人教版数学-高中数学竞赛标准教材10第十章 直线与圆的方程讲义.
- 格式:doc
- 大小:223.50 KB
- 文档页数:7
高二数学复习直线和圆的方程知识精讲 人教版一. 本周教学内容: 复习直线和圆的方程二. 重点、难点:(二)重点知识反刍梳理(直线方程) 1. 直线的倾斜角与斜率的概念 (1)直线的倾斜角与斜率的关系:①任意一条直线都有倾斜角,但不一定有斜率。
②斜率存在的直线,其斜率与倾斜角之间的关系是。
k k αα=tan(2)直线方程的形式:确定直线方程需要有两个互相独立的条件。
确定直线方程的形式很多,但必须注意各种形式的直线方程的适用X 围。
(3)平面上直线与二元一次方程是一一对应的。
2. 两条直线的位置关系:()两条直线的夹角。
当两直线的斜率,都存在且·时,1k k k k 12121≠-tan θ=-+k k k k 21121,当两直线的斜率有一不存在时,可结合图形判断,另外还应注意到:“到角”公式与“夹角”公式的区别。
(2)判断两直线是否平行或垂直时,若两直线的斜率都存在,可用斜率的关系来判断;若两直线的斜率有一不存在,则必须用一般式的平行垂直条件来判断。
①斜率存在且不重合的两条直线:,:,有以下l y k x b b y k x b 111222=+=+ 结论:a l l k kb b .121212∥且⇔=≠ b l l k k 12121⊥⇔=-·②对于直线:,:,当,,,l A x B y C l A x B y C A A B 1111222212100++=++= B 2都不为零时,有以下结论:a l l A A B B CC .12121212∥⇔=≠b l l A A B B .1212120⊥⇔+=c l l A A BB .121212与相交⇔≠d l l A A B B CC .12121212与重合⇔==(3)点到直线的距离公式①已知一点,及一条直线:,则点到直线的距P x y l Ax By C P l ()000++=离;d Ax By CA B=+++0022②两平行直线:,:之间的距离:l Ax By C l Ax By C 112200++=++=d C C A B=-+12223. 简单的线性规划(1)在平面直角坐标系中,二元一次不等式Ax +By +C >0表示在直线Ax +By +C =0的某一侧的平面区域。
直线和圆的方程一、关于直线:1.有向线段:以A 为起点,B 为终点的有向线段为AB ,数量有AB =-BA ;且AB =x B -x A ,其中x A ,x B 分别表示点A ,B 在数轴上相对应的数.在直角坐标平面上的有两点间的距离公式|AB |=221221)()(y y x x -+-;2.定比分点.P (x ,y )分线段AB (其中A (x 1 ,y 1),B (x 2 ,y 2))的比为λ ,λ =PB AP ,那么有λ =x x x x --21,写出x =λλ++121x x 同理有y =λλ++121y y 其中λ ≠-1.其特例为P 为线段AB 的中点时,λ =1,点P 的坐标为(221x x +,221y y +),推广之就有 △ABC 三顶点A (x 1 ,y 1),B (x 2 ,y 2),C (x 3 ,y 3)的重心坐标为G (3321x x x ++,3321y y y ++).3.直线的倾斜角α ,其中0≤α <π 与斜率的概念及截距.当α =2π时,斜率k =tan α ,k =1212x x y y --;当α =2π时斜率不存在;所谓截距就是直线与两坐标轴交点的纵横坐标.4.直线方程的五种形式: 点斜式:y -y 0 =k (x -x 0); 斜截式:y =kx +b ; 两点式:121y y y y --=121x x x x --;截距式:a x +by=1; 一般式:Ax +By +C =0.直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线.5.两条直线的位置关系:(1)若存在斜率的两直线方程为l 1 :y =k 1x +b 1 ,l 2 :y =k 2x +b 2 ,那么 ①l 1 ∥l 2 ⇔k 1 =k 2 且b 1 ≠b 2 ; ②l 1 与l 2 重合⇔k 1 =k 2 且b 1 =b 2 ;③l 1 与l 2 相交⇔k 1 ≠k 2 ,其特例为l 1 ⊥l 2 ⇔k 1·k 2 =-1.(2)若两直线方程分别为l 1 :A 1x +B 1y +C 1 =0与l 2 ;A 2x +B 2y +C 2 =0(A 22 +B 22 ≠0),那么①l 1 ∥l 2 ⇔⎩⎨⎧≠=12211221C A C A B A B A 或B 1C 2 ≠C 1B 2 ;②l 1 与l 2 重合⇔⎩⎨⎧==12211221C A C A B A B A 且B 1C 2 =B 2C 1 ;③l 1 与l 2 相交⇔A 1B 2 ≠A 2B 1 ,其特例为l 1 ⊥l 2 ⇔A 1A 2 +B 1B 2 =0; (3)当k 1·k 2 ≠-1时,①l 1 与l 2 的夹角θ(规定为锐角),则tan θ =|21121k k k k +-|;②l 1 到l 2 的角(规定为以l 1 为始边绕l 1 与l 2 的交点逆时针旋转与l 2 重合的最小正角,此时0°≤θ <180°,则tan θ =21121k k k k +-.其特例为k 1·k 2 =-1此时θ =90°.)6.点到直线的距离:(1)点P (x 0 ,y 0)到直线l ;Ax +By +C =0的距离d =2200||BA C By Ax +++,特例是当l :x =a 时d =|x 0 -a |;当l :y =b 时,d =|y 0 -b |;(2)设l 1 :Ax +By +C 1 =0,l 2 :Ax +By +C 2 =0,则这两平行线间的距离是 d =2221||BA C C +-.7.利用平行、垂直、相交确定直线方程时常用到三个直线系:①与Ax +By +C =0平行的直线:Ax +By +λ =0(λ 为待定系数); ②与Ax +By +C =0垂直的直线:Bx -Ay +λ =0;③过A 1x +B 1y +C 1 =0与A 2x +B 2y +C 2 =0的交点的直线方程为:A 1x +B 1y +C 1 +λ(A 2x +B 2y +C 2)=0(λ ∈R 且只包含A 1x +B 1y +C 1 =0).8.关于直线对称问题:(1)关于l :Ax +By +C =0对称问题:不论点,直线与曲线关于l 对称问题总可以转化为点关于l 对称问题,因为对称是由平分与垂直两部分组成,如求P (x 0 ,y 0)关于l :Ax +By +C =0对称点Q (x 1 ,y 1).有1010x x y y --=-B A (1)与A ·210x x ++B ·210y y ++C =0.