炉等,同时,线路、变压器等输配电设备三相阻抗的不平衡也会导致电压不平衡问题的产生。
SVG能够快速地补偿由于负载不平衡所产生的负序电流,始终保证流入电网的三相电流平衡,大大提高供用电的电能质量。
主要内容无功补偿技术的发展 静止无功补偿器(SVC )技术 静止同步补偿器(STATCOM )技术一、无功补偿技术的发展补偿方式——动态补偿/静态补偿:是从补偿原理上来讲的。
动态补偿是指补偿电流能自动跟随负荷无功电流的变化而连续变化;静态补偿是指补偿容量在相对比较长的一段时期内(譬如1min以上)是固定不变的。
补偿装置——静止补偿器/机械开关式补偿器:是从补偿装置的调节机构来讲的。
静止补偿器(装置)是指补偿装置的调节机构中没有机械运动部件,譬如SVC、SVG、STATCOM等。
一般而言,静止补偿器属于动态补偿。
两个基本概念⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧有源型无源型按原理划分串联型并联型按结构划分基本类型无功补偿装置的基本类型无功补偿技术的进展慢速无功设备快速无功设备第一代机械开关投切断路器延迟MSC/MSR晶闸管相控开关第二代2 -3 周波SVCPWM 调制开关GTO, IGBT, IGCT第三代1-2 周波STATCOM无关有关有关有关补偿性能与系统阻抗较小较高无负荷时较小无负荷时较高功率损耗小大无无谐波发生量平滑调节平滑调节有级投切有级投切补偿方式快较快快慢响应特性+Q LD ~ -Q LD+Q LD ~ -Q LD Q LD ~0Q LD ~0补偿范围Q VSI = Q LDQ C =Q L =Q LDQ C = Q LD Q C = Q LD 额定容量GTO、IGBT 晶闸管晶闸管接触器、断路器开关器件STATCOM TCR型SVC TSC型SVC FC 固定电容器项目无功补偿装置技术性能的比较DSTATCOM 的特点z响应时间快。
受电容器放电时间所限制,自动投切电容器组装置的响应时间需要几秒钟;SVC的响应时间约为20~100ms;STATCOM装置补偿响应时间可达5ms以内,真正实现动态补偿。
抑制电压闪变或跌落。
STATCOM装置可以有效的抑制电压闪变或跌落。
z 连续补偿,功率因数接近于1.0。
静止无功补偿器工作原理以静止无功补偿器工作原理为标题,我们来探讨一下静止无功补偿器的工作原理及其作用。
静止无功补偿器(Static Var Compensator,SVC)是一种用于电力系统中的无功补偿装置。
它主要通过控制电流的相位和幅值来实现对无功功率的补偿,从而提高系统的功率因数,并稳定系统电压。
静止无功补偿器由控制系统和功率电子元件组成。
控制系统通过监测系统电压和电流的波形,并计算出系统的功率因数和无功功率的大小。
根据计算结果,控制系统会发出指令,通过功率电子元件调整电流的相位和幅值,以实现无功功率的补偿。
在电力系统中,无功功率是指由于电感和电容元件引起的交流电路中的无功能量。
无功功率的存在会导致电压波动,降低系统的稳定性和效率。
为了解决这个问题,引入了静止无功补偿器。
静止无功补偿器主要通过控制电流的相位来改变无功功率的流动方向。
当系统需要吸收无功功率时,静止无功补偿器会向系统注入电流,使其与系统电流形成夹角,从而吸收无功功率。
相反,当系统需要释放无功功率时,静止无功补偿器会向系统注入与系统电流相位相反的电流,使其与系统电流形成夹角,从而释放无功功率。
静止无功补偿器还可以通过控制电流的幅值来调整无功功率的大小。
当系统需要补偿更多的无功功率时,静止无功补偿器会增大电流的幅值;反之,当系统需要补偿较少的无功功率时,静止无功补偿器会减小电流的幅值。
通过以上方式,静止无功补偿器能够快速响应系统的无功功率需求,实现对无功功率的精确控制。
这不仅可以提高系统的功率因数,减少无功功率的损耗,还可以稳定系统电压,提高系统的稳定性和可靠性。
总的来说,静止无功补偿器通过控制电流的相位和幅值,实现对无功功率的补偿,提高系统的功率因数,并稳定系统电压。
它在电力系统中发挥着重要的作用,能够有效解决无功功率带来的问题,提高系统的运行效率和稳定性。