静止无功补偿技术
- 格式:ppt
- 大小:7.35 MB
- 文档页数:129
SVG的原理、特点及优势1、静止无功补偿技术介绍静止无功补偿技术经历了3代:第1代为机械式投切的无源补偿装置,属于慢速无功补偿装置,在电力系统中应用较早,目前仍在应用;第2代为晶闸管投切的静止无功补偿器(SVC),属无源、快速动态无功补偿装置,出现于20世纪70年代,国外应用普遍,我国目前有一定应用,主要用于配电系统中,输电网中应用很少;第3代为基于电压源换流器的静止同步补偿器(Static Synchronous Compensator,STATCOM),亦称SVG,属快速的动态无功补偿装置,国外从20世纪80年代开始研究,90年代末得到较广泛的应用。
早期的无功补偿装置主要是无源装置,方法是在系统母线上并联或者在线路中串联一定容量的电容器或者电抗器。
这些补偿措施改变了网络参数,特别是改变了波阻抗、电气距离和系统母线上的输入阻抗。
无源装置使用机械开关,它不具备快速性、反复性、连续性的特点,因而不能实现短时纠正电压升高或降落的功能。
20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者的混合装置(TCR+TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展。
SVC可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。
SVC 作为系统补偿时可以连续调节并与系统进行无功功率交换,同时还具有较快的响应速度,它能够维持端电压恒定。
SVC虽然能对系统无功进行有效的补偿,但是由于换流元件关断不可控,因而容易产生较大的谐波电流,而且其对电网电压波动的调节能力不够理想。
随着大功率全控型电力电子器件GTO、IGBT及IGCT的出现,特别是相控技术、脉宽调制技术(PWM)、四象限变流技术的提出使得电力电子逆变技术得到快速发展,以此为基础的无功补偿技术也得以迅速发展。
静止同步补偿器,作为FACTS家族最重要的成员,在美国、德国、日本、中国相继得到成功应用。
电压型的STATCOM(SVG)直流侧采用直流电容为储能元件,通过逆变器中电力半导体开关的通断将直流侧电压转换成交流侧与电网同频率的输出电压。
SVC 静止无功补偿原理解析(二)一、静止无功补偿简述静止无功补偿器(SVC )于20 世纪70 年代兴起,现在已经发展成为很成熟的FACTS 装置,其被广泛应用于现代电力系统的负荷补偿和输电线路补偿(电压和无功补偿),在大功率电网中,SVC 被用于电压控制或用于获得其它效益,如提高系统的阻尼和稳定性等;这类装置的典型代表有:晶闸管控制电抗器(TCR )和晶闸管投切电容器(TSC )。
静止同步无功补偿器是目前技术最为先进的无功补偿装置。
它不再采用大容量的电容器,电感器来产生所需无功功率,而是通过电力电子器件的高频开关实现对无功补偿技术质的飞跃,特别适用于中高压电力系统中的动态无功补偿静止无功补偿器是一种没有旋转部件,快速、平滑可控的动态无功功率补偿装置。
它是将可控的电抗器和电力电容器(固定或分组投切)并联使用。
电容器可发出无功功率(容性的),可控电抗器可吸收无功功率(感性的)。
通过对电抗器进行调节,可以使整个装置平滑地从发出无功功率改变到吸收无功功率(或反向进行),并且响应快速。
二、SVC的组成部分1.固定电容器和固定电抗器组成的一个无功补偿加滤波支路,该部分适当选择电抗器和电容器容量,可滤除电网谐波,并补偿容性无功,将电网补偿到容性状态。
2•固定电抗器3.可控硅电子开关可控硅用来调节电抗器导通角,改变感性无功输出来抵补偿滤波支路容性无功,并保持在感性较高功率因数。
三、(SVC)静止无功补偿装置的用途静止无功补偿器(SVC)是一种由电容器和各种类型的电抗器组成的无功补偿装置,用电子开关来实现无功功率的快速平滑控制。
SVC的应用可以分为2个方面:系统补偿和负荷补偿。
当作为系统补偿时,他的作用主要有:维持输电线路上节点的电压,减小线路上因为功率流动变化造成的电压波动,并提高输电线路有功功率的传输容量和电网的静态稳定性;在网络故障情况下,快速稳定电压,维持线路输电能力,提高电网的暂态稳定性;增加系统的阻尼,抑制电网的功率振荡;在输电线路末端进行无功功率补偿和电压支持,提高电压稳定性等等。
