(完整)高二年级期末考试数学试卷汇总,推荐文档
- 格式:pdf
- 大小:265.81 KB
- 文档页数:9
高二年级下学期期末考试数学试题(一)注意事项:1.本试卷共22题。
全卷满分150分。
考试用时120分钟。
2.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.记S n为等差数列{a n}的前n项和,若a2=3,a5=9,则S6为()A.36 B.32 C.28 D.242.的展开式中的常数项为()A.﹣60 B.240 C.﹣80 D.1803.设曲线在处的切线与直线y=ax+1平行,则实数a等于()A.﹣1 B.C.﹣2 D.24.在2022年高中学生信息技术测试中,经统计,某校高二学生的测试成绩X~N(86,σ2),若已知P(80<X≤86)=0.36,则从该校高二年级任选一名考生,他的测试成绩大于92分的概率为()A.0.86 B.0.64 C.0.36 D.0.145.设函数,若f(x)在点(3,f(3))的切线与x轴平行,且在区间[m﹣1,m+1]上单调递减,则实数m的取值范围是()A.m≤2 B.m≥4 C.1<m≤2 D.0<m≤36.利用独立性检验的方法调查高中生的写作水平与喜好阅读是否有关,通过随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236.P(K2≥0.100 0.050 0.025 0.010 0.001k0)k0 2.706 3.841 5.024 6.635 10.828参照附表,可得正确的结论是()A.有95%的把握认为“写作水平与喜好阅读有关”B.有97.5%的把握认为“写作水平与喜好阅读有关”C.有95%的把握认为“写作水平与喜好阅读无关”D.有97.5%的把握认为“写作水平与喜好阅读无关”7.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为2个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有()A.22种B.24种C.25种D.27种8.若两个等差数列{a n},{b n}的前n项和分别为A n、B n,且满足,则的值为()A.B.C.D.二、多选题:本题共4小题,每小题5分,共20分。
高二年级第二学期期末考试数学试题一、选择题(每小题5分,共50分)1.在用数学归纳法证明:“凸多边形内角和为π)2(-n ”时,第一步验证的n 等于( ) A .1 B .3 C .5 D .7 2.欧拉公式x i x e ix sin cos +=(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。
根据欧拉公式可知,i e 32π表示的复数位于复平面中的( ) A .第一象限B .第二象限C .第三象限D .第四象限3.用反证法证明:“实数z y x ,,中至少有一个不大于0”时,反设正确的是( ) A .z y x ,,中有一个大于0 B .z y x ,,都不大于0 C .z y x ,,都大于0 D .z y x ,,中有一个不大于0 4.设随机变量),(~p n B X ,且 1.6Ex =,0.96Dx =,则( )A .0.4p 4,n ==B .0.2p 8,n ==C .0.32p 5,n ==D .0.45p 7,n == 5.曲线)20(sin π≤≤=x x y 与x 轴所围成的封闭图形的面积为 ( ) A .2B .π2C .πD .46.已知函数x e x f x ln )(2⋅=,)(x f '为)(x f 的导函数,则)1(f '的值为( ) A .0 B .1C .eD .2e7.给出定义:设)(x f '是函数)(x f y =的导函数,)(x f ''是函数)(x f '的导函数,若方程0)(=''x f 有实数解0x ,则称点))(,(00x f x 为函数)(x f y =的“拐点”.已知函数x x x x f cos sin 3)(-+=的拐点是))(,(00x f x ,则=0tan x ( ) A .21 B .22C .23 D .18.魏晋时期数学家刘徽首创割圆术,他在《九章算术》中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”.这是一种无限与有限的转化过程,比如在正数Λ++112112中的“…”代表无限次重复,设Λ++=112112x ,则可以利用方程x x +=112求得x ,类似地可得到正数Λ333=( ) A .2 B .3 C .4 D .69.已知6)(x xa -展开式的常数项为15,则=a ( )A .1±B .0C .1D .-110.某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有( ) A .8种 B .12种 C .16种 D .20种二、填空题(每小题5分,共20分)11.设随机变量X 的概率分布列如下图,则==-)12(x P __. 12.曲线1)(+=x xe x f 在点))0(,0(f 处的切线方程为_____. 13.复数z 满足12=+-i z ,则z 的最小值是___________.14.椭圆1422=+y x 绕x 轴旋转一周所得的旋转体的体积为 .三、解答题(每小题10分,共50分)15.已知复数i iaz ++=1,其中i 为虚数单位,R a ∈. (1)若R z ∈,求实数a 的值;(2)若z 在复平面内对应的点位于第一象限,求实数a 的取值范围.16.用数学归纳法证明:当*N n ∈时,21223+++n n 能被7整除.17.近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重. 大气污染可引起心悸、呼吸困难等心肺疾病。
高二数学期末考试题及答案Learn standards and apply them. June 22, 2023一、选择题:本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.1.若抛物线y 2=2px 的焦点与椭圆22162x y +=的右焦点重合,则p 的值为 A .-2B .2C .-4D .42.理已知向量a =3,5,-1,b =2,2,3,c =4,-1,-3,则向量2a -3b +4c 的坐标为A .16,0,-23B .28,0,-23C .16,-4,-1D .0,0,9文曲线y =4x -x 2上两点A 4,0,B 2,4,若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标为A .1,3B .3,3C .6,-12D .2,43.过点0,1作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有A .1条B .2条C .3条D .4条4.已知双曲线222112x y a -=的离心率2,则该双曲线的实轴长为 A .2 B .4C .23D .435.在极坐标系下,已知圆C 的方程为=2cos θ,则下列各点中,在圆C 上的是A .1,-3πB .1,6πC .2,34πD 2,54π6.将曲线y =sin3x 变为y =2sin x 的伸缩变换是A .312x x y y '=⎧⎪⎨'=⎪⎩B .312x xy y '=⎧⎪⎨'=⎪⎩C .32x x y y '=⎧⎨'=⎩D .32x xy y'=⎧⎨'=⎩7.在方程sin cos 2x y θθ=⎧⎨=⎩为参数表示的曲线上的一个点的坐标是A .2,-7B .1,0C .12,12D .13,238.极坐标方程=2sin 和参数方程231x ty t =+⎧⎨=--⎩t 为参数所表示的图形分别为A .圆,圆B .圆,直线C .直线,直线D .直线,圆9.理若向量a =1,,2,b =2,-1,2,a 、b 夹角的余弦值为89,则=A .2B .-2C .-2或255D .2或-255文曲线y =e x +x 在点0,1处的切线方程为 A .y =2x +1 B .y =2x -1 C .y =x +1 D .y =-x +110.理已知点P 1的球坐标是P 14,2π,53π,P 2的柱坐标是P 22,6π,1,则|P 1P 2|=A .21B .29C .30D .42文已知点P 在曲线fx =x 4-x 上,曲线在点P 处的切线垂直于直线x +3y =0,则点P 的坐标为A .0,0B .1,1C .0,1D .1,011.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若点M 在以AB 为直径的圆的内部,则此双曲线的离心率e 的取值范围为A .32,+∞B .1,32C .2,+∞D .1,212.从抛物线y 2=4x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△MPF 的面积为A .5B .10C .20D 15二、填空题:本大题共4小题,每小题4分,共16分.请将答案填在试卷的答题卡中.13.理已知空间四边形ABCD 中,G 是CD 的中点,则1()2AG AB AC -+=.文抛物线y =x 2+bx +c 在点1,2处的切线与其平行直线bx +y +c =0间的距离是 .14.在极坐标系中,设P 是直线l :cos θ+sin θ=4上任一点,Q 是圆C :2=4cos θ-3上任一点,则|PQ |的最小值是________.15.理与A -1,2,3,B 0,0,5两点距离相等的点Px ,y ,z 的坐标满足的条件为__________.文函数fx =ax 3-x 在R 上为减函数,则实数a 的取值范围是__________.16.如图,已知双曲线以长方形ABCD 的顶点A 、B 为左、右焦点,且双曲线过C 、D 两顶点.若AB =4,BC =3,则此双曲线的标准方程为_____________________.三、解答题:本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.17.本题满分12分双曲线与椭圆2212736x y +=有相同焦点,且经过点15,4,求其方程.18.本题满分12分在直角坐标系xOy 中,直线l 的参数方程为:415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩t 为参数,若以O为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为=2cos θ+4π,求直线l 被曲线C 所截的弦长.19.本题满分12分已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M-3,m到焦点的距离为5,求抛物线的方程和m的值.20.本题满分12分文已知函数fx=x2x-a.1若fx在2,3上单调,求实数a的取值范围;2若fx在2,3上不单调,求实数a的取值范围.理本题满分12分如图,四棱锥P—ABCD的底面是矩形,PA⊥面ABCD,PA=219,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.1求EF的长;2证明:EF⊥PC.参考答案一、 选择题:本大题共12小题,每小题3分,共36分.内为文科答案二、填空题:本大题共4小题,每小题4分,共16分.13.理12BD 文32214.21-15.理2x -4y +4z =11 文a ≤0 16.x 2-23y =1 三、解答题:本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.17.本题满分12分解:椭圆2213627y x +=的焦点为0,3,c =3,………………………3分 设双曲线方程为222219y x a a-=-,…………………………………6分 ∵过点15,4,则22161519a a-=-,……………………………9分 得a 2=4或36,而a 2<9,∴a 2=4,………………………………11分双曲线方程为22145y x -=.………………………………………12分18.本题满分12分解:将方程415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩t 为参数化为普通方程得,3x +4y +1=0,………3分将方程2θ+4π化为普通方程得,x 2+y 2-x +y =0, ……………6分 它表示圆心为12,-12,半径为22的圆, …………………………9分则圆心到直线的距离d =110, …………………………………………10分 弦长为2211721005r d -=-=. …………………………………12分20.文本题满分12分解:由fx =x 3-ax 2得f ′x =3x 2-2ax =3xx -23a.…………3分 1若fx 在2,3上单调,则23a ≤0,或0<23a≤2,解得:a ≤3.…………6分∴实数a 的取值范围是-∞,3.…………8分 2若fx 在4,6上不单调,则有4<23a<6,解得:6<a <9.…………11分 ∴实数a 的取值范围是6,9.…………12分20.理本题满分12分解:1以A 为原点,AB ,AD ,AP 分别为x ,y ,z 轴建立直角坐标系,…………2分由条件知:AF =2,…………3分∴F 0,2,0,P 0,0,219,C 8,6,0.…4分从而E 4,3,19,∴EF =222(40)(32)(190)-+-+-=6.…………6分 2证明:EF =-4,-1,-19,PC =8,6,-219,…………8分 ∵EF PC ⋅=-4×8+-1×6+-19×-219=0,…………10分 ∴EF ⊥PC .…………12分第一课件网系列资料 .。
