分数乘法、分数除法、分数混合运算
- 格式:ppt
- 大小:4.68 MB
- 文档页数:12
数学六年级上册五单元知识点一、本单元主要内容本单元主要介绍了分数乘法、分数除法、分数四则混合运算和应用题等方面的知识。
二、分数乘法分数乘法的意义:分数乘法是一种数学运算,表示将一个分数与另一个分数相乘。
分数乘法的计算方法:分数乘法是将两个分数的分子相乘,分母相乘,然后化简得到结果。
分数乘法的运算律:分数乘法满足交换律和结合律,即a×b=b×a和(a×b)×c=a×(b×c)。
三、分数除法分数除法的意义:分数除法表示将一个分数除以另一个分数。
分数除法的计算方法:分数除法是将被除数乘以除数的倒数,然后化简得到结果。
分数除法的运算律:分数除法满足交换律和结合律,即a÷b=b÷a和(a÷b)÷c=a÷(b÷c)。
四、分数四则混合运算分数四则混合运算的顺序:按照先乘除后加减的顺序进行计算。
分数四则混合运算的运算律:分数四则混合运算满足交换律、结合律和分配律。
分数四则混合运算的化简:在进行计算时,需要注意分数的化简,将分子和分母同时除以它们的最大公约数。
五、应用题应用题的类型:应用题是实际问题与数学知识的结合,需要运用数学知识解决实际问题。
应用题的解题步骤:首先需要理解题意,明确问题的要求;然后根据问题建立数学模型;接着进行计算求解;最后进行答案的检验和解释。
应用题的常见题型:包括路程问题、时间问题、速度问题、浓度问题等。
六、注意事项在进行分数乘法和除法计算时,要注意分数的化简,将分子和分母同时除以它们的最大公约数。
在进行分数四则混合运算时,要注意运算顺序和化简,避免出现计算错误。
在解决应用题时,要注意理解题意,建立正确的数学模型,并进行答案的检验和解释。
在学习过程中,要注意总结和归纳知识点,形成知识体系,提高学习效果。
分数的乘法与除法综合知识点在数学中,分数是一个重要的概念,而分数的乘法和除法是我们在运算中经常遇到的。
本文将综合介绍分数的乘法和除法的相关知识点,帮助大家更好地理解和运用。
一、分数的乘法1. 分数乘法的定义分数的乘法是指将两个分数进行相乘的运算。
一般形式为:a/b *c/d = ac/bd。
其中,a和c为分子,b和d为分母。
2. 分数乘法的性质分数乘法具有交换律和结合律。
- 交换律:a/b * c/d = c/d * a/b- 结合律:(a/b) * (c/d) * (e/f) = a/b * (c/d * e/f)3. 分数乘法的简化在进行分数乘法时,我们可以先对分子和分母进行简化,以得到最简分数。
例如:2/4 * 3/5 = 6/20 = 3/104. 分数乘法的应用分数的乘法在生活中有很多实际应用,比如:计算食材的配料比例、计算时间的速度比例等等。
二、分数的除法1. 分数除法的定义分数的除法是指将两个分数进行相除的运算。
一般形式为:(a/b) ÷(c/d) = ad/bc。
其中,a和c为分子,b和d为分母。
2. 分数除法的性质分数除法没有交换律和结合律。
3. 分数除法的简化与乘法类似,我们可以对分子和分母进行简化,得到最简分数。
例如:(6/15) ÷ (2/5) = 6/15 * 5/2 = 30/30 = 14. 分数除法的应用分数的除法同样在生活中有很多实际应用,例如:计算比例关系、计算速度等。
三、分数的乘法与除法的综合应用1. 分数的乘除混合运算在实际运算中,分数的乘除可以与其他数学运算混合进行,需要根据运算符合适地运用优先级规则。
例如:3/4 + (2/5 ÷ 1/2) = 3/4 + 4/5 = (15/20) + (16/20) = 31/20 = 111/202. 分数的乘除在解决实际问题中的应用通过将分数的乘除与实际情境相结合,我们可以解决一些实际问题,例如:计算商品的折扣、计算食材的总量等。
一、分数乘法(一)、分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面3、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数×几几。