ASVG是目前最为先进的无功补偿技术,基于电压源型变流器的补偿装置实现了无功补偿方式的飞跃,它不再采用大量的电容、电感器件,而是通过大功率电力电子器件的高频开关实现无功能量的变换功能特点提高线路输电稳定性在长距离输电线路上安装SVG装置,不但可以在正常运行状态下补偿线路的无功损耗,抬高线路电压,提高有效输电容量,而且可以在系统故障情况下提供及时的无功调节,阻尼系统振荡,提高输电系统的稳定性。
维持受电端电压,加强系统电压稳定性对于负荷中心而言,由于负载容量大,又没有大型的无功电源支撑,因此容易造成电网电压偏低甚至发生电压崩溃的稳定事故。
而SVG具有快速的无功功率调节能力,可以维持负荷侧电压,提高负荷侧供电系统的电压稳定性。
补偿系统无功功率,提高功率因数,降低线损,节能降耗电力系统中的大量负荷,如异步电动机、电弧炉、轧机以及大容量的整流设备等,在运行中需要大量的无功,同时,输配电网络中的变压器、线路阻抗等也会产生一定的无功,导致系统功率因数低。
对电力系统而言,负荷的低功率因数会增加供电线路的能量损耗和电压降落,降低了电压质量,同时,无功也会导致发电、输电、供电设备的利用率低;对于电力用户而言,低功率因数会增加电费支出,加大生产成本。
抑制电压波动和闪变电压波动和闪变主要是负荷的急剧变化引起的。
负荷的急剧变化导致负荷电流产生对应的剧烈波动,剧烈波动的电流使系统电压损耗快速变化,从而引起受电端电网电压闪变。
引起电压闪变的典型负荷有电弧炉、轧钢机、电力机车等。
SVG能够快速地提供变化的无功电流,以补偿负荷变化引起的电压波动和闪变现象。
目前,抑制电压波动和闪变的最佳方案是采用SVG。
抑制三相不平衡配电网中存在着大量的三相不平衡负载,典型的如电力机车牵引负荷和交流电弧炉等,同时,线路、变压器等输配电设备三相阻抗的不平衡也会导致电压不平衡问题的产生。
SVG能够快速地补偿由于负载不平衡所产生的负序电流,始终保证流入电网的三相电流平衡,大大提高供用电的电能质量。
主要内容无功补偿技术的发展 静止无功补偿器(SVC )技术 静止同步补偿器(STATCOM )技术一、无功补偿技术的发展补偿方式——动态补偿/静态补偿:是从补偿原理上来讲的。
动态补偿是指补偿电流能自动跟随负荷无功电流的变化而连续变化;静态补偿是指补偿容量在相对比较长的一段时期内(譬如1min以上)是固定不变的。
补偿装置——静止补偿器/机械开关式补偿器:是从补偿装置的调节机构来讲的。
静止补偿器(装置)是指补偿装置的调节机构中没有机械运动部件,譬如SVC、SVG、STATCOM等。
一般而言,静止补偿器属于动态补偿。
两个基本概念⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧有源型无源型按原理划分串联型并联型按结构划分基本类型无功补偿装置的基本类型无功补偿技术的进展慢速无功设备快速无功设备第一代机械开关投切断路器延迟MSC/MSR晶闸管相控开关第二代2 -3 周波SVCPWM 调制开关GTO, IGBT, IGCT第三代1-2 周波STATCOM无关有关有关有关补偿性能与系统阻抗较小较高无负荷时较小无负荷时较高功率损耗小大无无谐波发生量平滑调节平滑调节有级投切有级投切补偿方式快较快快慢响应特性+Q LD ~ -Q LD+Q LD ~ -Q LD Q LD ~0Q LD ~0补偿范围Q VSI = Q LDQ C =Q L =Q LDQ C = Q LD Q C = Q LD 额定容量GTO、IGBT 晶闸管晶闸管接触器、断路器开关器件STATCOM TCR型SVC TSC型SVC FC 固定电容器项目无功补偿装置技术性能的比较DSTATCOM 的特点z响应时间快。
受电容器放电时间所限制,自动投切电容器组装置的响应时间需要几秒钟;SVC的响应时间约为20~100ms;STATCOM装置补偿响应时间可达5ms以内,真正实现动态补偿。
抑制电压闪变或跌落。
STATCOM装置可以有效的抑制电压闪变或跌落。