(2)解出x 1 与y 1 ;若求C 1 :曲线f (x ,y )=0(包括直线)关于l :Ax +By +C 1 =0对称的曲线C 2 ,由上面的(1)、(2)中求出x 0 =g 1(x 1 ,y 1)与y 0 =g 2(x 1 ,y 1),然后代入C 1 :f [g 1(x 1 ,y 1),g 2(x 2 ,y 2)]=0,就得到关于l 对称的曲线C 2 方程:f [g 1(x ,y ),g 2(x ,y )]=0.(3)若l :Ax +By +C =0中的x ,y 项系数|A |=1,|B |=1.就可以用直接代入解之.尤其是选择填空题.如曲线C 1 :y 2 =4 x -2关于l :x -y -4=0对称的曲线l 2 的方程为:(x -4) 2 =4(y +4)-2.即y 用x -4代,x 用y +4代,这样就比较简单了.(4)解有关入射光线与反射光线问题就可以用对称问题来解决..二、关于曲线轨迹方程:直角坐标平面上的动点满足某条件的轨迹方程求法主要有三种常用方法:1.直接法:动点P (x ,y )满足定义,某等量关系可直接得出f (x ,y )=0即为所求轨迹方程.如,到定点A (2,3)的距离比到直线x -7=0的距离多1.很明显的等量关系已给出了即设动点P (x ,y ),有22)3()2(-+-y x -1=|x -7|.2.代入法:点Q 在曲线C 1 :f (x ,y )=0上移动,动点P 与Q 满足某种关系,设Q (x 1 ,y 1),P (x ,y )由所满足的关系式得x 1 =g 1(x ,y )与y 1 =g 2(x ,y ),代入C 1 :f (x 1 ,y 1)=0中即可.如,已知定点A (3,0),P 为单位圆x 2 +y 2 =1的动点. ∠AOP 的平分线交P A 于M ,求点M 的轨迹方程.就是M (x ,y )与P (x 0 ,y 0)满足三角形内角平分线比例性质得出x 0 =34x -1,y 0 =34y 代入单位圆方程2)134(-x +2)34(y =1即2)43(-x +y 2 =169. (3)参数法:动点P (x ,y )的纵、横坐标分别是某变量的函数如⎩⎨⎧==)()(t g y t f x 消参数t 即可得出F (x ,y )=0为所求的动点轨迹方程.如求两动直线kx -y +2(k +1)=0与x +ky +2(k -1)=0的交点P 的轨迹方程.联立方程组求出x =f 1(k )、y =f 2(k )消k 得F (x ,y )=0,但实际上主要目的是消参数k ,因此不求出x 、y 能消k 更简捷.即得(x +2)k =y -2与(y +2)k =2-x .两式相除消k 即可.三、关于圆:1.圆的方程:(1)圆心半径式:(x -a ) 2 +(y -b ) 2 =r 2(r >0).特例:x 2 +y 2 =r 2 . (2)圆的一般式:x 2 +y 2 +Dx +Ey +F =0.圆心(-2D ,-2E ),半径r =F E D 422-+(D 2 +E 2 -4 F >0). 两种形式的圆方程中都有三个待定参数,因此求圆方程必须三个条件才可. 2.点与圆位置关系:P (x 0 ,y 0)和圆C :(x -a ) 2 +(y -b ) 2 =r 2 . ①点P 在圆C 外有(x 0 -a ) 2 +(y 0 -b ) 2 >r 2 , ②点P 在圆上:(x 0 -a ) 2 +(y 0 -b ) 2 =r 2 , ③点P 在圆内:(x 0 -a ) 2 +(y 0 -b ) 2 <r 2 .3.直线与圆的位置关系:l :f 1(x ,y )=0.圆C :f 2(x ,y )=0消y 得F (x 2)=0.(1)直线与圆相交:F (x ,y )=0中∆ >0;或圆心到直线距离d <r .直线与圆相交的相关问题:①弦长|AB |=21k +·|x 1 -x 2|=21k +·212214)(x x x x -+,或|AB |=222d r -;②弦中点坐标(221x x +,221y y +);③弦中点轨迹方程. (2)直线与圆相切:F (x )=0中∆ =0,或d =r .其相关问题是切线方程.如P (x 0 ,y 0)是圆x 2 +y 2 =r 2 上的点,过P 的切线方程为x 0x +y 0y =r 2 ,其二是圆外点P (x 0 ,y 0)向圆到两条切线的切线长为22020)()(r b y a x --+-或22020r y x -+;其三是P (x 0 ,y 0)为圆x 2 +y 2 =r 2 外一点引两条切线,有两个切点A ,B ,过A ,B 的直线方程为x 0x +y 0y =r 2 .(3)直线与圆相离:F (x )=0中∆ <0;或d <r ;主要是圆上的点到直线距离d 的最大值与最小值,设Q 为圆C :(x -a ) 2 +(y -b ) 2 =r 2 上任一点,|PQ |max =|PC |+r ;|PQ |min =|PQ |-r ,是利用图形的几何意义而不是列出距离的解析式求最值.4.圆与圆的位置关系:依平面几何的圆心距|O 1O 2|与两半径r 1 ,r 2 的和差关系判定. (1)设⊙O 1 圆心O 1 ,半径r 1 ,⊙O 2 圆心O 2 ,半径r 2 则:①当r 1 +r 2 =|O 1O 2|时⊙O 1 与⊙O 2 外切;②当|r 1 -r 2|=|O 1O 2|时,两圆相切;③当|r 1 -r 2|<|O 1O 2|<r 1 +r 2 时两圆相交;④当|r 1 -r 2|>|O 1O 2|时两圆内含;⑤当r 1 +r 2 <|O 1O 2|时两圆外离.(2)设⊙O 1 :x 2 +y 2 +D 1x +E 1y +F 1 =0,⊙O 2 :x 2 +y 2 +D 2x +E 2y +F 2 =0.①两圆相交A 、B 两点,其公共弦所在直线方程为(D 1 -D 2)x +(E 1 -E 2)y +F 1 -F 2 =0.②经过两圆的交点的圆系方程为x 2 +y 2 +D 1x +E 1y +F 1 +λ(x 2 +y 2 +D 2x +E 2y +F 2)=0(不包括⊙O 2 方程).直线和圆的综合练习一、选择题(1)已知A (3,4),B (6,10),点C 在直线上,且AC ∶AB =1∶3,则C 点坐标为( )A .⎪⎭⎫⎝⎛211,415 B .(4,6) C .⎪⎭⎫⎝⎛211,415和⎪⎭⎫⎝⎛1,23 D .(4,6)或(2,2) (2)过点P (1,2)引一条直线,使它与A (2,3)和B (4,-5)的距离相等,那么这条直线方程为 ( ) A .4x +y -6=0 B .x +4y -6=0 C . x +2y -7=0或4x +y -6=0 D .2x +3y -7=0或x +4y -6=0(3)两条直线l 1,l 2的斜率是方程6x 2+x -1=0的两个根,则l 1,l 2的夹角为( )A .15°B .30°C .45°D .60°(4)直线l 与两直线y =1和x -y -7=0分别交于A ,B 两点,若线段AB 的中点为M(1,-1),则直线l 的斜率为 ( )A .