4、写数量关系式技巧:(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”(2)分率前是“的”: 单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量三、倒数1、倒数的意义: 乘积是1的两个数互为..倒数。
分数加减乘除的计算一、分数加法1.同分母分数加法:分子相加,分母不变。
2.异分母分数加法:先通分,再按照同分母分数加法计算。
二、分数减法1.同分母分数减法:分子相减,分母不变。
2.异分母分数减法:先通分,再按照同分母分数减法计算。
三、分数乘法1.分数乘法的法则:分子相乘的积作为新分数的分子,分母相乘的积作为新分数的分母。
2.乘法中约分的处理:先计算乘积,再进行约分。
四、分数除法1.分数除以分数:等于乘以这个分数的倒数。
2.除法中约分的处理:先计算乘积,再进行约分。
五、混合运算1.同级运算:从左到右依次进行计算。
2.两级运算:先算乘除,再算加减。
3.带括号的运算:先算括号里面的,再算括号外面的。
六、特殊分数运算1.零分数:分子为0的分数,值为0。
2.无穷分数:分母为0的分数,值为无穷大。
3.纯分数:分子小于分母的分数。
4.带分数:分子大于或等于分母的分数。
七、运算律的应用1.加法交换律:两个数相加,交换加数的位置,和不变。
2.加法结合律:三个数相加,可以先把前两个数相加,再和第三个数相加,也可以先把后两个数相加,再和第一个数相加,和不变。
3.乘法交换律:两个数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,也可以先把后两个数相乘,再和第一个数相乘,积不变。
5.乘法分配律:一个数乘两个数的和,等于这个数分别乘这两个加数,然后把乘得的积相加。
八、实际应用1.面积计算:求三角形、矩形、圆形等图形的面积。
2.浓度计算:求溶液的浓度。
3.增长率计算:求人口的增长率、投资收益率等。
4.百分比计算:求百分比,如折扣、税率等。
以上是关于分数加减乘除计算的知识点介绍,希望对您有所帮助。
习题及方法:一、同分母分数加法习题1:计算下列同分母分数的和:1/4 + 3/4分子相加,分母不变,直接相加得到结果:1/4 + 3/4 = 4/4 = 1习题2:计算下列同分母分数的和:2/5 + 4/5分子相加,分母不变,直接相加得到结果:2/5 + 4/5 = 6/5二、异分母分数加法习题3:计算下列异分母分数的和:2/3 + 1/4先通分,找到两个分母的最小公倍数,为12。
分数乘除法计算方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII分数乘除法计算方法总结一、分数乘法:1.分数乘整数意义:分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
计算方法:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
2.分数(整数)乘分数,即一个数乘以分数意义:求一个数的几分之几是多少。
计算方法:分数乘分数,分子相乘的积作新分子,分母相乘的积作新分母。
能约分的要先约分,再计算,结果要试最简分数。
约分过程中,一定是分子和分母约分,整数和分母约分。
是带分数的要先化成假分数再按照计算方法进行计算。
3.乘积相等的几组乘法算式中,一个因数越大,另一个因数就越小4.倒数:乘积是“1”的两个数互为倒数。
“1”的倒数是“1”,“0”没有倒数。
5.求一个数的倒数的方法:用“1”除以这个数。
真分数(假分数)的倒数,直接交换分子和分母的位置;求带分数的倒数,要先把带分数化成假分数,再交换分子和分母的位置;求小数的倒数,要先把小数化成分数,再交换分子和分母的位置;求整数的倒数,把整数写作分母,分子为“1”。