z 连续补偿,功率因数接近于1.0。
静止无功补偿器工作原理以静止无功补偿器工作原理为标题,我们来探讨一下静止无功补偿器的工作原理及其作用。
静止无功补偿器(Static Var Compensator,SVC)是一种用于电力系统中的无功补偿装置。
它主要通过控制电流的相位和幅值来实现对无功功率的补偿,从而提高系统的功率因数,并稳定系统电压。
静止无功补偿器由控制系统和功率电子元件组成。
控制系统通过监测系统电压和电流的波形,并计算出系统的功率因数和无功功率的大小。
根据计算结果,控制系统会发出指令,通过功率电子元件调整电流的相位和幅值,以实现无功功率的补偿。
在电力系统中,无功功率是指由于电感和电容元件引起的交流电路中的无功能量。
无功功率的存在会导致电压波动,降低系统的稳定性和效率。
为了解决这个问题,引入了静止无功补偿器。
静止无功补偿器主要通过控制电流的相位来改变无功功率的流动方向。
当系统需要吸收无功功率时,静止无功补偿器会向系统注入电流,使其与系统电流形成夹角,从而吸收无功功率。
相反,当系统需要释放无功功率时,静止无功补偿器会向系统注入与系统电流相位相反的电流,使其与系统电流形成夹角,从而释放无功功率。
静止无功补偿器还可以通过控制电流的幅值来调整无功功率的大小。
当系统需要补偿更多的无功功率时,静止无功补偿器会增大电流的幅值;反之,当系统需要补偿较少的无功功率时,静止无功补偿器会减小电流的幅值。
通过以上方式,静止无功补偿器能够快速响应系统的无功功率需求,实现对无功功率的精确控制。
这不仅可以提高系统的功率因数,减少无功功率的损耗,还可以稳定系统电压,提高系统的稳定性和可靠性。
总的来说,静止无功补偿器通过控制电流的相位和幅值,实现对无功功率的补偿,提高系统的功率因数,并稳定系统电压。
它在电力系统中发挥着重要的作用,能够有效解决无功功率带来的问题,提高系统的运行效率和稳定性。
配电网静止无功补偿D-STATCOM仿真引言随着电力系统的发展,静止无功补偿技术在配电网中的应用越来越广泛。
静止无功补偿装置可以通过控制电流和电压来改善电力系统中的功率因数和电压质量,提高电力系统的稳定性和可靠性。
其中,D-STATCOM作为一种常见的静止无功补偿装置,其仿真模拟对于系统的优化和性能评估至关重要。
本文将介绍D-STATCOM在配电网中的静止无功补偿原理,并使用基于仿真软件的D-STATCOM模型,进行仿真实验,以验证静止无功补偿的效果。
静止无功补偿原理在配电网中,由于负载的变化以及电力市场的需求,导致系统的功率因数发生变化。
静止无功补偿技术通过控制电力系统中的电流和电压来维持合理的功率因数,确保电力系统的可靠性和稳定性。
D-STATCOM作为静止无功补偿装置的一种,可以通过控制其输出电流和电压的相位差来实现无功功率的补偿。
D-STATCOM通过逆变器将直流电源转换为交流电源,然后通过控制逆变器的电流来实现无功功率的注入或吸收。
D-STATCOM模型为了进行D-STATCOM的仿真实验,我们可以使用基于仿真软件(如MATLAB/Simulink)构建D-STATCOM的模型。
模型结构D-STATCOM模型由多个子系统组成,包括电源系统、逆变器、控制系统等。
其中,电源系统可以根据实际情况进行配置,例如可以使用发电机模型作为电源;逆变器负责将直流电源转换为交流电源;控制系统则根据需要来控制逆变器的输出。
控制策略常见的D-STATCOM控制策略包括电流控制和电压控制。
电流控制策略使用电流环和电压环进行控制,通过调节逆变器的输出电流来实现无功功率的补偿。
电压控制策略则根据系统的电压波形,通过控制电流的相位差来实现无功功率的控制。
参数选择在构建D-STATCOM模型时,需要根据实际情况来选择逆变器的参数,例如容量、电压等。
此外,还需要对控制系统的参数进行选择,以实现预期的无功补偿效果。
仿真实验为了验证D-STATCOM的静止无功补偿效果,我们可以进行仿真实验。
1.引言随着国民经济的发展和现代化技术的进步,电力网负荷急剧增大,对电网感性无功要求也与日惧增。
特别是如可逆式大型轧钢机、炼钢电弧炉等冲击负荷、非线性负荷容量的不断增加,加上普遍应用的电力电子和微电技术,使得电力网发生电压波形畸变,电压波动闪变和三相不平衡等,产生电能质量降低,电网功率因数降低,网络损耗增加等不良影响。