-32 B .32 C .-23 D .23(5)若三条直线l 1:x -y =0;l 2:x +y -2=0; l 3:5x -ky -15=0围成一个三角形,则k 的取值范围是 ( ) A .k ∈R 且k ±≠5且k ≠1B .k ∈R 且k ±≠5且k ≠-10C .k ∈R 且k ±≠1且k ≠0D . k ∈R 且k ±≠ 5(6)已知两定点A (-3,5),B (2,15),动点P 在直线3x -4y +4=0上,当PA +PB取最小值时,这个最小值为 ( )A .513B .362C .155D .5+102(7)方程x 2+(m -1)y 2-3my +2m =0表示两条相交直线,则m 的值为 ( ) A .0 B .-8 C .0或-8 D .m 值有无穷多个 (8)在直角坐标系中,△ABC 的三个顶点是:A (0,3),B (3,3),C (2,0),若直线x =a 将△ABC 分割成面积相等的两部分,则实数a 的值是 ( ) A .3 B .1+22 C .1+23 D .2-22 (9)如果实数x ,y 满足等式(x -2)2+y 2=3,则xy的最大值是 ( ) A .21 B .33 C .23 D .3 (10)点P 在⊙C 1:x 2+y 2-8x -4y +11=0上运动,点Q 在⊙C 2:x 2+y 2+4x +2y +1=0上运动,则PQ 的最小值是 ( )A .35-5B .35-3C .35-2D .35二、填空题(11)已知A (-2,5),B (6,1),则线段AB 的垂直平分线方程为 . (12)过直线l 1:3x -y -5=0,l 2:x +2y -4=0的交点,且与直线x +5y =1平行的直线方程是 .(13)直线l 过点A (-4,2),倾斜角是直线4x +3y -7=0倾斜角的一半,则直线l的方程是 .(14)已知△ABC ,A (0,5),B (2,1),△ABC 的面积为5,则点C 的轨迹方程是 .(15)点M 在圆x 2+y 2=1上运动,N (3,0),若P 分MN 为3∶1,则P 点的轨迹方程是 .(16)过A (4,-1)且与⊙C :x 2+y 2+2x -6y +5=0切于B (1,2)的圆的方程是.三、解答题(17)一条直线过P (1,1),与直线l 1:x +2y =0,l 2:x -3y -3=0分别交于A ,B 两点,若P 分线段AB 为2∶1,求直线l 的方程.(18) △ABC 中,A (0,1),AB 边上的高线方程为x +2y -4=0,AC 边上的中线方程为2x +y -3=0,求AB ,BC ,AC 边所在的直线方程.(19)过P (2,1)作直线l 交x ,y 轴正向于A ,B 两点,当l 在x ,y 轴上截距之和最小时,求直线l 的方程.(20)一束光线l 自A (-3,3)发出,射到x 轴上,被x 轴反射到⊙C :x 2+y 2-4x -4y +7=0上.(Ⅰ) 求反射线通过圆心C 时,光线l 的方程; (Ⅱ) 求在x 轴上,反射点M 的范围.(21)已知⊙C :x 2+y 2-2x -2y +1=0,直线l 与⊙C 相切且分别交x 轴、y 轴正向于A 、B 两点,O 为坐标原点,且OA =a ,OB =b (a >2,b >2). (Ⅰ) 求线段AB 中点的轨迹方程; (Ⅱ) 求△ABC 面积的极小值.直线和圆综合练习一、(1)D (2)C (3)C (4)A (5)B (6)A (7)C (8)A (9)C (10)A二、(11)012=--y x (12)075=-+y x (13)0102=+-y x(14)0102=-+y x 或02=+y x(15)1614922=+⎪⎭⎫ ⎝⎛-y x (16)(x -3)2+(y -1)2=5三、(17)设),33(),,2(b b B a a A +-则3)33(221++-=b a ①,321ba +=②,由①②得512=a ,∴⎪⎭⎫⎝⎛-512,524A ,过A ,P 的直线036297=-+y x 为所求. (18)直线AB 的斜率为2,∴AB 边所在的直线方程为012=+-y x ,直线AB 与AC边中线的方程交点为⎪⎭⎫ ⎝⎛2,21B设AC 边中点D (x 1,3-2x 1),C(4-2y 1,y 1),∵D 为AC 的中点,由中点坐标公式得BC C y y x y x ∴∴=⇒⎩⎨⎧+=--=),1,2(,11)23(224211111边所在的直线方程为0732=-+y x ;AC 边所在的直线方程为y =1.(19)设直线l 的方程为112)0,0(1=+⇒=+b a b a b y a x ,则22 a a ab ∴-= 322322)2(2212+≥+-+-=-++=-+=+a a a a a a a b a当22222+=⇒-=-a a a 时等号成立,此时12+=b ∴直线l 的方程为0)22(2=+-+y x(20)⊙C :(x -2)2+(y -2)2=1(Ⅰ)C 关于x 轴的对称点C ′(2,-2),过A ,C ′的方程:x +y =0为光线l 的方程.(Ⅱ)A 关于x 轴的对称点A ′(-3,-3),设过A ′的直线为y +3=k (x +3),当该直线与⊙C 相切时,有341133222=⇒=+-+-k k k k 或43=k∴过A ′,⊙C 的两条切线为)3(433),3(343+=++=+x y x y 令y =0,得1,4321=-=x x∴反射点M 在x 轴上的活动范围是⎥⎦⎤⎢⎣⎡-1,43 (21)⊙C :(x -1)2+(y -1)2=1,A (a ,O),B (O ,b ) .设直线AB 的方程为bx +ay -ab =0,∵直线AB 与⊙C 相切,∴02)(2122=++-⇒=+-+b a ab ba ab a b ①(Ⅰ)设AB 中点P (x ,y ),则y b x a by a x 2,22,2==⇒==代入①得P 点的轨迹方程:2xy -2x -2y +1=0,∵a >2,∴x >1 ∴P 点的轨迹方程为(x -1)(y -1)=21(x >1) (Ⅱ)由①得22024242)(2+≥⇒≥+-⇒-≥-+=ab ab ab ab b a ab ,当且仅当22+==b a 时等号成立. S △AOB =21ab ≥3+22。
高中数学第十节讲解教案
主题:直线与圆的位置关系
一、教学目标:
1. 理解直线和圆的位置关系的基本概念。
2. 掌握直线与圆的位置关系的判定方法。
3. 能够应用直线与圆的位置关系解决相关问题。
二、教学重点:
1. 直线与圆的位置关系的基本概念。
2. 直线与圆的位置关系的判定方法。
三、教学难点:
1. 圆的切线与切点的概念。
2. 如何判断一条直线与圆的位置关系。
四、教学过程:
1. 复习:回顾上节课所学的直线和圆的相关知识。