二、分数除法意义1:与整数除法的意义相同,都是已知两个因数的积与其中的一个因数,求另一个因数的运算。
[理解]:把一个数平均分成几份,每份是这个数的几份之一。
求每份数是多少(每份数=一个数÷几份或每份数=一个数×几份之一)。
1、分数除以整数:A,可以用分子除以整数(0除外)的商作分子,分母不变。
B,分数除以整数(0除外),等于分数乘这个整数的倒数。
2、分数(整数)除以分数,即一个数除以分数A,可以用分子除以分子的商作新分子,分母除以分母的商作新分母。
B,一个数除以分数(0除外),等于这个数乘以分数的倒数。
分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
三、分数乘、除法混合运算顺序整数、小数、分数的混合运算顺序都是一样的。
分数的乘法和除法混合运算一、分数乘法运算1.分数乘法的定义:两个分数相乘,分子与分子相乘,分母与分母相乘。
2.分数乘法的计算法则:(1)分子相乘的积作为新分数的分子;(2)分母相乘的积作为新分数的分母;(3)如果乘积是整数,要在分子和分母中约分。
3.特殊情况的分数乘法:(1)乘数为0,结果为0;(2)乘数为1,结果为原数;(3)乘数为-1,结果为分数的相反数。
二、分数除法运算1.分数除法的定义:除以一个分数,等于乘以它的倒数。
2.分数除法的计算法则:(1)将除数取倒数;(2)然后与被除数相乘;(3)最后进行分数乘法的计算。
3.特殊情况的分数除法:(1)除数为0,没有意义,结果为未定义;(2)被除数为0,结果为0;(3)除数为1,结果为被除数;(4)除数为-1,结果为被除数的相反数。
三、分数乘法和除法的混合运算1.混合运算的顺序:按照“从左到右”的顺序进行计算。
2.混合运算的计算法则:(1)先进行乘法运算;(2)再进行除法运算;(3)如果运算顺序内有括号,先计算括号内的运算。
3.特殊情况的混合运算:(1)乘法和除法混合运算中,如果出现0,需要注意结果的可能性;(2)如果运算顺序内有括号,先计算括号内的运算,再进行乘除运算。
四、实际应用举例1.计算分数的乘法和除法混合运算时,可以先将运算顺序调整为“从左到右”,再进行计算。
2.在解决实际问题时,需要根据题目的要求,灵活运用分数的乘法和除法运算。
3.可以通过举例来说明分数的乘法和除法混合运算的计算过程,帮助理解知识点。
总结:分数的乘法和除法混合运算需要掌握计算法则和运算顺序,注意特殊情况的处理,能够灵活运用到实际问题中。
习题及方法:1.习题:计算以下分数的乘法:1/4 × 3/5答案:1/4 × 3/5 = 3/20解题思路:直接按照分数乘法的计算法则,分子相乘,分母相乘,得到结果3/20。
2.习题:计算以下分数的除法:2/3 ÷ 4/5答案:2/3 ÷ 4/5 = 5/6解题思路:分数除以一个数,等于乘以它的倒数,所以2/3 ÷ 4/5 = 2/3 × 5/4 = 5/6。
第1篇一、分数加法口诀分数加法,看似复杂,其实简单。
先通分,再相加,结果是关键。
以下口诀助你轻松掌握:同分母,直接加,分母不变,分子相加;异分母,通分法,分母求最小公倍数,分子相乘;最后,约分求最简,确保结果最完美。
二、分数减法口诀分数减法,方法类似,注意细节,操作简便。
以下口诀助你一臂之力:同分母,直接减,分母不变,分子相减;异分母,通分法,分母求最小公倍数,分子相乘;最后,约分求最简,确保结果最完美。
三、分数乘法口诀分数乘法,简单易行。
相乘分子,相乘分母,结果约分,最简为止。
以下口诀助你轻松掌握:分子相乘,分母相乘,结果是分数,约分求最简;乘积分子,乘积分母,结果是整数,无需约分。
四、分数除法口诀分数除法,关键是倒数。
相乘倒数,结果是分数,约分求最简。
以下口诀助你轻松应对:除以一个数,等于乘以它的倒数;相乘分子,相乘分母,结果是分数,约分求最简;乘积分子,乘积分母,结果是整数,无需约分。
五、分数四则混合运算口诀分数四则混合运算,先乘除,后加减,注意括号。