2023-2024学年重庆市高二(下)期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知f′(x)是函数f(x)的导函数,则满足f′(x)=f(x)的函数f(x)是( )A. f(x)=x 2B. f(x)=e xC. f(x)=lnxD. f(x)=tanx2.如图是学校高二1、2班本期中期考试数学成绩优秀率的等高堆积条形图,如果再从两个班中各随机抽6名学生的中期考试数学成绩统计,那么( )A. 两个班6名学生的数学成绩优秀率可能相等B. 1班6名学生的数学成绩优秀率一定高于2班C. 2班6名学生中数学成绩不优秀的一定多于优秀的D. “两班学生的数学成绩优秀率存在差异”判断一定正确3.对于函数f(x)=x 3+bx 2+cx +d ,若系数b ,c ,d 可以发生改变,则改变后对函数f(x)的单调性没有影响的是( )A. bB. cC. dD. b ,c4.某地根据以往数据,得到当地16岁男性的身高ycm 与其父亲身高xcm 的经验回归方程为y =1417x +29,当地人小王16岁时身高167cm ,他父亲身高170cm ,则小王身高的残差为( )A. −3cmB. −2cmC. 2cmD. 3cm5.若函数f(x)=(x 2+bx +1)e x ,在x =−1时有极大值6e −1,则f(x)的极小值为( )A. 0B. −e −3C. −eD. −2e 36.甲、乙、丙、丁、戊五个人站成一排照相,若甲不站最中间的位置,则不同的排列方式有( )A. 48种B. 96种C. 108种D. 120种7.若王阿姨手工制作的工艺品每一件售出后可以获得纯利润4元,她每天能够售出的工艺品(单位:件)均值为50,方差为1.44,则王阿姨每天能够获得纯利润的标准差为( )A. 1.2B. 2.4C. 2.88D. 4.88.若样本空间Ω中的事件A 1,A 2,A 3满足P(A 1)=P(A 1|A 3)=14,P(A 2)=23,P(−A 2|A 3)=25,P(−A 2|−A 3)=16,则P(A 1−A 3)=( )A. 114B. 17C. 27D. 528二、多选题:本题共3小题,共18分。
i A. > B. > 1 C. a 2 > b 2 D. ab < a + b - 18、已知 x > 0 , y > 0 ,若 2 y + > m 2 + 2m 恒成立,则实数 m 的取值范围是()高二年级下学期期末考试数学试卷一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式 2x - 3 < 5 的解集为()A. (-1,4)B. (1,4)C. (1,-4)D. (-1,-4)2、设复数 z 满足 (1 + i) z = 2 ( i 为虚数单位),则复数 z 的共轭复数在复平面中对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、某市对公共场合禁烟进行网上调查,在参与调查的 2500 名男性市民中有 1000 名持支持态度,2500 名女性市民中有 2000 人持支持态度,在运用数据说明市民对在公共场合禁烟是 否支持与性别有关系时,用什么方法最有说明力( ) A. 平均数与方差 B. 回归直线方程 C. 独立性检验 D. 概率4、若函数 f ( x ) = ax 4 + bx 2 + c 满足 f '(1) = 2 ,则 f '(-1) 等于()A. - 1B. - 2C. 2D. 05 、函数 y = f ( x ) 的图象过原点,且它的导函数y = f '( x ) 的图象是如图所示的一条直线,y = f ( x ) 的图象的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、在一组样本数据 ( x , y ) , ( x , y ) ,……, ( x , y ) (n ≥ 2, x , x ⋅ ⋅ ⋅ x 不全相等)的散点图中, 1 122nn12n若所有样本点 ( x , y ) (i = 1,2 ⋅ ⋅ ⋅ n) 都在直线 y = i i ( )1 2x + 1上,则这组样本数据的样本相关系数为A. - 1B. 0C. 12D. 17、若 a < 1 , b > 1 那么下列命题正确的是( )1 1 b a b a8xx yA. m ≥ 4 或 m ≤ -2B. m ≥ 2 或 m ≤ -4C. - 4 < m < 2D. - 2 < m < 49、某同学为了了解某家庭人均用电量( y 度)与气温( x o C )的关系,曾由下表数据计算回归直线方程 y = - x + 50 ,现表中有一个数据被污损,则被污损的数据为()+ 的取值范围A. ⎢ ,+∞ ⎪B. - ∞, ⎥C. ⎢ ,+∞ ⎪D. - ∞,- ⎥气温 30 2010 0 人均用电量20 30*50A. 35B. 40C. 45D. 4810、已知函数 f ( x ) 的导函数 f '( x ) = a( x + 1)( x - a) ,若 f ( x ) 在 x = a 处取得极大值,则a 的取值范围是()A. (-∞,1)B. (-1,0)C. (0,1)D. (0,+∞ )11、已知函数 f ( x ) = x 3 - 2ax 2 - bx 在 x = 1 处切线的斜率为 1 ,若 ab > 0 ,则 1 1a b( )⎡ 9 ⎫ ⎛ 9 ⎤ ⎡ 1 ⎫ ⎛ 1 ⎤ ⎣ 2 ⎭⎝ 2 ⎦ ⎣ 2 ⎭ ⎝2 ⎦12、已知 a > b > c > 1 ,设 M = a - cN = a - bP = 2( a + b- ab ) 则 M 、 N 、 P 的大小2关系为( )A. P > N > MB. N > M > PC. M > N > P二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分) 13、下列的一段推理过程中,推理错误的步骤是_______ ∵ a < b∴ a + a < b + a 即 2a < b + a ……①∴ 2a - 2b < b + a - 2b 即 2(a - b ) < a - b ……②∴ 2(a - b )(a - b ) < (a - b )(a - b ) 即 2(a - b )2 < (a - b )2 ……③∵ (a - b )2 > 0∴ 可证得 2 < 1 ……④D. P > M > N14、已知曲线 y = x 2 4- 3ln x 在点( x , f ( x ) 处的切线与直线 2 x + y - 1 = 0 垂直,则 x 的值为0 0 0________15、 f ( x ) = x +1( x > 2) 在 x = a 年取得最小值,则 a =________x - 216、设 a 、 b ∈ R , a - b > 2 ,则关于实数 x 的不等式 x - a + x - b > 2 的解集是_______三、解答题(本大题共 6 小题,共 70 分。
高中二年级学业水平考试数学(测试时间120分钟,满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知i 是虚数单位,若复数))((R a i a i ∈+-的实部与虚部相等,则=a (A )2-(B )1- (C )1 (D )2(2)若集合{}0,1,2A =,{}24,B x x x N =≤∈,则AB =(A ){}20≤≤x x(B ){}22≤≤-x x (C ){0,1,2} (D ){1,2}(3)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 没有公共点”是“平面α和平面β平行”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(4)若()1sin 3πα-=,且2παπ≤≤,则sin 2α的值为(A )9-(B )9-(C )9(D )9(5)在区间[]1,4-上随机选取一个数x ,则1≤x 的概率为 (A )23 (B )15 (C )52 (D )14(6)已知抛物线2y x =的焦点是椭圆22213x y a +=的一个焦点,则椭圆的离心率为(A )37(B )13(C )14 (D )17(7)以下函数,在区间[3,5]内存在零点的是(A )3()35f x x x =--+ (B )()24x f x =-图2俯视图侧视图主视图(C )()2ln(2)3f x x x =-- (D )1()2f x x=-+ (8)已知(2,1),(1,1)a b ==,a 与b 的夹角为θ,则cos θ=(A)10 (B)10 (C)5 (D)5(9)在图1的程序框图中,若输入的x 值为2,则输出的y 值为(A )0 (B )12 (C )1- (D )32- (10)某几何体的三视图如图2所示,则该几何体的侧面积是(A )76 (B )70 (C )64 (D )62 (11)设2()3,()ln(3)xf x eg x x =-=+,则不等式(())(())11f g x g f x -≤的解集为(A )[5,1]- (B )(3,1]- (C )[1,5]- (D )(3,5]-(12) 已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且00x <,则a 的取值范围为(A )∞(-,-2) (B )1∞(-,-) (C )(1,+)∞ (D )(2,)+∞第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.(13)函数()cos f x x x =+的最小正周期为 .(14)已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-3322y x y x x y ,则y x -2的最小值为 .(15)已知直线l :0x y a -+=,点()2,0A -,()2,0B . 若直线l 上存在点P 满足AP BP ⊥,则实数a 的取值范围为 .(16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2,b =3B π=,且△ABC 的面DC 1B 1CBA积S =a c += .三、解答题:本大题必做题5小题,选做题2小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知等差数列{}n a 满足141,4a a ==;数列{}n b 满足12b a =,25b a =,数列{}n n b a -为等比数列. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和n S . (18)(本小题满分12分)某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由9名高二级学生和6名高一级学生组成,现采用分层抽样的方法抽取5人,组成一个体验小组去市场体验“共享单车”的使用.问:(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;(Ⅱ)已知该地区有X ,Y 两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租X 型车,高一级学生都租Y 型车.如果从组内随机抽取2人,求抽取的2人中至少有1人在市场体验过程中租X 型车的概率.(19)(本小题满分12分)如图3,已知四棱锥11A CBB C -的底面为矩形,D 为1AC 的中点,AC ⊥平面BCC 1B 1. (Ⅰ)证明:AB//平面CDB 1; (Ⅱ)若AC=BC=1,BB 1(1)求BD 的长;(2)求三棱锥C-DB 1C 1的体积. 