2. 引入:通过一个实际问题引入直线与圆的位置关系的概念,激发学生的学习兴趣。
3. 学习:讲解直线与圆的位置关系的基本概念,并介绍判定直线与圆位置关系的方法。
4. 实践:让学生通过练习题巩固所学知识,提出问题并引导学生解决。
5. 总结:对本节课所学知识进行总结,强调重点和难点,帮助学生理清思路。
六、作业布置:
1. 完成课堂练习题。
2. 自主学习相关知识,做好预习。
七、教学反思:
通过本节课的教学,学生对直线与圆的位置关系有了更深入的理解,掌握了相关判定方法,并能够运用所学知识解决相关问题。
在教学过程中,要充分引导学生思考,灵活运用知识,培养学生的解决问题能力和创新意识。
直线与圆的方程的应用直线与圆的方程是高中数学中的基础知识点,它们在几何图形的研究中起到重要作用。
本文将介绍直线和圆的方程的基本概念,并以实际应用为例,展示它们在解决实际问题中的应用。
直线的方程在平面几何中,直线可以用不同的方程表示,常见的有一般式、点斜式和斜截式方程。
•一般式方程:一般式方程表示为Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。
•点斜式方程:点斜式方程表示为y - y₁ = k(x - x₁),其中(x₁, y₁)为直线上的一点,k为直线的斜率。
•斜截式方程:斜截式方程表示为y = kx + b,其中k为直线的斜率,b 为直线在y轴上的截距。
直线的方程可以通过给定的条件进行推导和转换。
通过直线的方程,我们可以确定直线在平面上的位置、斜度和与其他几何图形的关系等。
圆的方程圆是一个由一组离一个固定点的距离相等的点所组成的集合。
在平面几何中,圆的方程有多种表示方式。
•一般式方程:一般式方程表示为(x - a)² + (y - b)² = r²,其中(a, b)表示圆心的坐标,r表示半径。
•标准方程:标准方程表示为(x - a)² + (y - b)² = R²,其中(a, b)表示圆心的坐标,R表示圆的半径。
•参数方程:参数方程表示为x = a + rcosθ,y = b + rsinθ,其中(a, b)表示圆心的坐标,r表示半径,θ为参数。
圆的方程描述了圆心坐标、半径和点与圆的关系等信息。
通过圆的方程,我们可以确定圆的位置、形状和与其他几何图形的关系等。
直线与圆的相交问题直线与圆的相交问题是直线和圆的方程应用的一个重要部分。
在解决直线与圆的相交问题时,我们需要先将直线的方程和圆的方程联立,求解它们的交点。
当直线与圆相交时,交点可以有两个、一个或没有。
我们可以通过解方程组来求解直线与圆的交点坐标,进而得到它们之间的关系。
直线与圆的方程教案一、引言在平面几何中,直线和圆是基本的几何元素,它们的方程是解决许多几何问题的关键。
本教案将介绍直线与圆的方程及其应用。
二、直线的方程1. 一般式方程直线的一般式方程可以表示为Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。
通过该方程,可以方便地确定直线的斜率和截距。
2. 截距式方程直线的截距式方程可以表示为x/a + y/b = 1,其中a和b表示直线与x轴和y轴的截距。
该方程可以更直观地描述直线在坐标系中的位置和倾斜程度。
3. 点斜式方程直线的点斜式方程可以表示为y - y1 = m(x - x1),其中m为直线的斜率,(x1, y1)为直线上的一点。
通过该方程,可以直接得到直线的斜率和一个点的坐标。
三、圆的方程1. 标准方程圆的标准方程可以表示为(x - h)² + (y - k)² = r²,其中(h, k)表示圆心的坐标,r表示圆的半径。
通过该方程,可以方便地确定圆的圆心坐标和半径。
2. 参数方程圆的参数方程可以表示为x = h + r·cosθ,y = k + r·sinθ,其中(h, k)表示圆心的坐标,r表示圆的半径,θ为参数,取值范围为0到2π。
通过该方程,可以根据参数θ的变化描述圆上的点。
四、直线与圆的交点1. 相切情况当直线与圆相切时,直线只与圆相交于一个点。
可以通过解直线与圆的方程组来确定相切点的坐标。
2. 相离情况当直线与圆相离时,直线与圆没有交点。
3. 相交情况当直线与圆相交时,直线与圆有两个交点。
可以通过解直线与圆的方程组来确定交点的坐标。
五、应用示例1. 判断直线与圆的位置关系通过求解直线与圆的方程组,可以判断直线与圆的位置关系,包括相切、相离或相交。
2. 求直线与圆的交点坐标通过解直线与圆的方程组,可以求得直线与圆的交点坐标,进而进行进一步的几何推理和计算。
3. 圆的切线问题直线与圆相切时,直线为圆的切线。
直线与圆的方程
以“直线与圆的方程”为标题,本文将介绍如何使用数学方法表达直线与圆的方程,以及它们之间的关系。
首先,让我们介绍一下直线与圆的基本概念。
直线是一种无限的直的平行线,它以端点作为开始,平行线条作为连接处。
它可以是水平,也可以是垂直,还可以任意方向。
直线方程是用数学语言来表达直线在特定方向上的关系,它一般是以几何图形的标准形式表示。
直线方程的标准形式是:y = ax + b,其中a是斜率,b是截距。
这是用来描述一条平行于x轴,经过点(x1,y1)的直线。
圆是空间几何形状的一种,它是由一个点(圆心)和一个指定的半径构成的,通过这个点和半径可以构成一个完整的圆,其内部的点都在这个半径的范围内。
圆的方程也有特定的表达方式,即圆的标准方程:(x-x1) + (y-y1) = r,其中x1和y1分别是圆心的横纵坐标,r是圆的半径。
虽然直线和圆的方程形式都是用数学语言来表达它们的关系,但两者之间存在着一定程度的联系。
一般来说,任何直线都可以与圆相交,当直线和圆有交点时,说明它们相交了。
如果一条直线穿过圆心,则称为经过圆心的直线;如果一条圆切线经过圆心,则称为经过圆心的切线。
另外,还可以把圆分成多个园角,相交点可以确定一个园角的位置。
总的来说,对于直线与圆的方程,它们可以用标准方程进行表达,
但它们之间存在着一定的联系,可以通过判断直线和圆是否有交点,以及直线是否经过圆心,从而推断出它们之间的关系。
综上所述,本文介绍了直线与圆的方程,以及它们之间的关系,数学方法表示它们的关系,也可以通过判断它们的交点和直线是否经过圆心来推断它们之间的关系。
直线与圆的方程知识点总结一、直线的方程1.直线的定义:直线是由一切与它上面两点P、Q相应的全体点构成的集合。
在坐标平面中,直线可以由一般式方程、对称式方程、斜截式方程、截距式方程等多种形式表示。
2.一般式方程:Ax+By+C=0,其中A、B、C为常数,A和B不同时为0。
一般式方程表示直线的一种常用形式,它能够直观地反映直线的方向和位置。
3.对称式方程:(x-x1)/(x2-x1)=(y-y1)/(y2-y1),其中(x1,y1)和(x2,y2)为直线上的两个点。
对称式方程通过给出直线上两个点的坐标,从而确定直线的方程。