以下口诀助你一臂之力:先乘除,后加减,注意括号,顺序别乱;加减乘除,混合运算,先算括号,再算乘除;约分求最简,确保结果,正确无误。
六、特殊情况口诀特殊情况,注意处理,以下口诀助你应对:分母为零,无意义,运算不能继续;分子为零,结果是零,分母为零,无意义;分母相等,结果相等,分子相等,结果相等;分子分母同时乘以或除以相同的数(不为零),分数大小不变。
七、总结分数四则混合运算,看似复杂,实则简单。
只要掌握好以上口诀,运用得当,分数运算轻松自如。
在学习过程中,不断练习,提高计算速度和准确性,为以后的学习打下坚实基础。
祝你学习进步,早日成为数学小达人!第2篇在数学学习中,分数的四则混合运算是一个非常重要的内容。
为了帮助同学们更好地掌握分数的加减乘除运算,以下是一份详细的分数四则混合运算法则口诀,希望能对大家的学习有所帮助。
一、分数加减法口诀1. 分子分母同加减,加减符号要跟上。
分数乘法教学内容包括分数乘法的计算方法,分数乘法解决问题,倒数的认识共三个小节。
1、分数乘法的计算包括分数乘整数,分数乘分数,分数乘法的简便运算以及分数乘法与加减法的混合运算等等。
2、解决问题包括求一个数的几分之几是多少,一步和两步应用题。
3、倒数的认识包括倒数的意义和求一个数的倒数的方法。
知识框架重难点、关键1、重点(1)分数乘法的计算方法。
(2)求一个数的几分之几是多少的问题。
2、难点:(1)分数乘分数的计算方法。
3、关键理解“一个数乘分数的意义,就是求一个数的几分之几是多少”的道理。
(一)分数乘整数1、计算下列各题15+ 25310+110+710314+314+314过程要求:(1)写出计算过程。
(2)说一说分数加法的计算方法。
2、想一想,能不能把314+314+314改写成乘法算式呢?例1 人跑一步的距离相当于袋鼠跳一下的211。
人跑3步的距离是袋鼠跳一下的几分之几?解:根据题意列出解答算式:211 + 211 + 211 = 2+2+211 = 611 211 ×3= 611探索分数乘整数的计算方法:211 +211 +211 =2+2+211 = 2×36 = 611 整理:分数乘整数,整数与分子相乘的乘积作分子,分母不变。
38 ×6=9(1) 38 ×6=3×68 = 188 94 比较计算过程,看一看哪一种更为简单。
4 3 38 ×6 = 3 × 68 = 94 归纳:能约分的要先约分,再计算。
4 练习: 56 × 7= 413 ×8= 38 ×3 = 215 ×4= 310 ×5 = 49 ×3= 27×23 = 16×532 = (二) 分数乘分数 课本例题讲解:例题3 问题一:14小时粉刷这面墙的几分之几?问题二:34 小时粉刷多少呢?分数乘分数的计算方法:分数乘分数,应该分子乘分子,分母乘分母。
西师版小学数学六年级(上)教学知识点一、分数乘、除法(第1、3单元):(一)分数乘法1、分数乘法的意义:(1)与整数乘法相同,是求几个相同加数的和的简便计算【如:×5表示5个的和是多少或的5倍是多少】;(2)求一个数的几分之几是多少【8× 表示8的是多少】。
强调:根据意义写算式可以交换因数的位置(可列两个算式),但根据算式说意义不能交换因数的位置来说意义,只能像上面那样说。
2、分数乘法的计算:用分子相乘的积作分子,分母相乘的积作分母。
注意:能约分的要先约分再计算,这样更简便;遇到整数,把整数看作分母是1的分数。
3、两个因数的积与其中一个因数比较大小,关键看另一个因数:另一个因数大于1,积就更大;另一个因数小于1,积就更小。
4、打折:如一折表示现价是原价的(或),3.5折表示现价是原价的。
(二)分数除法:1、倒数的认识:(1)倒数的意义:乘积是1的两个数互为倒数。
【强调:倒数表示两个数之间的关系,它们具有相互依存的特点,不能单独说一个数是倒数。
】(2)求一个数的倒数的方法:分子、分母调换位置。
【若遇到小数、带分数时,要先化成假分数,再求它的倒数;遇到整数就把整数看作分母是1的分数。
】(3)1的倒数是1,0没有倒数。