图3 (20)(本小题满分12分)已知过点(0,1)A 的动直线l 与圆C :224230x y x y +---=交于M ,N 两点. (Ⅰ)设线段MN 的中点为P ,求点P 的轨迹方程; (Ⅱ)若2OM ON ⋅=-,求直线l 的方程. (21)(本小题满分12分)已知函数()ln f x x x =.(Ⅰ)求函数()f x 的极值;(Ⅱ)若对任意1,x e e⎡⎤∈⎢⎥⎣⎦,都有()213022f x x ax +++≤成立,求实数a 的取值范围. 请考生在(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分. (22)(本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的纵坐标不变,横坐标变为原来的14,得曲线C . (Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :410x y ++=与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1 P 2的中点且与l 垂直的直线的极坐标方程. (23)(本小题满分10分)选修4-5:不等式选讲设函数()|2|||f x x x a =-+-. (Ⅰ)若2a =-,解不等式5)(≥x f ;(Ⅱ)如果当x R ∈时,()3f x a ≥-,求a 的取值范围.数学参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一、选择题:部分解析:(10)依题意知,该几何体是底面为直角梯形的直棱柱,故其侧面积为42+44+245=64⨯⨯⨯⨯.(11)(())(())11f g x g f x -≤即22(3)3211450x x x x +--≤⇒+-≤51x ⇒-≤≤,注意到30x +>,即3x >-,故31x -<≤.(12)当0a =时,函数2()31f x x =-+有两个零点,不符合题意,故0a ≠,2'()363(2)f x ax x x ax =-=-,令'()0f x =得0x =或2x a =,由题意知,0a >,且2()0f a>,解得2a >.二、填空题:(15)问题转化为求直线l 与圆2222x y +=有公共点时,a 的取值范围,数形结合易得a -≤.(16)由余弦定理得2222cos 4b a c ac B =+-=,即224a c ac +-=,1sin 24S ac B ac ===得4ac =,故2()164a c a c +=⇒+= 三、解答题:(17)解:(Ⅰ)由数列{}n a 是等差数列且141,4a a ==∴公差4113a a d -==, ------------------------------------------------------------------------------1分 ∴1(1)n a a n d n =+-=,------------------------------------------------------------------------------3分 ∵12b a ==2,25b a ==5,∴11221,3,b a b a -=-= ∴数列{}n n b a -的公比22113b a q b a -==-,-----------------------------------------------------------5分∴1111()3n n n n b a b a q ---=-=,∴13n n b n -=+;-------------------------------------------------------------------------------------------7分 (Ⅱ)由13n n b n -=+得21(12)(1333)n n S n -=++++++++--------------------------------------------------------9分(1)31231n n n +-=+- 3(1)12n n n ++-=------------------------------------------------------------------------------------ 12分 (18)解:(Ⅰ)依题意知,应从该兴趣小组中抽取的高一学生人数为56=29+6⨯, ------2分 高二学生的人数为:59=39+6⨯; -------------------------------------------------------------------4分 (Ⅱ)解法1:记抽取的2名高一学生为12,a a ,3名高二的学生为123,,b b b ,------------5分 则从体验小组5人中任取2人的所有可能为:12111213(,),(,),(,),(,)a a a b a b a b ,(a 2,b 1), (a 2,b 2), (a 2,b 3), (b 1,b 2), (b 1,b 3), (b 2,b 3),共10种可能; ----------------------------------------------------------8分 其中至少有1人在市场体验过程中租X 型车的有:111213(,),(,),(,)a b a b a b ,212223121323(,),(,),(,),(,),(,),(,)a b a b a b b b b b b b 共9种,------------------------------------------10分故所求的概率910P =.-----------------------------------------------------------------------------------------12分 【解法:2:记抽取的2名高一学生为12,a a ,3名高二的学生为123,,b b b ,------------------------5分 则从体验小组5人中任取2人的所有可能为:12111213(,),(,),(,),(,)a a a b a b a b ,EABCB 1C 1D212223121323(,),(,),(,),(,),(,),(,)a b a b a b b b b b b b 共10种可能;--------------------------------------8分其中所抽的2人都不租X 型车的有:12(,)a a 一种,-------------------------------------------------9分 故所求的概率1911010P =-=. ---------------------------------------------------------------------------12分 (19)解:(Ⅰ)证明:连结1BC 交1B C 于E ,连结DE , ------------------------------------------1分 ∵D 、E 分别为1AC 和1BC 的中点,∴DE//AB,---------------------------------- --------------------2分 又∵DE ⊂平面1CDB ,AB ⊄平面1CDB ,∴AB//平面CDB 1;---------------------------------------------4分 (Ⅱ)(1)∵AC ⊥平面BCC 1B 1,BC ⊂平面11BCC B , ∴BC AC ⊥, 又∵1BC CC ⊥,1ACCC C =,∴BC ⊥平面1ACC , ∵CD ⊂平面1ACC ,∴BC CD ⊥,----------------------------------------------------------------------------------------------------6分 在Rt BCD ∆,∵BC=1,1112CD AC ===, ∴BD =分【注:以上加灰色底纹的条件不写不扣分!】 (2)解法1:∵BC ⊥平面1ACC ,BC//B 1C 1∴11B C ⊥平面1CC A ,-----------------------------------------------------------------------------------------10分 ∴111111113C DB C B CDC CDC V V S B C --∆==⋅111134=⨯⨯=. ---------------------------------12分 【解法2:取1CC 中点F,连结DF ,∵DF 为△1ACC 的中位线,∴DF//AC,-------------------------------------------------------------------9分 ∵AC ⊥平面11CBB C ,从而可得DF ⊥平面11CBB C ,----------------------------------------------10分∴11111113C DB C D CB C CB C V V S DF --∆==⋅1111322=⨯⨯=. --------------------------------12分 (20)解法(Ⅰ)将224230x y x y +---=化为标准方程得:222(2)(1)x y -+-=, ----------------------------------------------------------------------------1分可知圆心C 的坐标为(2,1),半径r =设点P 的坐标为(,)x y ,则(2,1),(,1)CP x y AP x y =--=-,---------------------------------------2分 依题意知CP AP ⊥,∴0CP AP ⋅=(2)(1)(1)0x x y y ⇒-+--=整理得:222210x y x y +--+=, ------------------------------------------------------------------------4分∵点A 在圆C 内部, ∴直线l 始终与圆C 相交,∴点P 的轨迹方程为222210x y x y +--+=.----------------------------------------------------------6分 (Ⅱ)设1122(,),(,)M x y N x y ,若直线l 与x 轴垂直,则l 的方程为0x =,代入224230x y x y +---=得2230y y --=,解得1y =-或3y =,不妨设121,3y y =-=,则3OM ON ⋅=-,不符合题设, ------------------------------------------------7分 设直线l 的斜率为k ,则l 的方程为1y kx =+,由224230,1.x y x y y kx ⎧+---=⎨=+⎩消去y 得:22(1)440k x x +--=, --------------------------------8分 216(2)0k ∆=+>,则12122244,11x x x x k k+==-++,------------------------------------------------------------------------9分 由2OM ON ⋅=-得212121212(1)()12x x y y k x x k x x +=++++=-,∴22244(1)1211kk k k-+++=-++2410k k ⇒-+=,解得:2k =±分∴当2OM ON ⋅=-时,直线l 的方程为(21y x =++或(21y x =-+. --------------12分 (21)解:(Ⅰ)函数()f x 的定义域为(0,)+∞, ∵()ln 1f x x '=+,令'()0f x =得1x e=,-------------------------------------------------------------2分 当10x e <<时'()0f x <,当1x e>时,'()0f x >, ∴函数()f x 在1(0,)e 上单调递减,在1(,)e+∞上单调递增,----------------------------------------4分∴函数()f x 无极大值, 当1x e =时,函数()f x 在(0,)+∞有极小值,11()()f x f e e==-极小,--------------------------5分 (Ⅱ)当1,x e e ⎡⎤∈⎢⎥⎣⎦时,由()213022f x x ax +++≤,得3ln 22x a x x ≤---,--------------6分 记()3ln 22x g x x x =---,1,x e e ⎡⎤∈⎢⎥⎣⎦, 则()()()2231113222x x g x x x x +-'=--+=-, 当∈x 1,1e ⎛⎫ ⎪⎝⎭时,得'()0g x >,当∈x ()1,e 时, '()0g x <∴()g x 在1,1e ⎛⎫ ⎪⎝⎭上单调递增,在()1,e 上单调递减,---------------------------------------------------9分又113122e g e e ⎛⎫=-- ⎪⎝⎭,()3122e g e e=---, ∵012)()1(<-+=-e e e g e g ,∴()1g g e e ⎛⎫< ⎪⎝⎭,-------------------------------------------------10分故()g x 在1,e e ⎡⎤⎢⎥⎣⎦上的最小值为1g e ⎛⎫ ⎪⎝⎭,故只需1a g e ⎛⎫≤ ⎪⎝⎭,即实数a 的取值范围是13,122e e ⎛⎤-∞-- ⎥⎝⎦.