4. 斜截式方程:y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。
斜截式方程将直线的方程转化为了y和x的关系,便于直观地理解直线的特征。
5.截距式方程:x/a+y/b=1,其中a和b为直线与x轴和y轴的截距。
截距式方程能够直观地表达直线与坐标轴的交点,并通过截距反映直线的位置和倾斜情况。
二、圆的方程1.圆的定义:圆是平面上所有到定点的距离等于定长的点的轨迹。
在坐标平面中,圆可以由一般式方程、截距式方程、标准方程等多种形式表示。
2.一般式方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径的长度。
一般式方程为圆的一种常用形式,能够直观地描述圆的位置和形状。
3.截距式方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径的长度。
截距式方程通过圆的截距反映了圆的位置和形状。
4.标准方程:x²+y²+Dx+Ey+F=0,其中D、E、F为常数。
通过圆的标准方程,可以直观地反映圆的位置、形状以及与坐标轴的交点等信息。
5. 圆的三角方程:由半径与直径、半径与斜边等关系来定义圆的方程,例如sinθ = r/l,其中θ为圆心角的弧度,l为圆弧的长度。
圆的三角方程常用于解决涉及圆的三角学问题。
第十讲 直线和圆 线性规划一、直线中的元素:斜率及范围、过定点、对称专题、两条直线的位置关系1、倾斜角与斜率(1)直线的斜率1k ≥,求倾斜角的取值范围;(2)直线的斜率1k ≤,求倾斜角的取值范围;(3)(1,4)(3,1)(1,1)A B C --、、,过C 点的直线l 与线段AB 相交,求l 的取值范围。
(4)若直线:230l kx y k ---=与直线240x y -+=的交点位于第二象限,则直线l 斜率的取值范围是 2、(19年吉林预赛)3、(07年联赛真题)4、已知直线1()l y kx k k R =+-∈:,若存在实数k ,使直线l 与曲线C 交于两点A B 、,且=AB k ,则称曲线C 具有性质P ,给出下列三条曲线方程:① 1y x =-- ② 222210x y x y +--+= ③ 2y x = 其中,具有性质P 的曲线序号是二、圆的方程 参数方程 半圆方程 直线和圆的位置关系1、已知圆()()22:cos sin 1M x y θθ++-=,直线:l y kx =下面四个命题: (1)对任意实数k 与θ,直线l 和圆M 相切; (2)对任意实数k 与θ,直线l 和圆M 有公共点;(3)对任意实数θ,必存在实数k ,使得直线l 和圆M 相切; (4)对任意实数k ,必存在实数θ,使得直线l 和圆M 相切. 其中真命题的序号是______________2、设有一组圆()224*:(1)(3)2k C x k y k k k N -++-=∈ ,下列四个命题: ① 存在一条定直线与所有圆均相切 ② 存在一条定直线与所有圆均相交 ③ 存在一条定直线与所有圆均不相交 ④ 所有圆均不经过原点其中真命题的序号是______________3、设直线系:cos (2)sin 1(02)M x y θθθπ+-=≤≤,对于下列7个命题: ① 存在一个圆与所有直线相交 ② 存在一个圆与所有直线不相交 ③ 存在一个圆与所有直线相切④ M 中的直线所能围成的正三角形面积相等 ⑤ M 中的所有直线均过一个定点 ⑥ 存在定点P 不在M 中的任一条直线上⑦ 对任意正整数(3)n n ≥,存在正n 边形,所有边均在M 中的直线上其中真命题的序号是______________ 4、(04年联赛真题)已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ≠∅,则b的取值范围是 A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233] 【答案】A【解析】点(0,b )在椭圆内或椭圆上,⇒2b 2≤3,⇒b ∈[-62,62].选A .5、若直线(2)4y k x =-+与曲线214y x 有两个交点,则实数k 的取值范围是6、(19年江苏预赛)7、(19年广西预赛)8、(04年联赛真题)在平面直角坐标系xOy 中,给定两点M (-1,2)和N (1,4),点P 在x 轴上移动,当∠MPN 取最大值时,点P 的横坐标为【答案】1【解析】当∠MPN 最大时,⊙MNP 与x 轴相切于点P (否则⊙MNP 与x轴交于PQ ,则线段PQ 上的点P '使∠MP 'N 更大).于是,延长NM 交x 轴于K (-3,0),有KM ·KN=KP 2,⇒KP=4.P (1,0),(-7,0),但(1,0)处⊙MNP 的半径小,从而点P 的横坐标=1.9、(19年江苏预赛)10、(09年联赛真题)已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】[]36,【解析】设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得d 36a ≤≤. 11、(19年山东预赛)实数)0(>k k ,在平面直角坐标系内已知抛物线2kx y =与圆222)()r b y a x =-+-(至少有3个公共点,其中一个是原点,另外两个在直线b kx y +=上,那么实数b 的最小值是 答案:212、(19年联赛真题)练习:1、已知P 是直线3480x y ++=上动点,PA PB 、是圆22(1)(1)1x y -+-=的两条切线,A B 、是切点,C 是圆心,则四边形PACB 面积的最小值为2、设点0(,1)M x ,若在221O x y +=:上存在点N ,使得=45OMN ∠︒,则0x 的取值范围是 3、已知222:240C x y l x y +=+-=:,,点00(,)P x y 在直线l 上,若C 上存在点Q 是,使得4OPQ π∠=,则0x 的取值范围是4、设直线22:340,:(2)2l x y a C x y ++=-+=,若在直线l 上存在一点M ,使得过M 的圆C 的切线()MP MQ P Q 、、为切点满足=90PMQ ∠︒,则a 的取值范围是三、向量与圆1、(20年四川预赛)答案:122、点A B 、是221O x y +=:上的两个动点,且AB P 是22(3)(4)1C x y -+-=:上的动点,PA PB +的取值范围是3、已知点P 是221O x y +=:上的一个动点,A B 、是22(3)(4)1C x y -+-=:上的两个动点,且=2AB ,则PA PB ⋅的取值范围是4、平面上两个点(1,0)(1,0)A B -、,P 是22-3-44C x y +=:()()上的一个动点,则22+PA PB 的最小值为四、隐性圆1、过定点P 的直线10l ax y +-=:与过定点Q 的直线m 30x ay -+=:相交于点M ,则22+MP MQ 的值为2、设m R ∈,过定点A 的动直线0x my +=与过定点B 的直线30mx y m --+=相交于点(,)P x y ,则+PA PB 的取值范围是 ( )A BC D ⎡⎣、3、已知点-P (1,0),过点Q (1,0)作直线2()20(,0)ax a b y b a b +++=不同时为的垂线,垂足为H ,则PH 的最小值为 ( )A 、B 、C 、 1D 、4、若不全为0的实数a b c 、、成等差数列,点(1,2)A 在动直线0l ax by c ++=:上的射影为P ,点Q 在直线1-4120l x y +=:3上,则线段PQ 长度的最小值为5、若不全为0的实数a b c 、、成等差数列,点(1,0)P -在动直线0l ax by c ++=:上的射影为M ,点(0,3)N ,则MN 的最小值为五、线性规划1、(19年吉林预赛)2、定义在R 上的)(x f 满足)2(f = 1,)(x f '为)(x f 的导函数.