近年发展起来的静止型无功补偿装置(STATICVARCOMPENSATOR,下简称SVC)是一种快速调节无功功率的装置,已成功的应于冶金、采矿和电气化铁路等冲击性负荷的补偿上。
而晶闸管控制电抗器型(称TCR型)SVC用晶闸管控制线性电抗器实现较快、连续的无功功率调节,由于它具有反应时间快(5~20MS),运行可靠,无级补偿、分相调节,能平衡有功,适用范围广和价格便宜等优点。
TCR装置还能实现分相控制,有较好的抑制不对称负荷的能力,因而其应用最广。
尤其是在冶金行业中,使用例子也最多。
2.TCR+FC型SVC系统的组成及控制原理2.1系统组成TCR+FC型SVC系统的组成如图1所示,一般由TCR、滤波器(FC)及控制系统组成。
通过控制与电抗器串联的两个反并联晶闸管的导通角,既可以向系统输送感性无功电流,又可以向系统输送容性无功电流。
该补偿器响应时间快(小于半周波),灵活性大,而且可以连续调节无功输出,缺点是产生谐波,但加上滤波装置则可以克服。
图1TCR+FC型SVC系统的组成2.2可调控电抗器相(TCR)产生连续变化感性无功的基本原理如图2(A)所示,U为交流电压。
TH1、TH2为两个反并联晶闸管,控制这两个晶闸管在一定范围内导通,则可控制电抗器流过的电流I,I和U的基本波形如图2(B)所示。
图2可调控电抗器相(TCR)产生连续变化感性无功的基本原理α为TH1和TH2的触发角,则有I=(COSα-COSωT)I的基波电流有效值为:I=(2π-2α+SIN2α)式中:V为相电压有效值;ωL为电抗器的基波电抗(ω)。
静止无功补偿器(STATCOM)是一种用于电力系统中的电力质量控制设备,它可以实时响应电力系统中的无功功率需求变化,通过调节电流的相位和幅值,提供无功功率的动态补偿。
本文将详细解释与静止无功补偿器工作原理相关的基本原理。
1. 无功功率的产生和补偿在电力系统中,无功功率是由电感和电容元件引起的。
电感元件(如电感线圈、变压器等)会产生感性无功功率,而电容元件(如电容器、电缆等)会产生容性无功功率。
这些无功功率会导致电压的波动和不稳定,影响电力系统的运行和电力质量。
静止无功补偿器可以通过控制电流的相位和幅值,实时地调节电力系统中的无功功率,使其与有功功率保持平衡,从而提高电力系统的稳定性和可靠性。
2. 静止无功补偿器的基本原理静止无功补偿器主要由一个直流电压源、一个逆变器以及一个电流控制系统组成。
2.1 直流电压源静止无功补偿器的直流电压源通常由一个直流电压源和一个电容滤波器组成。
直流电压源通过电容滤波器提供稳定的直流电压,用于逆变器的工作。
2.2 逆变器逆变器是静止无功补偿器的核心部件,它将直流电压转换为交流电压,并通过控制电流的相位和幅值来实现无功功率的补偿。
逆变器通常采用可控硅器件(如GTO、IGBT等)作为开关元件,通过不断开关和导通这些器件,可以产生可控的交流电压。
逆变器的工作原理如下:1.通过控制开关器件的导通和开断,逆变器可以产生可控的脉冲宽度调制(PWM)波形。
2.逆变器通过PWM波形控制开关器件的导通时间,从而控制输出电压的幅值。
3.逆变器还通过改变PWM波形的相位,控制输出电压的相位。
2.3 电流控制系统电流控制系统是静止无功补偿器的核心控制部分,它通过检测电力系统中的电流和电压,实时计算出无功功率的补偿需求,并控制逆变器的工作,实现无功功率的动态补偿。
电流控制系统的工作原理如下:1.电流控制系统通过电流传感器和电压传感器实时检测电力系统中的电流和电压。
2.电流控制系统根据检测到的电流和电压信号,计算出电力系统中的无功功率需求。
电力系统静止无功补偿技术的现状及发展朱 罡摘要摘要:: 详细综述了电力系统静止无功补偿技术的发展现状,分析了各种静止无功补偿技术的原理、优点、缺点以及现今在电力系统中的应用情况,并提出今后静止无功补偿技术的发展趋势。
关键字关键字::静止无功补偿(SVC ASVG ) 发展趋势 电力系统1 引言电力系统的各节点无功功率平衡决定了该节点的电压水平,由于当今电力系统的用户中存在着大量无功功率频繁变化的设备;如轧钢机、电弧炉、电气化铁道等。