------------------------------------------------------------12分 选做题:(22)解:(Ⅰ)由坐标变换公式1',4'.x x y y ⎧=⎪⎨⎪=⎩ 得4','x x y y ==-------------------------------------2分 代入221x y +=中得2216''1x y +=,--------------------------------------------------------------------3分故曲线C 的参数方程为1cos ,4sin .x y θθ⎧=⎪⎨⎪=⎩(θ为参数);----------------------------------------------------5分 (Ⅱ)由题知,121(,0),(0,1)4P P --,--------------------------------------------------------------------6分 故线段P 1 P 2中点11(,)82M --,---------------------------------------------------------------------------7分∵直线l 的斜率4k =-∴线段P 1 P 2的中垂线斜率为14,故线段P 1 P 2的中垂线的方程为111()248y x +=+------------------------------------------------------8分即832150x y --=,将cos ,sin x y ρθρθ==代入得其极坐标方程为8cos 32sin 150ρθρθ--=----------------------------------------------------------10分 (23)解:(Ⅰ)当a =-2时,f (x )=|x -2|+|x +2|, ①当2x ≤-时,原不等式化为:25,x -≥解得52x ≤-,从而52x ≤-;-------------------------1分 ②当22x -<≤时,原不等式化为:45≥,无解;---------------------------------------------------2分 ③当2x >时,原不等式化为:25,x ≥解得52x ≥,从而52x ≥;----------------------------------3分 综上得不等式的解集为⎭⎬⎫⎩⎨⎧≥-≤2525x x x 或.----------------------------------------------------------------5分(Ⅱ)当x R ∈时,|2||||2()||2|x x a x x a a -+-≥---=- ---------------------------------------7分 所以当x R ∈时,()3f x a ≥-等价于|2|3a a -≥------(*) 当2a ≥时,(*)等价于23,a a -≥-解得52a ≥,从而52a ≥;----------------------------------8分 当2a <时,(*)等价于23,a a -≥-无解;------------------------------------------------------------9分 故所求a 的取值范围为5[,+2∞). --------------------------------------------------------------------------10分。
高二下学期期末考试数学试卷和答案一、 选择题:(每题4分,共48分) 将答案填图在答题卡上.1.复数31ii--等于( ) A .i 21+ B.12i - C.2i + D.2i - 2.=-⎰π20)sin (dx x ( )A .0 C.-23.若复数i i z -=1,则=|z |( )A .21B .22C .1D .24.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x 轴上的点的个数是( )A .100 B .90 C .81 D .725.若函数3()33f x x bx b =-+在(0,1)内有极小值,则( ) A .01b <<B .1b <C .0b >D .12b <6.在二项式5)1(xx -的展开式中,含x 3的项的系数是( )7.若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是( ).A .B .C .D .8.若圆的方程为⎩⎨⎧+=+-=θθsin 23cos 21y x (θ为参数),直线的方程为⎩⎨⎧-=-=1612t y t x (t 为参数),则直线与圆的位置关系是( )。
A. 相交过圆心B.相交而不过圆心C.相切D.相离9.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A 、3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A 的球,则在第二号盒子中任取一个球;若第一次取得标有字母B 的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为( ) A . B . C . D .y y y10.设31(3)n x x+的展开式的各项系数的和为P ,所有二项式系数的和为S ,若P +S =272,则n 为( )A .4B .5C .6D .811.设一随机试验的结果只有A 和A ,()P A p =,令随机变量10A X A =⎧⎨⎩,出现,,不出现,,则X 的方差为( )A.p B.2(1)p p -C.(1)p p -- D.(1)p p -天津市大港一中08—09学年高二下学期期末考试(数学理)12.参数方程⎪⎩⎪⎨⎧-==1112t t y t x (t 为参数)所表示的曲线是( )。
高二下学期期末数学试卷一、单项选择1、设,若直线与线段相交,则的取值范围是( )A .B .C .D .2、已知点A (2,-3),B (-3,-2),直线l 方程为kx+y-k-1=0,且与线段AB 相交,求直线l的斜率k 的取值范围为( )A或 B C D 3、直线与曲线有两个不同的交点,则实数的k 的取值范围是( ) A .B .C .D .4、已知圆,直线l :,若圆上恰有4个点到直线l 的距离都等于1,则b 的取值范围为 A .B .C .D .5、若直线被圆截得弦长为,则) A . B . C6、设△ABC 的一个顶点是A (3,-1),∠B,∠C 的平分线方程分别是x=0,y=x ,则直线BC 的方程是( ) A .B .C .D .7、已知圆:,则过点(1,2)作该圆的切线方程为( )A .x+4y-4=0B .2x+y-5=0C .x=2D .x+y-3=0 8、阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A 、B 间4k ≤-220(0,0)ax by a b -+=>>222410x y x y ++-+=494(0,1)k k k >≠的距离为,动点P、A、B不共线时,三角形PAB面积的最大值是()ABD9、若圆上有个点到直线的距离为1,则等于()A.2 B.1 C.4 D.310、圆的一条切线与圆相交于,两点,为坐标原点,则()AB.C.2 D11、已知直线与圆相交,则的取值范围是()A. B. C.D.12、古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点、距离之比是常数的点的轨迹是圆.若两定点、的距离为3,动点满足,则点的轨迹围成区域的面积为().A.B.C.D.13、已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是()A.1或3 B.1或5 C.3或5 D.1或214、我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上面的已知条件可求得该女子第4天所织布的尺数为( )A.B C D15、在等比数列中,,前项和为,若数列也是等比数列,则等于()A.B.C.D.16、设数列满足,记数列的前项之积为,则2P22:(5)(1)4C x y-++=n4320x y+-=n 221x y+=224x y+=()11,A x y()22,B x y O1212x x y y+=2-:cos sin1()l x yααα+=∈R222:(0)C x y r r+=>r 01r<≤01r<<1r≥1r>)0(>>ba{}na21=a n n S{}1na+nS 122n+-3n2n31n-( ) A .B .C .D .17、已知公比不为的等比数列满足,若,则( )A .9B .10C .11D .12 18、设等差数列的前项和为,已知,,则( )A .B .C .D .19、在等差数列中,若,是方程的两根,则的前11项的和为( )A .22B .-33C .-11D .1120、已知数列满足,数列前项和为,则( )ABCD21、已知数列满足,,是数列的前项和,则( )A .B .C .数列是等差数列 D .数列是等比数列22、已知等数差数列中,是它的前项和,若且,则当最大时的值为( )A .9B .10 C .11 D .1823、已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12 )1{}n a 15514620a a a a +=210m a =m ={}n a nnS ()()201920212017201720171201912000a a a -++-=()()20192021202020202020-1+201912038a a a +-=4036S =2019202020214036{}n a 2*1222...2()n n a a a n n N +++=∈n nS 12310...S S S S ⋅⋅⋅⋅={}n a n S n 180S >190S <n S nABCD .不存在24、的内角,,所对的边分别是,,.已知,则的最小值为( ) A . B .C .D .25、已知,,为的三个内角,,的对边,向量,,若,且,则角( )A .B .C .D .二、填空题26、点到直线的距离的最大值为________.27、已知点和圆,过点 作圆的切线有两条,则实数的取值范围是______28、已知直线l :x+y-6=0,过直线上一点P 作圆x 2+y 2=4的切线,切点分别为A ,B ,则四边形PAOB 面积的最小值为______,此时四边形PAOB 外接圆的方程为______. 29、已知实数满足,则的取值范围为________.30、已知实数x ,y 满足6x+8y-1=0,则的最小值为______.31、等比数列的前n 项和为32、若等差数列满足,则数列的前项和取得最大值时_________ 33、已知数列满足,则数列的最大值为________.34、已知数列中,,是数列的前项和,且对任意的,都有,则=_____35、已知首项与公比相等的等比数列中,若,,满足,则()1,2P 222:20C x y kx y k ++++=P C k {}n a n S {}n a 7897100,a a a a a ++>+<{}n a n n S =n {}n a 11a =n S {}n a n *,r t N ∈n a的最小值为_____.36、在锐角三角形中,角的对边分别为,若,则的最小值是_______.37、在锐角中,角,,所对应的边分别为,,.则________;若,则的最小值为________. 38、若△ABC 的内角,则的最小值是 . 39、已知分别是的内角的对边,,,则周长的最小值为_____。