若)(x f y '=图象如图所示,若正数b a ,满足1)2(>+b a f ,则21--a b 的取值范围是3、已知M 为圆22:414450C x y x y +--+=上任意一点,且点(2,3)Q -、(,)M m n 求:①32n m -+的最大值和最小值; ②22m n +的最大值和最小值。
高二直线和圆的方程知识点归纳直线和圆是数学中常见的几何图形,它们的方程是我们学习的重点内容。
在高二阶段,我们对直线和圆的方程有了更深入的学习和理解。
下面是对高二直线和圆的方程知识点的归纳总结。
1. 直线的方程直线的方程可以分为两种形式:一般式和点斜式。
一般式方程为Ax+By+C=0,其中A、B、C为常数,且A和B不同时为0。
点斜式方程为y-y₁=m(x-x₁),其中m为直线的斜率,(x₁,y₁)为直线上的一点。
2. 直线的斜率和倾斜角直线的斜率m定义为y轴上的增量与x轴上的增量的比值。
直线的倾斜角θ是它与x轴正方向的夹角。
两者满足关系式m=tanθ。
3. 直线的截距直线与x轴的截距为点(0,b),与y轴的截距为点(a,0)。
直线的一般式方程中的常数C即为与y轴的截距。
4. 圆的方程圆的方程有两种形式:标准式和一般式。
标准式方程为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径。
一般式方程为x²+y²+Dx+Ey+F=0,其中D、E、F为常数。
5. 直线和圆的关系直线和圆的关系可以分为三种情况:相离、相切和相交。
判断方法是将直线的方程代入圆的方程,观察判别式的值。
6. 切线和法线在圆上的一点处,过该点的直线与圆相切,该直线称为切线。
切线与半径的夹角为直角,称为法线。
7. 直线和圆的位置关系直线和圆的位置关系有两种情况:相离和相交。
判断方法是将直线的方程代入圆的方程,观察判别式的值。
如果判别式大于0,则直线和圆相交;如果判别式小于0,则直线和圆相离;如果判别式等于0,则直线与圆相切。
8. 直线和圆的交点坐标如果直线与圆相交,交点坐标可通过解方程组得到。
将直线的方程和圆的方程联立,解得x和y的值,即为交点的坐标。
综上所述,高二直线和圆的方程知识点主要包括直线的方程、直线的斜率和倾斜角、直线的截距、圆的方程、直线和圆的关系、切线和法线、直线和圆的位置关系以及直线和圆的交点坐标。
直线和圆--知识总结一、直线的方程 1、倾斜角:,X 围0≤α<π,若x l //轴或与x 轴重合时,α=00. 2、斜率: k=tan αα=0⇔κ=0已知L 上两点P 1〔x 1,y 1〕 0<α<02>⇔k πP 2〔x 2,y 2〕 α=κπ⇔2不存在⇒k=1212x x y y --022<⇔<<κππ当1x =2x 时,α=900,κ不存在.当0≥κ时,α=arctank,κ<0时,α=π+arctank 3、截距〔略〕曲线过原点⇔横纵截距都为0. 几种特殊位置的直线 ①x 轴:y=0 ②y 轴:x=0③平行于x 轴:y=b④平行于y 轴:x=a ⑤过原点:y=kx两个重要结论:①平面内任何一条直线的方程都是关于x 、y 的二元一次方程.②任何一个关于x 、y 的二元一次方程都表示一条直线.5、直线系:〔1〕共点直线系方程:p 0〔x 0,y 0〕为定值,k 为参数y-y 0=k 〔x-x 0〕 特别:y=kx+b,表示过〔0、b 〕的直线系〔不含y 轴〕 〔2〕平行直线系:①y=kx+b,k 为定值,b 为参数.②AX+BY+入=0表示与Ax+By+C=0 平行的直线系 ③BX-AY+入=0表示与AX+BY+C 垂直的直线系〔3〕过L 1,L 2交点的直线系A 1x+B 1y+C 1+入〔A 2X+B 2Y+C 2〕=0〔不含L2〕 6、三点共线的判定:①AC BC AB =+,②K AB =K BC ,③写出过其中两点的方程,再验证第三点在直线上.二、两直线的位置关系2、L 1到L 2的角为0,则12121tan k k k k •+-=θ〔121-≠k k 〕3、夹角:12121tan k k k k +-=θ4、点到直线距离:2200BA c By Ax d +++=〔已知点〔p 0<x 0,y 0>,L :AX+BY+C=0〕①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒2221B A c c d +-=②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022=+B Ad③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是5、对称:〔1〕点关于点对称:p<x 1,y 1>关于M 〔x 0,y 0〕的对称)2,2(1010Y Y X X P --' 〔2〕点关于线的对称:设p<a 、b>一般方法:如图:<思路1>设P 点关于L 的对称点为P 0<x 0,y 0> 则 Kpp 0﹡K L =-1P, P 0中点满足L 方程解出P 0<x 0,y 0>〔思路2〕写出过P ⊥L 的垂线方程,先求垂足,然后用中点坐标公式求出P 0<x 0,y 0>的坐标.P yL P 0x〔3〕直线关于点对称L :AX+BY+C=0关于点P 〔X 0、Y 0〕的对称直线l ':A 〔2X 0-X 〕+B 〔2Y 0-Y 〕+C=0 〔4〕直线关于直线对称①几种特殊位置的对称:已知曲线f<x 、y>=0关于x 轴对称曲线是f<x 、-y>=0 关于y=x 对称曲线是f<y 、x>=0 关于y 轴对称曲线是f<-x 、y>=0 关于y= -x 对称曲线是f<-y 、-x>=0 关于原点对称曲线是f<-x 、-y>=0 关于x=a 对称曲线是f<2a-x 、y>=0关于y=b 对称曲线是f<x 、2b-y>=0一般位置的对称、结合平几知识找出相关特征,逐步求解. 