同时用户中又有大量的对系统电压稳定性有较高要求的精密设备:如计算机,医用设备等。
因此迫切需要对系统的无功功率进行补偿。
传统的无功补偿设备有并联电容器、调相机和同步发电机等,由于并联电容器阻抗固定不能动态的跟踪负荷无功功率的变化;而调相机和同步发电机等补偿设备又属于旋转设备,其损耗、噪声都很大,而且还不适用于太大或太小的无功补偿。
所以这些设备已经越来越不适应电力系统发展的需要。
20世纪70年代以来,随着研究的进一步加深出现了一种静止无功补偿技术。
这种技术经过20多年的发展,经历了一个不断创新、发展完善的过程。
所谓静止无功补偿是指用不同的静止开关投切电容器或电抗器,使其具有吸收和发出无功电流的能力,用于提高电力系统的功率因数,稳定系统电压,抑制系统振荡等功能。
目前这种静止开关主要分为两种,即断路器和电力电子开关。
由于用断路器作为接触器,其开关速度较慢,约为10~30s,不可能快速跟踪负载无功功率的变化,而且投切电容器时常会引起较为严重的冲击涌流和操作过电压,这样不但易造成接触点烧焊,而且使补偿电容器内部击穿,所受的应力大,维修量大。
随着电力电子技术的发展及其在电力系统中的应用,交流无触点开关SCR、GTR、GTO 等的出现,将其作为投切开关,速度可以提高500倍(约为10μs),对任何系统参数,无功补偿都可以在一个周波内完成,而且可以进行单相调节。
现今所指的静止无功补偿装置一般专指使用晶闸管的无功补偿设备,主要有以下三大类型,一类是具有饱和电抗器的静止无功补偿装置(SR:SaturatedReactor);第二类是晶闸管控制电抗器(TCR:Thyristor ControlReactor)、晶闸管投切电容器(TSC:Thyristor SwitchCapacitor),这两种装置统称为SVC (StaticVar Compensator);第三类是采用自换相变流技术的静止无功补偿装置——高级静止无功发生器(ASVG:Advanced Static VarGenerator)。
静止无功补偿SVC简介主要内容2•概述•工作原理•主要构成•主要性能及特点•可靠性和有效性•重点应用电网存在的问题随着我国电网的快速发展,全国联网的格局已初步形成。
但是电网结构依旧比较薄弱,输配电整体技术水平与世界先进国家差距仍然较大,其中表现在:–大负荷中心动态无功支持不足,电网电压稳定问题严重;–电网损耗较大,电网总体效率和效益有待于进一步提高;–供电系统所提供的常规电能已经不能满足敏感性负荷的特殊要求。
电网存在的问题部分输电网可能过载而另一部分却未被充分利用;最大静态稳定传输功率不足,有待进一步提高;需要增强电压控制能力和加大动态无功储备;长距离电力传输过程中的过电压应该被有效抑制;可能出现的次同步振荡(SSR)必须快速阻尼。
来自一些大功率负荷的谐波电流,应该滤除;,来维持;某些弱系统,需要大量动态无功来维持其电压稳定;HVDC换流站,为保证可靠稳定工作,也需要补偿一定的无功的无功。
常用的无功补偿措施适当调节发电机励磁,以调节机组运行功率因数。
在交流系统适当地点(或直流输电弱系统侧)装设同步调相机。
使用带抽头或有载开关的变压器,通过调节电网某些点的电压来调节潮流。
善并 采用串联补偿电容器来改善受端电压,提高电网极限传输能力并增强系统的稳定性。
用开关投切并联电抗器或电容器以满足系统随时变化的无功功 用开关投切并联电抗器或电容器,以满足系统随时变化的无功功率需求量,达到调相调压的目的。
缺点:响应速度慢、调节性能差、运行维护和管理不便、长年运行损耗过大、自动监控跟踪性能差以及对整个电网的技术效益和经济效益都偏低等等。
性能优良的SVC是动态无功支撑的有力工具SVC装置在二十世纪七十年代即获得应用,是目前应用最为广泛的FACTS装置,国外在实现动态无功补偿应用SVC已经非常广泛。
国内在些重要的场合,SVC已经获得全面的应用。
一些重要的场合SVC已经获得全面的应用。
SVC其实是许多静止型动态无功补偿器的总称,这些补偿器主要包括:TCR-可控硅控制电抗器、TSC-可控硅投切电容器、TSR-可控硅投切电抗器、SR-自饱和电抗器等。