高二年级下学期期末考试数学试卷(考试时间:120分钟;满分:150分)一、选择题(本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.设103iZ i=+,则Z 的共轭复数为( ) A .13i -+ B .13i -- C .13i + D .13i -2.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ) A .144 B .120 C .72 D .243.已知(1,21,0),(2,,),a t t b t t b a =--=-则的最小值是( )A B C D4.已知正三棱锥P ABC -的外接球O 的半径为1,且满足0,OA OB OC ++=则正三棱锥的体积为( )A .4 B .34C .2D .4 5.已知函数(),1,x xf x a b e=-<<且则( ) A .()()f a f b = B .()()f a f b <C .()()f a f b >D .()()f a f b ,大小关系不能确定 6.若随机变量~(,),X B n p 且()6,()3,(1)E X D X P X ===则的值为( ) A .232-• B .42- C .1032-• D .82-7.已知10件产品有2件是次品.为保证使2件次品全部检验出的概率超过0.6,至少应抽取作检验的产品件数为( )A .6B .7C .8D .98.若2211S x dx =⎰,2211S dx x =⎰,231x S e dx =⎰,则123,,S S S 的大小关系为( )A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S <<9.平面内有n 条直线,最多可将平面分成()f n 个区域,则()f n 的表达式为( )A .1n +B .2nC .222n n ++ D .21n n ++10.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m =( )A .5B .6C .7D .811.已知一系列样本点(,)i i x y (1,2,3,i =…,)n 的回归直线方程为ˆ2,yx a =+若样本点(,1)(1,)r s 与的残差相同,则有( )A .r s =B .2s r =C .23s r =-+D .21s r =+12.设点P 在曲线12x y e =上,点Q 在曲线(2)y ln x =上,则PQ 的最小值为( )A .12ln - B2)ln - C .12ln + D2)ln + 二、填空题(本大题共4小题,每小题5分,共20分)13.已知复数5()12iz i i =+是虚数单位,则z =__________;14.直线21cos ρθ=与圆2cos ρθ=相交的弦长为__________; 15.二项式822x y 的展开式中,的系数为__________; 16.已知11()123f n =+++…*15(),(4)2,(8),(16)32n N f f f n +∈>>>经计算得,7(32),2f >则有__________(填上合情推理得到的式子).三、解答题(本大题共6小题,17小题10分, 18-22题每小题12分,共70分;解答应写出文字说明、证明过程或演算步骤)17.已知曲线C 的极坐标方程是2()3cos πρθ=+,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线l的参数方程是1,()2x t t y =--⎧⎪⎨=+⎪⎩是参数,设点(1,2)P -. (Ⅰ)将曲线C 的极坐标方程化为直角坐标方程,将直线l 的参数方程化为普通方程; (Ⅱ)设直线l 与曲线C 相交于,M N 两点,求PM PN •的值.18.我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽列联表:已知从该班随机抽取1人为喜欢的概率是3.(Ⅰ)请完成上面的22⨯列联表;(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++(参考公式:其中)19.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设123,,a a a 分别表示甲,乙,丙3个盒中的球数. (Ⅰ)求1232,1,0a a a ===的概率;(Ⅱ)记12,a a ξ=+求随机变量ξ的概率分布列和数学期望.20.已知数列1111{},,21n n nx x x x +==+满足 其中n N *∈ . (Ⅰ)写出数列{}n x 的前6项;(Ⅱ)猜想数列2{}n x 的单调性,并证明你的结论.21.如图,四棱锥P ABCD -中,底面ABCD 是梯形,//AD BC ,,AD BC >090BAD ∠=,,,PA ABCD PA AB ⊥=底面点E PB 是的中点. (Ⅰ)证明:PC AE ⊥;(Ⅱ)若1,3,AB AD PA ==且与平面PCD 所成角的大小为045,求二面角A PD C --的正弦值.22.已知函数(),()()ln xg x f x g x ax x==-. (Ⅰ)求函数()g x 的单调区间;(Ⅱ)若函数()f x 在()1,a +∞上是减函数,求实数的最小值;(Ⅲ)若21212,[,],()()(0)x x e e f x f x a a '∃∈≤+>使成立,求实数a 的取值范围.下学期高二年级期末考试数学参考答案一、选择题二、填空题13.14. 15.70 16.*2(2)(2,)2n n f n n N +>≥∈ 三、解答题17.解:(Ⅰ) 曲线C 的极坐标方程化为直角坐标方程为:22x y x +=- ,即221()(122xy -++= ;直线l 20y ++= .(Ⅱ) 直线l 的参数方程化为标准形式为11,2()22x m m y m ⎧=--⎪⎪⎨⎪=+⎪⎩是参数,①将①式代入22x y x +=,得:23)60m m +++= ,②由题意得方程②有两个不同的根,设12,m m 是方程②的两个根,由直线参数方程的几何意义知:12PM PN m m •=•=6+. (Ⅱ)根据列联表数据,得到2260(1422618) 3.348 2.706,32282040K ⨯-⨯=≈>⨯⨯⨯ 所以有90%的可靠性认为“喜欢与否和学生性别有关”.19.解:由题意知,每次抛掷骰子,球依次放入甲,乙,丙盒中的概率分别为111,,632.(Ⅰ) 由题意知,满足条件的情况为两次掷出1点,一次掷出2点或3点,121233111(2,1,0)()()6336p p a a a C ====== .(Ⅱ) 由题意知,ξ可能的取值是0,1,2,3 .1231(0)(0,0,3),8p p a a a ξ======12121231233311113(1)(0,1,2)(1,0,2)()()()()32628p p a a a p a a a C C ξ=====+====+=123123123(2)(2,0,1)(1,1,1)(0,2,1)p p a a a p a a a p a a a ξ=====+===+===1231233311111113()()()()()()()62632328C A C =++=123123123(3)(0,3,0)(1,2,0)(2,1,0)p p a a a p a a a p a a a ξ=====+===+===+1231(3,0,0)8p a a a ====.故ξ的分布列为:期望()012388882E ξ=⨯+⨯+⨯+⨯= .20.解:(Ⅰ)由121112,213x x x ===+得; 由232213,315x x x ===+得; 由343315,518x x x ===+得; 由454518,8113x x x ===+得; 由5658113,13121x x x ===+得; (Ⅱ)由(Ⅰ)知246,x x x >>猜想:数列2{}n x 是递减数列. 下面用数学归纳法证明:①当1n =时,已证命题成立;②假设当n k =时命题成立,即222k k x x +>. 易知20k x >,当1n k =+时,2224k k x x ++- 21231111k k x x ++=-++23212123(1)(1)k k k k x x x x ++++-=++22222122230(1)(1)(1)(1)k k k k k k x x x x x x ++++-=>++++即2(1)2(1)2k k x x +++>.也就是说,当1n k =+时命题也成立.根据①②可知,猜想对任何正整数n 都成立.21. 解:解法一(向量法):建立空间直角坐标系A xyz -,如图所示.根据题设,可设(,0,0),(0,,0),(0,0,),(,,0)D a B b P b C c b , (Ⅰ)证明:0,,22b b AE ⎛⎫= ⎪⎝⎭,(,,)PC c b b =-, 所以0()022bb AE PCc b b ⋅=⨯+⋅+⋅-=, 所以AE PC ⊥,所以PC AE ⊥.(Ⅱ)解:由已知,平面PAD 的一个法向量为(0,1,0)AB =. 设平面PCD 的法向量为(,,)m x y z =, 由0,0,m PC m PD ⎧⋅=⎪⎨⋅=⎪⎩即0,00,cx y z y z +-=⎧⎪+⋅-=令1z =,得11m ⎫=⎪⎭.而(0,0,1)AP =,依题意PA 与平面PCD 所成角的大小为45︒,所以||sin 45||||m AP m AP ⋅︒==,即=,解得32BC c =(32BC c ==去),所以2133m ⎛⎫=⎪⎪⎭. 设二面角A PD C --的大小为θ,则233cos ||||12133m ABm AB θ⋅===++, 所以6sin θ,所以二面角A PD C --的正弦值为6. 解法二(几何法):(Ⅰ)证明:因为PA ⊥平面ABCD ,BC ⊂平面ABCD ,所以BC PA ⊥. 又由ABCD 是梯形,AD BC ∥,90BAD ∠=︒,知BC AB ⊥,而AB AP A =,AB ⊂平面PAB ,AP ⊂平面PAB ,所以BC ⊥平面PAB . 因为AE ⊂平面PAB ,所以AE BC ⊥.又PA AB =,点E 是PB 的中点,所以AE PB ⊥.因为PB BC B =,PB ⊂平面PBC ,BC ⊂平面PBC ,所以AE ⊥平面PBC . 因为PC ⊂平面PBC ,所以AE PC ⊥. (Ⅱ)解:如图4所示,过A 作AF CD ⊥于F ,连接PF , 因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以CD PA ⊥,则CD ⊥平面PAF ,于是平面PAF ⊥平面PCD ,它们的交线是PF . 过A 作AG PF ⊥于G ,则AG ⊥平面PCD , 即PA 在平面PCD 上的射影是PG ,所以PA 与平面PCD 所成的角是APF ∠.由题意,45APF ∠=︒. 在直角三角形APF 中,1PA AF ==,于是2AG PG FG ===. 在直角三角形ADF 中,3AD ,所以2DF = 方法一:设二面角A PD C --的大小为θ, 则2232cos 13PDG APDS PG DF S PA AD θ⋅===⋅⨯△△,所以sin θ,所以二面角A PD C --方法二:过G 作GH PD ⊥于H ,连接AH ,由三垂线定理,得AH PD ⊥,所以AHG ∠为二面角A PD C --的平面角, 在直角三角形APD中,2PD =,PA AD AH PD ⋅===. 在直角三角形AGH中,sin AG AHG AH ∠===, 所以二面角A PD C --22.解:由已知,函数()g x ,()f x 的定义域为(0,1)(1,),+∞ 且()ln xf x ax x=-. (Ⅰ)函数221ln ln 1()(ln )(ln )x x x x g x x x -⋅-'==, 当01()0x e x g x '<<≠<且时,;当()0x e g x '>>时,.所以函数()g x 的单调减区间是(0,1),(1,),()e e +∞增区间是,. (Ⅱ)因()f x 在(1,)+∞上为减函数,故2ln 1()0(ln )x f x a x -'=-≤在(1,)+∞上恒成立. 所以当(1,)x ∈+∞时,max ()0f x '≤. 又222ln 111111()()(),(ln )ln ln ln 24x f x a a a x x x x -'=-=-+-=--+- 故当11,ln 2x =即2x e =时,max 1()4f x a '=-. 所以1110,,444a a a -≤≥于是故的最小值为.(Ⅲ)命题“若21212,[,],()()x x e e f x f x a '∃∈≤+使成立”等价于 “当2min max [,],()()x e e f x f x a '∈≤+时有” . 由(Ⅱ)知,当2max max 11[,],(),()44x e e f x a f x a ''∈=-∴+=时有.问题等价于:“2min 1[,],()4x e e f x ∈≤当时有” .① 当14a ≥时,由(Ⅱ)知,2()[,]f x e e 在上为减函数,则222min2111()(),2424e f x f e ae a e==-≤≥-故 .②当104a <<时,由于2111()()ln 24f x a x '=--+-在2[,]e e 上为增函数,故21()(),(),4f x f e f e a a '''的值域为[],即[--] .由()f x '的单调性和值域知,200,,()0x e e f x '∃∈=唯一()使,且满足:当0,,()0,()x e x f x f x '∈<()时为减函数; 当20,,()0,()x x e f x f x '∈>()时为增函数; 所以,20min 00001()(),(,)ln 4x f x f x ax x e e x ==-≤∈ . 所以,2001111111,ln 4ln 4244a x x e e ≥->->-= 与104a <<矛盾,不合题意. 综上,得21124a e ≥-.高二年级第二学期期末考试数学试题一、选择题(每小题5分,共50分)1.已知集合{}322+<=x x x M ,{}2<=x x N ,则=⋂N M ( )A .(-1,2)B .(-3,2)C .(-3,1)D .(1,2)2.欧拉公式x i x e ix sin cos +=(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。