三、简单的线性规划不等式表示的区域约束条件、线性约束条件、目标函数、线性目标函数、线性规划,可行解,最优解. 要点:①作图必须准确〔建议稍画大一点〕.②线性约束条件必须考虑完整.③先找可行域再找最优解. 四、园的方程1、园的方程:①标准方程 ()22)(r b y a x =-+-,c 〔a 、b 〕为园心,r 为半径.②一般方程:022=++++F EY DX y x ,⎪⎭⎫ ⎝⎛--2,2E D C ,2422FE D r -+=当0422=-+F E D 时,表示一个点. 当0422<-+F E D 时,不表示任何图形. ③参数方程: θcos r a x +=θsin r b y +=θ为参数以A 〔X 1,Y 1〕,B 〔X 2,Y 2〕为直径的两端点的园的方程是 〔X-X 1〕〔X-X 2〕+〔Y-Y 1〕〔Y-Y 2〕=02、点与园的位置关系:考察点到园心距离d,然后与r 比较大小.3、直线和园的位置关系:相交、相切、相离判定:①联立方程组,消去一个未知量,得到一个一元二次方程:△>0⇔相交、△=0⇔相切、△<0⇔相离②利用园心c<a 、b>到直线AX+BY+C=0的距离d 来确定: d <r ⇔相交、d =r ⇔相切d >r ⇔相离〔直线与园相交,注意半径、弦心距、半弦长所组成的kt △〕 4、园的切线:〔1〕过园上一点的切线方程与园222r y x =+相切于点〔x 1、y 1〕的切线方程是211r y y x x =+与园222)()(r b y a x =-+-相切于点〔x 1、y 1〕的切成方程 为:211))(())((r b y b y a x a x =--+--与园022=++++F EY DX y x 相切于点〔x 1、y 1〕的切线是〔2〕过园外一点切线方程的求法:已知:p 0<x 0,y 0>是园 222)()(r b y a x =-+- 外一点①设切点是p 1<x 1、y 1>解方程组 先求出p 1的坐标,再写切线的方程②设切线是)(00x x k y y -=-即000=+--y kx y kx 再由r k y kx b ka =++--120,求出k,再写出方程.〔当k 值唯一时,应结合图形、考察是否有垂直于x 轴的切线〕③已知斜率的切线方程:设b kx y +=〔b 待定〕,利用园心到L 距离为r,确定b. 5、园与园的位置关系由园心距进行判断、相交、相离〔外离、内含〕、相切〔外切、内切〕 6、园系①同心园系:222)()(r b y a x =-+-,〔a 、b 为常数,r 为参数〕 或:022=++++F EY DX y x 〔D 、E 为常数,F 为参数〕 ②园心在x 轴:222)(r y a x =+- ③园心在y 轴:222)(r b y x =-+④过原点的园系方程2222)()(b a b y a x +=-+- ⑤过两园0:111221=++++F Y E X D y x C 和0:222222=++++F Y E X D y x C 的交点的园系方程为0(2222211122=+++++++++F Y E X D y x F Y E X D y x 入〔不含C 2〕,其中入为参数若C 1与C 2相交,则两方程相减所得一次方程就是公共弦所在直线方程.。
第十章 直线与圆的方程一、基础知识1.解析几何的研究对象是曲线与方程。
解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。
如x 2+y 2=1是以原点为圆心的单位圆的方程。
2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。
3.直线的倾斜角和斜率:直线向上的方向与x 轴正方向所成的小于1800的正角,叫做它的倾斜角。
规定平行于x 轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。
根据直线上一点及斜率可求直线方程。
4.直线方程的几种形式:(1)一般式:Ax+By+C=0;(2)点斜式:y-y 0=k(x-x 0);(3)斜截式:y=kx+b ;(4)截距式:1=+b ya x ;(5)两点式:121121y y y y x x x x --=--;(6)法线式方程:xcos θ+ysin θ=p(其中θ为法线倾斜角,|p|为原点到直线的距离);(7)参数式:⎪⎩⎪⎨⎧+=+=θθsin cos 00t y y t x x (其中θ为该直线倾斜角),t 的几何意义是定点P 0(x 0, y 0)到动点P (x, y )的有向线段的数量(线段的长度前添加正负号,若P 0P 方向向上则取正,否则取负)。
5.到角与夹角:若直线l 1, l 2的斜率分别为k 1, k 2,将l 1绕它们的交点逆时针旋转到与l 2重合所转过的最小正角叫l 1到l 2的角;l 1与l 2所成的角中不超过900的正角叫两者的夹角。
若记到角为θ,夹角为α,则tan θ=21121k k k k +-,tan α=21121k k k k +-.6.平行与垂直:若直线l 1与l 2的斜率分别为k 1, k 2。
且两者不重合,则l 1//l 2的充要条件是k 1=k 2;l 1⊥l 2的充要条件是k 1k 2=-1。
7.两点P 1(x 1, y 1)与P 2(x 2, y 2)间的距离公式:|P 1P 2|=221221)()(y y x x -+-。
8.点P(x 0, y 0)到直线l: Ax+By+C=0的距离公式:2200||BA C By Ax d+++=。
9.直线系的方程:若已知两直线的方程是l 1:A 1x+B 1y+C 1=0与l 2:A 2x+B 2y+C 2=0,则过l 1, l 2交点的直线方程为A 1x+B 1y+C 1+λ(A 2x+B 2y+C 2=0;由l 1与l 2组成的二次曲线方程为(A 1x+B 1y+C 1)(A 2x+B 2y+C 2)=0;与l 2平行的直线方程为A 1x+B 1y+C=0(1C C≠).10.二元一次不等式表示的平面区域,若直线l 方程为Ax+By+C=0. 若B>0,则Ax+By+C>0表示的区域为l 上方的部分,Ax+By+C<0表示的区域为l 下方的部分。
11.解决简单的线性规划问题的一般步骤:(1)确定各变量,并以x 和y 表示;(2)写出线性约束条件和线性目标函数;(3)画出满足约束条件的可行域;(4)求出最优解。
12.圆的标准方程:圆心是点(a, b),半径为r 的圆的标准方程为(x-a)2+(y-b)2=r 2,其参数方程为⎩⎨⎧+=+=θθsin cos r b y r a x (θ为参数)。
13.圆的一般方程:x 2+y 2+Dx+Ey+F=0(D 2+E 2-4F>0)。
其圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D 42122-+。