2、分数除法的意义:与整数除法相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
3、分数除法的计算:甲数÷乙数=甲数×乙数的倒数(乙数≠0)【①被除数不变②除号变为乘号③除数变为它的倒数】4、两个数的商与被除数比较大小,关键看除数:除数大于1,商就更小;除数小于1,商就更大。
【与乘法恰好相反】二、分数混合运算及解决问题(第6单元):(一)分数混合运算的运算顺序与整数混合运算的运算顺序相同(加减法为第一级运算,乘除法为第二级运算)1、只有加减法或只有乘除法,要从左往右依次计算;2、既有加减法又有乘除法,先算乘除法后算加减法;3、如果有括号,先算小括号里的,再算中括号里的,最后算括号外的。
《分数混合运算(一)》分数混合运算•分数混合运算的概述•分数乘法•分数除法•分数混合运算的应用目•分数混合运算的练习题•总结与回顾录0102分数混合运算包括加法、减法、乘法和除法等多种运算形式。
分数混合运算是将整数、小数和分数进行混合计算的一种数学运算。
同分母的分数相加减,分母不变,分子相加减;异分母的分数相加减,先通分,再按照同分母的分数相加减的法则进行计算。
分数的加法和减法规则分子乘分子,分母乘分母;如果有带分数,要先进行带分数的乘法运算,然后再进行分数的乘法运算。
分数的乘法规则除以一个数等于乘以这个数的倒数;如果有带分数,要先进行带分数的除法运算,然后再进行分数的除法运算。
分数的除法规则如果遇到带分数,先进行带分数的运算,再进行分数的运算。
如果遇到多个分数相加减,先通分再计算;如果分母相同,直接进行分子相加减。
先进行乘方运算,再依次进行乘除运算,最后进行加减运算;如果有括号,先算括号里面的,再进行括号外面的运算。
分数乘法可以表示为 a/b × c/d = (a× c) / (b × d)。
分子与分子相乘,分母与分母相乘。
当两个分数的分子和分母都是整数时,可以直接进行乘法运算。
当两个分数的分子或分母不是整数时,需要先进行通分,再进行乘法运算。
例子1例子2例子34/5 × 6/7 = (4 × 6) / (5 × 7) = 24/35。
2/3 × 4/6 = (2 × 4) / (3 × 6) = 8/18 = 4/9。
0302 011/2 × 3/4 = (1 × 3) / (2× 4) = 3/8。
分数除法是数学中的一种基本运算,它表示一个数被另一个数所除。
分数除法的一般形式是:分数A除以分数B,等于分数A乘以分数B的倒数。
分数除法的规则是:除以一个数等于乘以这个数的倒数。
苏教版数学六年级上册第3单元《分数除法分数连除、乘除混合运算》说课稿一. 教材分析苏教版数学六年级上册第3单元《分数除法分数连除、乘除混合运算》这一内容,是在学生已经掌握了分数乘法的基础上进行学习的。
本节课的主要内容是分数除法的计算法则,以及分数连除和乘除混合运算的计算方法。
教材通过例题和练习,使学生能够理解和掌握分数除法的计算法则,提高学生的运算能力。
二. 学情分析六年级的学生已经掌握了分数乘法的基本运算方法,对分数的概念和运算规律有一定的了解。
但是,学生在进行分数除法和乘除混合运算时,容易混淆运算规则,对运算顺序的理解不够深入。
因此,在教学过程中,我需要引导学生理清运算顺序,通过实例让学生感受运算规律,提高学生的运算能力。
三. 说教学目标1.理解分数除法的计算法则,能够正确进行分数除法的计算。
2.掌握分数连除和乘除混合运算的计算方法,能够灵活运用运算规律进行计算。
3.提高学生的运算能力,培养学生的逻辑思维能力。
四. 说教学重难点1.教学重点:分数除法的计算法则,分数连除和乘除混合运算的计算方法。
2.教学难点:分数除法运算规律的理解,乘除混合运算顺序的把握。
五. 说教学方法与手段1.采用问题引导法,通过设置问题,引导学生思考和探索分数除法的运算规律。
2.采用实例分析法,通过具体的例题,让学生感受和理解分数除法和乘除混合运算的计算方法。
3.采用练习法,通过课堂练习和课后作业,巩固学生对分数除法和乘除混合运算的掌握。