数学试卷时量:120分钟 满分:150分一选择题(本大题共12小题,每小题5分,共60分)1若复数)21(i i z +=,则复数z 的共轭复数在复平面上所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2一个年级有10个班级,每个班级学生从1到48号编排,为了交流学习经验.要求每班编号为28的同学留下进行交流,这里运用的是( )A .分层抽样B .抽签法C .系统抽样D .随机数表法3椭圆1162522=+y x 的离心率为( )53A 54B 34C 43D4已知),4(~2σN X ,且p X P =≤)2(,则)()6(=≤X Pp A p B 21- 21pC - PD -15任取实数],8,2[-∈x 则所取x 满足不等式0652≤+-x x 的概率为( ) A81 B 91 C 101 D 1116已知6)(xa x +的展开式中含 2x 项的系数为12,则a 为( )A 1B 2C 3D 47若一组数据54321,,,,x x x x x 的平均数为5,方差为2,则32,32,32321---x x x32,3254--x x 的平均数和方差分别为( )A7,-1 B7,1 C7,2 D7,8 8以下关于独立性检验的说法中, 错误的是( ) A .独立性检验依赖于小概率原理 B .独立性检验得到的结论一定准确 C .样本不同,独立性检验的结论可能有差异 D .独立性检验不是判断两事物是否相关的唯一方法9 “b a 33>”是“b a ln ln >”的( )10已知平面α的一个法向量为)1,2,2(=n ,点)0,3,1(-A 在平面α内,则点)3,1,2(P 到平面α的距离为( )A .35 B . 34 C. 1 D.3211设21,F F 为双曲线1422=-y x 的两焦点,P 在双曲线上,且 9021=∠PF F , 则21PF F ∆面积为( ) A 、1 B 、25C 、2D 、5 12在正方体1111ABCD A B C D -中,O 为BD AC ,的交点,则O C 1与D A 1所成角 的余弦值为( ) A.0B.21 C.63D.33 二、填空题(大题共4小题,每小题5分,共20分)13命题“0832,3≤--∈∀x x R x ”的否定是__________________________14学校要从7名男生和3名女生中选出3人作为上海世博会志愿者,若用 随机变量ξ表示选出的志愿者中女生的人数,则数学期望______)(=ξE (结果用最简分数表示)15小苏,小龙,小陈,小钟,小欧,小刘六个人从左至右排成一行合影留念,小苏不站最左端,小龙不站最右端,则不同的排法共有__________种16过抛物线x y 162=的焦点F 作倾斜角为ο30的直线交抛物线于B A ,两点,O 为坐标原点,则AOB ∆的面积为______________温馨提示:请把所有试题答案转涂或转写在答案卡上,题号应一一对应三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.) 17(10分)一个袋中装有大小形状相同的标号为1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回袋中)记下标号,若拿出球的标号是奇数,则得1分,否则得0分.(1)求拿2次得分不小于1分的概率;(2)(2)拿4次所得分数ξ 的分布列和数学期望)(ξE18(12分)湖南省某示范性高中图书馆志愿者协会中,有高一志愿者6人,其中含3名男生,3名女生;有高二志愿者4人,其中含1名男生,3名女生。
2023-2024学年江苏省南通市高二(上)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.数列1,53,52,…的通项公式可能是a n =( )A. n 2+1n +1B. n +1n 2+1C. n 22n−1D. n 2+12n−12.圆(x +1)2+y 2=1和圆(x−2)2+(y−4)2=16的位置关系为( )A. 相离B. 相交C. 外切D. 内切3.某校文艺部有7名同学,其中高一年级3名,高二年级4名.从这7名同学中随机选3名组织校文艺汇演,则两个年级都至少有1名同学入选的选法种数为( )A. 12B. 30C. 34D. 604.已知F 是抛物线C :x 2=2py(p >0)的焦点,点A(1,14)在C 上,则|AF|=( )A. 38B. 58C. 54D. 945.设S n 是等比数列{a n }的前n 项和,若S 4=6,S 8=18,则S 16=( )A. 48B. 90C. 96D. 1626.已知椭圆C :x 24+y 23=1,直线l 经过点T(1,12)与C 交于A ,B 两点.若T 是线段AB 的中点,则l 的方程为( )A. 4x−6y−1=0 B. 3x−2y−1=0 C. 4x +6y−7=0 D. 3x +2y−4=07.已知平行六面体ABCD−A 1B 1C 1D 1中,AA 1=3,BD =4,AD 1⋅DC−AB 1⋅BC =5,则cos <AA 1,BD >=( )A. 512B. −512C. 415D. −4158.已知F 是双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,直线y = 52b 与C 交于A ,B 两点.若△ABF 的周长为7a ,则C 的离心率为( )A. 43 B. 65 C. 2 105二、多选题:本题共4小题,共20分。
高二数学期末试卷带答案一、单选题(共10题;共40分)1.已知P (﹣4,3),与P 关于x 轴对称的点的坐标是( )A .(﹣3,4)B .(﹣4,﹣3)C .(﹣3,﹣4)D .(4,﹣3)2.数π3,3.14,2273 1.732,168,0.203,﹣0.1010010001…(相邻两个1之间的0的个数逐渐加1)中,无理数的个数为( ) A .1B .2C .3D .43.以下列各组数为边长,能构成直角三角形的是( )A 352B .1,27C .123D .4,5,64.已知()()()123211y y y --,,,,,都在直线2y x =-+上,则123y y y ,,的值的大小关系是( )A .132y y y >>B .123y y y <<C .312y y y >>D .123y y y >>5.下列说法中,正确的是( )A .一个数的立方根有两个,它们互为相反数B .一个非零数的立方根与这个数同号C .如果一个数有立方根,那么它一定有平方根D .一个数的立方根是非负数6.下列命题是真命题的是( )A .同位角相等B .12a 不是整式C .数据6,3,10的中位数是3D .第七次全国人口普查是全面调查7.欣欣商店在一段时间内销售了四种饮料共100瓶,各品牌饮料的销售量如表,根据表中数据,建议该商店进货数量最多的品牌是( )品牌甲 乙 丙 丁 销售量(瓶) 15301243 A .甲品牌B .乙品牌C .丙品牌D .丁品牌8.已知关于x 、y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =−1,则代数式a ﹣2b 的值是( )A .﹣2B .2C .3D .﹣39.如图,在直线l 上有正方形a ,b ,c ,若a ,c 的面积分别为4和16,则b 的面积为( )A .24B .20C .12D .2210.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数 0 1 2 3 4 人数31316171则这50名学生读书册数的众数、中位数是( ) A .3,3B .3,2C .2,3D .2,2二、填空题(共4题;共20分)11.已知正比例函数的图象经过点()36-,,则此正比例函数的表达式是 . 12.若点()P 23,关于y 轴的对称点是点()P'a 13+,,则a = .13.等腰ABC 中,AB AC =,BD 平分ABC ∠,若BDC 120∠=︒,则A ∠= .14.如图,QP∥MN ,A ,B 分别为直线MN ,PQ 上两点,且∥BAN =60°,射线AE 从AM 开始绕点A 按顺时针方向旋转至AN 后立即回转,然后以不变的速度在AM 和AN 之间不停地来回旋转,射线BF 从BQ 绕点B 按逆时针方向同时开始旋转,射线AE 转动的速度是4°/s ,射线BF 转动的速度是1°/s ,在射线BF 到达BP 之前,有 次射线AE 与射线BF 互相平行,时间分别是 s.三、计算题(共4题;共40分)15.计算(737316.16.计算:(022132(2)4-+--+- 17.解下列方程组(1)43325x y x y -=⎧⎨+=⎩(2)132(4)35y x x y ⎧-=⎪⎨⎪-+=⎩ . 18.3268(0)3m m m m>. 四、解答题(共4题;共44分)19(10分).如图,在ABC 中,AD 是BC 边上的高线,CE 是一条角平分线,它们相交于点P.已知55APE ∠=︒,80AEP ∠=︒,求BAC ∠的度数.20(10分).如图,已知65AB DE B CM ∠=︒,,平分90BCE MCN ∠∠=︒,,求证:CN 平分BCD ∠.21(12分).王怡同学参加数学质量测试活动,各项成绩如表所示(单位:分),如果将“数与代数”“图形与几何”“统计与概率”“综合与实践”四项成绩按3:3:2:2的比例确定最终成绩,请你计算王怡同学的最终成绩.项目 数与代数 图形与几何 统计与概率 综合与实践成绩9093899022.24x y =⎧⎨=⎩是二元一次方程32ax y -=和2x y b +=的公共解,求a 与b 的值.五、综合题(共1题;共14分)23.在∥ABC中,AB=AC,∥BAC=90°. 过点A作直线AP,点C关于直线AP的对称点为点D,连接BD,CD,直线BD交直线AP于点E.(1)依题意补全图1;(2)在图1中,若∥PAC=30°,求∥ABD的度数;(3)若直线AP旋转到如图2所示的位置,请用等式表示线段EB,ED,BC之间的数量关系,并证明.答案解析部分1.【答案】B【解析】【解答】解:∵ P (﹣4,3),∴与P 关于x 轴对称的点的坐标是(-4,-3) . 故答案为:B.【分析】根据关于x 轴对称的点,其横坐标相同,纵坐标互为相反数可得答案.2.【答案】D【解析】【解答】解:π3是无理数; 3.14是有限小数,是有理数;227是分数,是有理数; 31.732是有限小数,是有理数;1682=0.203是有限小数,是有理数;﹣0.1010010001…(相邻两个1之间的0的个数逐渐加1) ,是无限不循环小数,是无理数, ∴无理数共有4个. 故答案为:D.【分析】无理数就是无限不循环的小数,常见的无理数有四类:①开方开不尽的数,②与π有关的数,③规律性的数,如0.101001000100001000001…(每两个1之间依次多一个0)这类有规律的数,④锐角三角函数,如sin60°等,根据定义即可一一判断.3.【答案】C【解析】【解答】解:A 、22223)5)+≠,故此选项中的三条线段不能构成直角三角形;B 、222217)+≠,故此选项中的三条线段不能构成直角三角形;C 、22212)3)+=,故此选项中的三条线段能构成直角三角形;D 、222456+≠,故此选项中的三条线段不能构成直角三角形. 