若点P(x 0, y 0)为圆上一点,则过点P 的切线方程为 .0220000=+⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++F y y E x x D y y x x ① 14.根轴:到两圆的切线长相等的点的轨迹为一条直线(或它的一部分),这条直线叫两圆的根轴。
给定如下三个不同的圆:x 2+y 2+D i x+E i y+F i =0, i=1, 2, 3. 则它们两两的根轴方程分别为(D 1-D 2)x+(E 1-E 2)y+(F 1-F 2)=0; (D 2-D 3)x+(E 2-E 3)y+(F 2-F 3)=0; (D 3-D 1)x+(E 3-E 1)y+(F 3-F 1)=0。
不难证明这三条直线交于一点或者互相平行,这就是著名的蒙日定理。
二、方法与例题1.坐标系的选取:建立坐标系应讲究简单、对称,以便使方程容易化简。
例1 在ΔABC 中,AB=AC ,∠A=900,过A 引中线BD 的垂线与BC 交于点E ,求证:∠ADB=∠CDE 。
见图10-1,以A 为原点,AC 所在直线为x 轴,建立直角坐标系。
设点B ,C 坐标分别为(0,2a ),(2a,0),则点D 坐标为(a, 0)。
直线BD 方程为12=+aya x , ①直线BC 方程为x+y=2a , ②设直线BD 和AE 的斜率分别为k 1, k 2,则k 1=-2。
因为BD ⊥AE ,所以k 1k 2=-1.所以212=k ,所以直线AE 方程为x y 21=,由⎪⎩⎪⎨⎧=+=a y x x y 2,21解得点E 坐标为⎪⎭⎫ ⎝⎛a a 32,34。
所以直线DE 斜率为.234323=-=a a a k 因为k 1+k 3=0.所以∠BDC+∠EDC=1800,即∠BDA=∠EDC 。
例 2 半径等于某个正三角形高的圆在这个三角形的一条边上滚动。
证明:三角形另两条边截圆所得的弧所对的圆心角为600。
以A 为原点,平行于正三角形ABC 的边BC 的直线为x 轴,建立直角坐标系见图10-2,设⊙D 的半径等于BC 边上的高,并且在B 能上能下滚动到某位置时与AB ,AC 的交点分别为E ,F ,设半径为r ,则直线AB ,AC 的方程分别为x y 3=,x y 3-=.设⊙D的方程为(x-m)2+y 2=r 2.①设点E ,F 的坐标分别为(x 1,y 1),(x 2,y 2),则,311x y =223x y -=,分别代入①并消去y 得.03).(03)(2222222121=-+-=-+-r x m x r x m x所以x 1, x 2是方程4x 2-2mx+m 2-r 2=0的两根。
由韦达定理⎪⎪⎩⎪⎪⎨⎧-==+4,2222121 r m x x m x x ,所以|EF|2=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+3(x 1-x 2)2=4(x 1+x 2)2-4x 1x 2=m 2-(m 2-r 2)=r 2. 所以|EF|=r 。
所以∠EDF=600。
2.到角公式的使用。
例3 设双曲线xy=1的两支为C 1,C 2,正ΔPQR 三顶点在此双曲线上,求证:P ,Q ,R 不可能在双曲线的同一支上。
假设P ,Q ,R 在同一支上,不妨设在右侧一支C 1上,并设P ,Q ,R 三点的坐标分别为,1,,1,,1,332211⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛x x x x x x 且0<x 1<x 2<x 3. 记∠RQP=θ,它是直线QR 到PQ 的角,由假设知直线QR ,PQ 的斜率分别为3223231111x x x x x x k -=--=,.1112121212x x x x x x k -=--=由到角公式.01)(11111tan 3221312322132212112<+-=++-=+-=x x x x x x x x x x x x x k k k k θ所以θ为钝角,与ΔPQR 为等边三角形矛盾。
所以命题成立。
3.代数形式的几何意义。
例4 求函数11363)(2424+--+--=x x x x x x f 的最大值。
因为222222)0()1()3()2()(-------=x x x x x f 表示动点P(x, x 2)到两定点A(3, 2),B(0, 1)的距离之差,见图10-3,当AB 延长线与抛物线y=x 2的交点C 与点P 重合时,f(x)取最大值|AB|=.104.最值问题。
例5 已知三条直线l 1: mx-y+m=0, l 2: x+my-m(m+1)=0, l 3: (m+1)x-y+m+1=0围成ΔABC ,求m 为何值时,ΔABC 的面积有最大值、最小值。
记l 1, l 2, l 3的方程分别为①,②,③。
在①,③中取x=-1, y=0,知等式成立,所以A(-1, 0)为l 1与l 3的交点;在②,③中取x=0, y=m+1,等式也成立,所以B(0, m+1)为l 2与l 3的交点。
设l 1, l 2斜率分别为k 1, k 2, 若m ≠0,则k 1•k 2=11-=⎪⎭⎫⎝⎛-m m , SΔABC =||||21BC AC ⨯,由点到直线距离公式|AC|=1|1|1|1|2222+++=+---m m m mm m ,|BC|=22111|1|mmm m +=++--。
所以S ΔABC =⎪⎭⎫ ⎝⎛++=+++⨯11211121222m m m m m 。
因为2m ≤m 2+1,所以S ΔABC≤43。
又因为-m 2-1≤2m ,所以1212+≤-m m ,所以S ΔABC≥.41当m=1时,(S ΔABC )max =43;当m=-1时,(S ΔABC)min =41. 5.线性规划。
例6 设x, y 满足不等式组⎩⎨⎧-≥+≤+≤.|32|2,41x y y x(1)求点(x, y)所在的平面区域;(2)设a>-1,在(1)区域里,求函数f(x,y)=y-ax 的最大值、最小值。
(1)由已知得⎪⎩⎪⎨⎧≥--≥+≤+≤,032,322,41x x y y x 或⎪⎩⎪⎨⎧<--≥+≤+≤.032,232,41x x y y x解得点(x, y)所在的平面区域如图10-4所示,其中各直线方程如图所示。
AB :y=2x-5;CD :y=-2x+1;AD :x+y=1;BC :x+y=4.(2) f(x, y)是直线l: y-ax=k 在y 轴上的截距,直线l 与阴影相交,因为a>-1,所以它过顶点C 时,f(x, y)最大,C 点坐标为(-3,7),于是f(x, y)的最大值为3a+7. 如果-1<a ≤2,则l 通过点A (2,-1)时,f(x, y)最小,此时值为-2a-1;如果a>2,则l 通过B (3,1)时,f(x, y)取最小值为-3a+1. 6.参数方程的应用。