六. 说教学过程1.导入:通过回顾分数乘法的内容,引导学生思考分数除法的运算规律。
2.新课讲解:讲解分数除法的计算法则,通过实例分析,让学生理解分数除法的运算规律。
3.课堂练习:设计相关的练习题,让学生运用所学的运算规律进行计算,巩固知识。
4.乘除混合运算:讲解分数连除和乘除混合运算的计算方法,通过实例分析,让学生理解运算规律。
5.课堂总结:总结本节课的主要内容,强调运算顺序和运算规律。
分数的四则混合运算知识点分数是数学中常见的数形式,它由一个整数部分和一个分数部分组成。
在数学中,我们常常需要进行分数的四则混合运算,即加减乘除四种基本运算的组合。
本文将介绍分数的四则混合运算的知识点和相关规则。
一、分数的加法运算分数加法是指两个分数的相加操作。
当两个分数的分母相同时,只需将它们的分子相加即可,分母保持不变。
例如:1/4 + 1/4 = 2/4 = 1/2当两个分数的分母不相同时,需要找到它们的最小公倍数,将两个分数的分子与最小公倍数的乘积作为新的分子,然后将最小公倍数作为新的分母。
最后,将新的分数进行简化。
例如:1/4 + 1/3 = (1×3+1×4)/ (4×3) = 7/12二、分数的减法运算分数减法是指两个分数的相减操作。
与分数加法类似,当两个分数的分母相同时,只需将它们的分子相减即可,分母保持不变。
例如:1/2 - 1/4 = 2/4 - 1/4 = 1/4当两个分数的分母不相同时,需要找到它们的最小公倍数,将两个分数的分子与最小公倍数的乘积作为新的分子,然后将最小公倍数作为新的分母。
最后,将新的分数进行简化。
例如:1/2 - 1/3 = (1×3-1×2)/ (2×3) = 1/6三、分数的乘法运算分数乘法是指两个分数的相乘操作,即将两个分数的分子相乘作为新的分子,两个分数的分母相乘作为新的分母。
最后,将新的分数进行简化。
例如:1/2 × 3/4 = (1×3)/ (2×4) = 3/8四、分数的除法运算分数除法是指一个分数除以另一个分数的操作。
为了将除法运算转化为乘法运算,我们需要将除数的倒数作为新的分数,然后再进行分数乘法运算。
例如:1/2 ÷ 3/4 = 1/2 × 4/3 = (1×4)/ (2×3) = 4/6五、混合运算的顺序在进行分数的四则混合运算时,我们需要按照一定的顺序进行计算。
分数乘除法的知识点归纳和总结练习一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少?2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少?(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
练一、分数与整数相乘。
512 ×4= 26×613 = 1115 ×5= 24×1348 = 221 ×7= 310×20= 425 ×15= 718 ×12= 16×920 = 练二、分数和分数相乘。
(注意:能约分的先约分,再计算。
) 25 ×34 = 67 ×78 = 59 ×815 = 911 ×715 = 1225 ×1516 = 45 ×910 = 1319 ×3839 = 910 ×5063 = 1234 ×1736 = (三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
练三、比较大小56 ×4○ 56 9×23 ○23 ×9 38 × 12 ○ 38(四)分数混合运算的运算顺序和整数的运算顺序相同。
练四、分数乘、加、减混合。
716 ×(5063 -27 ) 45 ×1516 ×14 56 ×34 +1 23 +512 ×415914 -59 ×2735 1 -1819 ×3845 615 ×(5-513 ) 1991 ×7+813(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。