故答案为:C.【分析】如果一个三角形的三边满足较小两边的平方和等于最大边长的平方,则该三角形就是直角三角形,据此一一判断得出答案.4.【答案】D【解析】【解答】解:∵2y x =-+,10k =-<,∴直线呈下降趋势,y 随着x 的增大而减小,∵()()()123211y y y --,,,,,都在直线2y x =-+上,211-<-<, ∴123y y y >>; 故答案为:D.【分析】由于一次函数解析中的自变量系数k=-1<0,故函数值y 故随着自变量x 的增大而减小,从而比较三点的横坐标的大小即可判断得出答案.5.【答案】B【解析】【解答】解:A 、一个数的立方根有1个,故原说法错误,该选项不符合题意;B 、一个非零数的立方根与这个数同号选项,正确,该选项符合题意;C 、负数有立方根,但负数没有平方根,故原说法错误,该选项不符合题意;D 、正数的立方根是正数,负数的立方根是负数,0的立方根是0,故原说法错误,该选项不符合题意.故答案为:B.【分析】正数有一个正的立方根,负数有一个负的立方根,0的立方根是0,即任何一个数都有且只有一个立方根;正数有两个平方根,这两个平方根互为相反数,0的平方根是0,负数没有平方根,据此一一判断得出答案.6.【答案】D【解析】【解答】解:A 、两直线平行,同位角相等,故该命题不是真命题;B 、12a 是整式,故该命题不是真命题; C 、 数据6,3,10的中位数是6,故该命题不是真命题; D 、 第七次全国人口普查是全面调查,故该命题是真命题. 故答案为:D.【分析】只有在两直线平行的时候,同位角才会相等,据此判断A ;“12a ”是数与字母的乘积,是单项式,而单项式与多项式统称整式,据此判断B ;将一组数据按从小到大(或者从大到小)的顺序排列后,如果数据的个数是奇数个时,则处在最中间的那个数据叫做这组数据的中位数;如果数据的个数是偶数个时,则处在最中间的两个数据的平均数 叫做这组数据的中位数,据此判断C ;对调查对象的全体进行的调查就是全面调查,据此判断D.7.【答案】D【解析】【解答】解:∵丁品牌饮料出现了43次,是出现次数最多的,∴建议该商店进货数量最多的品牌是丁品牌. 故答案为:D【分析】利用表中数据可知丁品牌饮料出现了43次,是出现次数最多的,即可求解.8.【答案】B【解析】【解答】解:∵ 关于x 、y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =−1 ,∴{2a −b =3①a +b =1②,①-②得a-2b=2. 故答案为:B.【分析】根据方程组解的概念,将x=1与y=-1代入关于x 的方程组可得关于a 、b 的二元一次方程组,进而将两方程相加即可得出答案.9.【答案】B【解析】【解答】解:∵a 、b 、c 都是正方形,∴AC CD =,=90ACD ∠︒,∵90ACB DCE ACB BAC ∠+∠=∠+∠=︒,即BAC DCE ∠=∠,90ABC CED ∠=∠=︒,AC CD =, ∴ACB CDE ≌, ∴AB CE =,BC DE =,在Rt ABC 中,由勾股定理得:22222AC AB BC AB DE =+=+, 即41620b a c S S S =+=+=,故B 正确. 故答案为:B.【分析】根据正方形的性质得AC=CD ,∥ACD=90°,根据同角的余角相等得∥BAC=∥DCE ,从而用AAS 判断出∥ACB∥∥CDE ,根据全等三角形对应边相等得AB=CE ,BC=DE ,在Rt∥ABC 中,由勾股定理得AC 2=AB 2+BC 2=AB 2+DE 2最后结合正方形的面积计算方法即可得出答案.10.【答案】B【解析】【解答】解:∵3出现了17次,是出现次数最多的数,∴这组数据的众数是3;∵一共有50个数,从小到大排列后,第25个数和第26个数都是2,∴这组数据的中位数是2;故答案为:B【分析】求中位数的方法是:把数据先按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,据此可求出这组数据的众数和中位数. 11.【答案】y=-2x【解析】【解答】解:设正比例函数表达式为:y=kx,将点(-3,6)代入得:6=-3k,解得:k=-2.正比例函数表达式为:y=-2x.故答案为:y=-2x.【分析】设正比例函数表达式为:y=kx,将点(-3,6)代入求出k的值,从而即可求出该正比例函数的解析式.12.【答案】-3【解析】【解答】解:∵点P(2,3)关于y轴的对称点是点P'(a+1,3),∴a+1=-2,∴a=-3.故答案为:-3.【分析】根据关于y轴的对称点的坐标特点,即横坐标互为相反数,纵坐标不变,可得a+1=-2,解之即可求得a的值.13.【答案】100°【解析】【解答】解:如图所示,∵AB=AC,∴∥C=∥ABC,又∵BD平分∥ABC,∴∥1=∥2=12∥ABC,∴∥C=2∥1,∵∥2+∥C=180°-∥BDC,且∥BDC=120°,∴3∥1=60°,即∥1=∥2=20°,又∵∥BDC=∥A+∥1,∴∥A=∥BDC-∥1=120°-20°=100°.故答案为:100°.【分析】由AB=AC,根据等边对等角,可得∥ABC=∥C,又由BD平分∥ABC,∥BDC=120°,可求得∥1的度数,然后根据三角形内角和定理,即可求得∥A的度数.14.【答案】2;36或60【解析】【解答】解:设射线AE从AM开始绕点A按顺时针方向旋转ts时,射线AE与射线BF互相平行.分三种情况:①如图,当0<t<45时,∥QBF=t°,∥MAE=(4t)°,∵PQ∥MN,∥BAN=60°,∴∥ABQ=∥BAN=60°,∴∥MAB=180°﹣∥BAN=120°,∴∥ABF=60°﹣t°,∥BAE=∥MAE﹣∥MAB=(4t)°﹣120°,当∥ABF=∥BAE时,AE∥BF,此时,60﹣t=4t﹣120,解得t=36;②当45≤t≤60时,∥QBF=t°,∥NAE=(4t)°﹣180°,∥BAE=60°﹣[(4t)°﹣180°]=240°﹣(4t)°,∵PQ∥MN,∥BAN=60°,∴∥ABQ=∥BAN=60°,∴∥MAB=180°﹣∥BAN=120°,∴∥ABF=60°﹣t°,∥BAE=240°﹣(4t)°,当∥ABF=∥BAE时,AE∥BF,此时,60﹣t=240﹣4t,解得t=60;③如图,当60≤t<180时,∥QBF=t°,∥NAE=(4t)°﹣180°,∥BAE=[(4t)°﹣180°]﹣60°=(4t)°﹣240°,∵PQ∥MN,∥BAN=60°,∴∥ABQ=∥BAN=60°,∴∥MAB=180°﹣∥BAN=120°,∴∥ABF=t°﹣60°,∥BAE=240°﹣(4t)°,当∥ABF=∥BAE时,AE∥BF,此时,t﹣60=4t﹣240,解得t=60;综上所述,在射线BF到达BP之前,有2次射线AE与射线BF互相平行,时间分别是36或60s.故答案为:2,36或60.【分析】设射线AE从AM开始绕点A按顺时针方向旋转ts时,射线AE与射线BF互相平行,①当0<t<45时,∥QBF=t°,∥MAE=(4t)°,根据平行线的性质可得∥ABQ=∥BAN=60°,由邻补角的性质可得∥MAB=120°,根据角的和差关系可得∥ABF=60°-t°,∥BAE=(4t)°﹣120°,当∥ABF=∥BAE时,AE∥BF,据此求解;②当45≤t≤60时,∥QBF=t°,∥NAE=(4t)°﹣180°,∥BAE=240°﹣(4t)°,同理可得t的值;③当60≤t<180时,∥QBF=t°,∥NAE=(4t)°﹣180°,∥BAE=(4t)°﹣240°,同理可得t的值.15.【答案】解:(737316734=--=【解析】【分析】利用二次根式的混合运算的计算方法求解即可。
遂宁市高中级第四学期期末教学水平监测数学(理科)试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
总分150分。
考试时间120分钟。
第Ⅰ卷(选择题,满分60分)注意事项:1.答题前,考生务必将自己的姓名、班级、考号用0.5毫米的黑色墨水签字笔填写在答题卡上。
并检查条形码粘贴是否正确。
2.选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米黑色墨水签字笔书写在答题卡对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
3.考试结束后,将答题卡收回。
一、选择题(本大题共12小题,每小题5分,共计60分。
在每小题给出的四个选项中,只有一项是符合题目要求。
) 1.已知是虚数单位,则11z i=-在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.已知命题52,:>∈∀xR x P ,则P ⌝为A .52,>∉∀xR x B .52,≤∈∀xR xC .52,00≤∈∃x R x D .52,00>∈∃x R x3.设抛物线22y px =的焦点与椭圆221204x y +=的右焦点重合,则该抛物线的准线方程为 A .1x =- B .2x =- C .3x =- D .4x =-4.某家具厂的原材料费支出x 与销售量y (单位:万元)之间有如下数据,根据表中提供的ˆˆA .5B .10C .12D .205.“m ≥”是“函数221y x mx =-+在(),-∞+∞内存在零点”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为A .23B .75C .77D .139 7.运行下列程序,若输入的,p q 的值分 别为65,36,则输出的p q -的值为 A .47 B .57 C .61 D .678.根据党中央关于“精准”脱贫的要求,我市 某农业经济部门决定派出五位相关专家对三 个贫困地区进行调研,每个地区至少派遣一 位专家,其中甲、乙两位专家需要派遣至同 一地区,则不同的派遣方案种数为A .18B .24C .28D .369.已知函数()f x 在0x >上可导且满足()()0xf x f x '->,则下列一定成立的为 A .()()f f e eππ>B .()()f f e π<C .()()f f e eππ<D .()()f f e π> 10.若函数32()21f x ax x x =+++在()1,2上有最大值无最小值,则实数a 的取值范围为A .34a >-B .53a <-C .5334a -<<-D .5334a -≤≤-11.已知抛物线22(0)y px p =>上一动点到其准线与到点M (0,4)的距离之和的最小值为32,F 是抛物线的焦点,O 是坐标原点,则MOF ∆的内切圆半径为 A .2 B .3 C .21+ D .22-12.已知函数32()312()f x x mx nx m N *=-++∈在1x =-处取得极值,对任意,()270x R f x '∈+>恒成立,则1240344035()()...()()2018201820182018f f f f ++++= A .4032 B .4034 C .4035 D .4036第Ⅰ卷(非选择题,满分90分)注意事项:1.请用蓝黑钢笔或圆珠笔在第Ⅱ卷答题卡上作答,不能答在此试卷上。
高二数学期末试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.甲、乙、丙、丁、戊五位同学站成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率 为A .B .C .D .2.在△ABC 中,cosAcosB>sinAsinB ,则△ABC 是( )A .钝角三角形B .锐角三角形C .直角三角形D .等边三角形 3.设点P(x,y)(xy≠0)是曲线上的点,下列关系正确的是( )A .B .C .D .的值与1的大小关系不确定4.棱长为1的正方体ABCD A 1B 1C 1D 1中,点M,N 分别在线段AB 1,BC 1上,且AM=BN,给出以下结论: ①AA 1⊥MN②异面直线AB 1,BC 1所成的角为60° ③四面体B 1 D 1CA 的体积为④A 1C ⊥AB 1,A 1C ⊥BC 1, 其中正确的结论的个数为( )A .1B .2C .3D .45.已知命题“若,则”为真命题,则下列命题中一定为真命题的是( ) A .若,则 B .若,则C .若,则D .若,则6.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( ) A .或 B .或C .D .7.抛物线的焦点到准线的距离为( )A.2 B.4 C. D.8.已知集合,则()A. B. C. D.9. ( )A. B. C. D.10.已知四个实数成等差数列五个实数成等比数列,则的值等于()A. B. C. D.11.若且,则的最小值是()A.6 B.12 C.16 D.2412.一次函数的图象同时经过第一、三、四象限的必要但不充分条件是()A.B.C.D.13.下列命题错误的是: ()A.命题“若,则方程有实数根”的逆否命题为:“若方程无实数根,则”.B.“”是“”的充分不必要条件.C.若为假命题,则均为假命题.D.对于命题14.一圆锥的底面半径是母线长的一半,侧面积和它的体积的数值相等,则该圆锥的底面半径()A. B. C. D.15.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第个“金鱼”图需要火柴棒的根数为()A. B. C. D.16.已知,则()A. B. C. D.17.有一匹叫的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天,在30场下雨天的比赛中,赢了15场.如果明天下雨,参加赛马的胜率是( )A. B. C. D.18.在极坐标系中与圆相切的一条直线的方程为()A.B.C.D.19.已知,如图,在梯形ABCD中,AD//BC,AD=3,BC=7,点M,N分别是对角线BD,AC的中点,则MN=" "A.2 B. 5 C. D.20.设为函数的导函数,且则与的大小关系是()A.B.C.D.不能确定二、填空题21.阅读图4的程序框图,若输入m=4,n=3,则输出a=______,i=________。
2023-2024学年北京市通州区高二(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知等差数列{a n },a 5=10,a 9=20,则a 1等于( ) A .﹣1 B .0 C .2 D .52.已知P 为双曲线x 29−y 216=1右支上一点,F 1,F 2为双曲线的左右焦点,|PF 1|﹣|PF 2|等于( )A .8B .6C .4D .33.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点为F 1,F 2,上下顶点为B 1,B 2,若四边形F 1B 1F 2B 2为正方形,则椭圆C 的离心率为( ) A .√2B .√32C .√22 D .124.已知点A (x 0,y 0)在抛物线y 2=4x 上,且点A 到抛物线准线的距离为3,则y 0等于( ) A .1B .2C .±2D .±2√25.已知双曲线C :y 2a 2−x 2b 2=1(a >0,b >0)的离心率为2√33,则C 的渐近线方程为( )A .y =±√3xB .y =±3xC .y =±√33xD .y =±13x6.已知数列{a n },a 1=1,a n +1﹣a n =2n ,则a 10等于( ) A .511B .1022C .1023D .20477.已知等差数列{a n }的前n 项和为S n ,若a 1=10,公差d =﹣2,则( ) A .S n 有最大值为1214B .S n 有最大值为814C .S n 有最大值为30D .S n 有最小值为308.已知首项为a 1,公比为q 的等比数列{a n },其前n 项和为S n ,则“a 1>0,q >1”是“S n 单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知双曲线C :x 23−y 2=1的左、右焦点分别为F 1,F 2,直线y =x +m 与C 交于A ,B 两点,若△F 1AB面积是△F 2AB 面积的2倍,则m 等于( ) A .6B .23C .−23D .﹣610.已知数列{a n }的通项公式为a n =1−2nn+1,给出下列四个结论: ①数列{a n }为单调递增数列,且存在常数m ≤﹣2,使得a n >m 恒成立;②数列{a n}为单调递减数列,且存在常数m≤﹣2,使得a n>m恒成立;③数列{a n}为单调递增数列,且存在常数m<0,使得a n≤m恒成立;④数列{a n}为单调递减数列,且存在常数m<0,使得a n≤m恒成立.其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题共5小题,每小题5分,共25分。
高二数学期末试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.函数的图像上关于原点对称的点有( )对A .0B .2C .3D .无数个 2.等差数列的前n 项和为S n ,若则( )A .130B .170C .210D .260 3.若命题p假,且命题为假,则( )A .p 为假B .q 为真C .q 为假D .不能判断q 的真假4.已知,且则一定成立的是( ) A .B .C .D .5.集合A={x|x 2+2x >0},B={x|x 2+2x ﹣3<0},则A∩B=( )A .(﹣3,1)B .(﹣3,﹣2)C .RD .(﹣3,﹣2)∪(0,1) 6.一个家庭有两个小孩,则基本事件空间是 ( ) A .{(男,男),(女,女)}B .{(男,男),(男,女),(女,男),(女,女)}C .{(男,女),(女,男)}D .{(男,男),(男,女),(女,女)} 7.复数的虚部为( )w.w.w.k.s.5.u.c.o.mA .1B .-1C .D .8. 已知,猜想的表达式( ) A .; B .; C .; D ..9.执行如下图所示的程序框图,输出的结果是( )A.11 B.12 C.13 D.1410.在底面是平行四边形的四棱锥中,底面,点为棱的中点,点在棱上,平面与交于点,且,,,则异面直线与所成角的正切值为()A. B. C. D.11.=( ).A.2-iB.1-2iC.-2+iD.-1+2i 12.已知在上的单调递增,则()A.且B.且C.且D.且13.下列说法不正确的是()A.若“p且q”为假,则p,q至少有一个是假命题B.命题“”的否定是“”C.当时,幂函数上单调递减D.“”是“为偶函数”的充要条件14.下列可以用来分析身高和体重之间的关系的是()A.残差分析 B.回归分析 C.等高条形图 D.独立性检验15.一个三棱锥的三视图如图所示,其中正方形的边都是1,则该三棱锥的体积为()A. B. C. D.16.在复平面上,复数的对应点所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限17.三角形全等是三角形面积相等的A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件18.经过点P(4,-2)的抛物线标准方程为()A.y2=x或x2=-8yB.y2=x或y2=8xC.y2=-8xD.x2=-8y 19.如果执行下面的程序框图3,输入n=6,m=4,则输出的p等于()A.720 B.360 C.240 D.12020.在平面直角坐标系中,圆的参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.若直线与圆C相切,则实数的取值个数为()A.0个 B.1个 C.2个 D.3个二、填空题21. 是双曲线右支上一点,、分别是左、右焦点,是三角形的内心(三条内角平分线交点),若,则实数的值为22.已知数列{a n }的前n 项和,那么它的通项公式为a n =_________23.若抛物线y 2=4x 上一点P 到焦点F的距离为10,则点P 的横坐标为_________24.如右图所示,执行程序框图,若输入N =99,则输出的_________.25.世界人口在过去40年翻了一番,则每年人口平均增长率约是_________(参考数据:). 26.已知、是非零向量且满足,,则与的夹角是_______.27.天气预报说,在今后的三天中,每一天下雨的慨率均为.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率: 先利用计算器产生到之间取整数值的随机数, 用表示下雨,用表示不下雨,再以每三个随机数作为一组, 代表这三天的下雨情况,经随机模拟试验产生了如下组随机数:据此估计,这三天中恰有两天下雨的概率近似为__________.28.已知命题:方程有两个不等的负根;命题:方程无实根.若“∨”为真,“∧”为假,则实数的取值范围是 .29.随机变量ξ服从正态分布N (1,σ2),已知P(ξ<0)=0.3,则P(ξ<2)=_____. 30.已知F 是抛物线的焦点,M 是这条抛物线上的一个动点,P (3,1)是一个定点,则的最小值是 . 三、解答题31.已知函数.(1)若,求函数的图象在点处的切线方程;(2)讨论函数的单调区间.32.已知,设p:函数在上单调递减,q:曲线y=与x轴交于不同的两点.若“p且q”为假,“q”为假,求的取值范围33.如图,已知圆,点,是圆上任意一点,线段的垂直平分线和半径相交于.(1)求动点的轨迹的方程;(2)设直线与(1)中轨迹相交两点,直线的斜率分别为(其中),的面积为,以为直径的圆的面积分别为,若依次构成等比数列,求的取值范围.34.已知函数.(1)当在点处的切线方程是y=x+ln2时,求a的值.(2)当的单调递增区间是(1,5)时,求a的取值集合.35.以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为圆心、为半径。
—下学期孝感市七校教学联盟期末联合考试高二数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】即;即..所以“”是“”的必要而不充分条件.2. 下列各式的运算结果为纯虚数的是A. B. C. D.【答案】C【解析】A.=i⋅2i=−2,是实数。
B.=−1+i,不是纯虚数。
C.=2i为纯虚数。
D.=i−1不是纯虚数。
故选:C.3. 已知命题;命题若,则.下列命题为真命题的是A. B. C. D.【答案】B【解析】命题成立。
故命题p为真命题;当a=1,b=−2时,成立,但a<b不成立,故命题q为假命题,...故命题p∧q,¬p∧q,¬p∧¬q均为假命题;命题p∧¬q为真命题,故选:B.4. 椭圆的离心率是A. B. C. D.【答案】B【解析】椭圆中.离心率,故选B.5. 已知直线的方向向量,平面的法向量,若,,则直线与平面的位置关系是A. 垂直B. 平行C. 相交但不垂直D. 直线在平面内或直线与平面平行【答案】D【解析】因为,即,所以直线在平面内或直线与平面平行,故选D.6. 已知双曲线(,)的一条渐近线方程为,且与椭圆有公共焦点.则的方程为A. B. C. D.【答案】B【解析】椭圆的焦点坐标(±3,0),则双曲线的焦点坐标为(±3,0),可得c=3,双曲线(a>0,b>0)的一条渐近线方程为,可得,即,可得,解得a=2,b=,所求的双曲线方程为:.故选:B.7. 函数在上的最大值和最小值分别为A. B. C. D.【答案】A【解析】试题分析:对函数求导得,由于,所以在上是减函数,在上是增函数,而,所以在上的最大值和最小值分别是,故选A.考点:1、导数在函数研究中的应用;2、单调区间,极值.8. 若是正整数的值为A. B. C. D.【答案】D【解析】,故选D....9. 设函数的图象与轴相交于点,则曲线在点处的切线方程为A. B. C. D.【答案】C【解析】由,可令f(x)=0,即=1,解得x=0可得P(0,0),又f′(x)=−,∴f′(0)=−e0=−1.∴f(x)=1−在点P(0,0)处的切线方程为y−0=−1×(x−0),即y=−x.故选:C.10. 已知,则的值为A. B. C. D.【答案】C【解析】.所以,故选C.11. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A. 乙可以知道两人的成绩 B .丁可能知道两人的成绩B. 乙、丁可以知道对方的成绩C. 乙、丁可以知道自己的成绩【答案】D【解析】四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁也为一优一良,丁知自己的成绩,故选:D.12. 已知函数的导函数满足,则对都有A. B. ...C. D.【答案】A【解析】构造函数F(x)=x2f(x),则F′(x)=2xf(x)+x2f′(x)=x(2f(x)+xf′(x)),当x>0时,F′(x)>x3>0,F(x)递增;当x<0时,F′(x)<x3<0,F(x)递减,所以F(x)=x2f(x)在x=0时取最小值,从而F(x)=x2f(x)⩾F(0)=0,故选A.点睛:本题主要考查构造函数,常用的有:,构造xf(x);2xf(x)+x2f′(x),构造x2f(x);,构造;,构造;,构造.等等.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13. 在数列中,(),猜想这个数列的通项公式是________.【答案】()【解析】试题分析:由已知,得,,,,.所以猜想该数列的通项公式为.考点:本题主要考查归纳推理的意义,递推数列。