三角函数图像的综合运用
- 格式:docx
- 大小:511.94 KB
- 文档页数:11
三角函数的图像与性质优秀教案一、教学目标:1. 理解三角函数的定义,掌握正弦函数、余弦函数、正切函数的图像与性质。
2. 能够运用三角函数的图像与性质解决实际问题。
3. 提高学生的数学思维能力,培养学生的数学审美观念。
二、教学内容:1. 三角函数的定义与基本性质2. 正弦函数的图像与性质3. 余弦函数的图像与性质4. 正切函数的图像与性质5. 三角函数图像与性质的综合应用三、教学重点与难点:1. 重点:三角函数的定义,正弦函数、余弦函数、正切函数的图像与性质。
2. 难点:三角函数图像与性质的综合应用。
四、教学方法:1. 采用问题驱动法,引导学生探索三角函数的图像与性质。
2. 利用多媒体课件,展示三角函数的图像,增强学生的直观感受。
3. 结合实际例子,让学生学会运用三角函数的图像与性质解决实际问题。
4. 开展小组讨论,培养学生的合作与交流能力。
五、教学过程:1. 导入:通过复习初中阶段学习的三角函数知识,引导学生进入本节课的学习。
2. 三角函数的定义与基本性质:讲解三角函数的定义,引导学生掌握三角函数的基本性质。
3. 正弦函数的图像与性质:利用多媒体课件展示正弦函数的图像,讲解正弦函数的性质。
4. 余弦函数的图像与性质:利用多媒体课件展示余弦函数的图像,讲解余弦函数的性质。
5. 正切函数的图像与性质:利用多媒体课件展示正切函数的图像,讲解正切函数的性质。
6. 三角函数图像与性质的综合应用:结合实际例子,讲解如何运用三角函数的图像与性质解决实际问题。
7. 课堂小结:对本节课的内容进行总结,强调重点知识点。
8. 课后作业:布置相关练习题,巩固所学知识。
9. 课后反思:教师对本节课的教学进行反思,总结经验教训。
10. 教学评价:对学生的学习情况进行评价,了解学生对三角函数图像与性质的掌握程度。
六、教学策略与资源:1. 教学策略:采用问题引导式教学,鼓励学生主动发现问题、解决问题。
利用数学软件或在线工具,让学生亲自动手绘制三角函数图像,加深对函数性质的理解。
-φ-φ1.y=A sin(ωx+φ)的有关概念y=A sin(ωx+φ)(A>0,ω>0),x∈R振幅A周期2πT=ω频率1ωf=T=2π相位ωx+φ初相φ2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示:x0-φωπ2ωπ-φω3π2ω2π-φωωx+φy=A sin(ωx+φ)π2Aπ3π2-A2π0 3.函数y=sin x的图象经变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤如下:【思考辨析】(2)y =sin ⎝x -4⎭的图象是由 y =sin ⎝x +4⎭的图象向右平移个单位得到的.(√ )1.y =2sin ⎝2x -4⎭的振幅、频率和初相分别为2.已知函数 f (x )=sin ⎝2x +6⎭.若 y =f (x -φ) (0<φ< )是偶函数,则 φ=解析 因为 y =f (x -φ)=sin ⎣2(x -φ)+6⎦=sin ⎝2x -2φ+6⎭是偶函数,所以-2φ+ = +k π, k ∈Z ,得 φ=- - ,k ∈Z .又 0<φ< ,所以 φ= .3.(2015· 湖南改编)将函数 f (x )=sin 2x 的图象向右平移 φ⎝0<φ<2⎭个单位后得到函数 g (x )的]判断下面结论是否正确(请在括号中打“√”或“×”)(1) 利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × )⎛ π⎫ ⎛ π⎫ π 2(3)由图象求解析式时,振幅 A 的大小是由一个周期内的图象中的最高点的值与最低点的值确定的.( √ )(4)函数 f (x )=A sin(ωx +φ)的图象的两个相邻对称轴间的距离为一个周期.( × )(5)函数 y =A cos(ωx +φ)的最小正周期为 T ,那么函数图象的两个相邻对称中心之间的距离为T2.( √ )⎛ π⎫1 π答案 2,π,-4.⎛ π⎫ π 2.答案π3⎡ π⎤ ⎛ π⎫ π π 6 2π k π π π6 2 2 3⎛ π⎫π图象,若对满足|f (x 1)-g (x 2)|=2 的 x 1,x 2,有|x 1-x 2|min =3,则 φ=.答案π6解析 因为 g (x )=sin [2 x -φ =sin(2x -2φ),所以|f (x 1)-g (x 2)|=|sin 2x 1-sin(2x 2-2φ)|=2.因为-1≤sin 2x 1≤1,-1≤sin(2x 2-2φ)≤1,所以 sin 2x 1 和 sin(2x 2-2φ)的值中,一个为 1,另一个为-1,不妨取 sin 2x 1=1,sin(2x 2-2φ)π π=-1,则 2x 1=2k 1π+2,k 1∈Z,2x 2-2φ=2k 2π-2,k 2∈Z,2x 1-2x 2+2φ=2(k 1-k 2)π+π,(k 1⎪⎪因为0<φ<,所以0<-φ<,则φ=.答案y=10sin⎝8x+4⎭+20,x∈[6,14]所以A=×(30-10)=10,b=×(30+10)=20,所以ω=.又×10+φ=2π,4所以y=10sin⎝8x+4⎭+20,x∈[6,14].5.(2014·安徽)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,答案3π-k2)∈Z,π得|x1-x2|=⎪(k1-k2)π+2-φ⎪.πππ222ππ故当k1-k2=0时,|x1-x2|min=2-φ=3,π64.(教材改编)如图,某地一天从6~14时的温度变化曲线近似满足函数y=A sin(ωx+φ)+b,则这段曲线的函数解析式为.⎛π3π⎫解析从图中可以看出,从6~14时的是函数y=A sin(ωx+φ)+b的半个周期,121212π又2×ω=14-6,π8π83π解得φ=,⎛π3π⎫π4则φ的最小正值是.8解析∵函数f(x)=sin(2x+)的图象向右平移φ个单位得到g(x)=sin[2(x-φ)+]=sin(2x+又∵g(x)是偶函数,∴-2φ=kπ+(k∈Z).∴φ=--(k∈Z).当k=-1时,φ取得最小正值.例1已知函数y=2sin⎝2x+3⎭.(3)说明y=2sin⎝2x+3⎭的图象可由y=sin x的图象经过怎样的变换而得到.解(1)y=2sin⎝2x+3⎭的振幅A=2,周期T==π,初相φ=.(2)令X=2x+,则y=2sin⎝2x+3⎭=2sin X.6y=2sin⎝2x+3⎭πππ444-2φ),ππ42kππ283π8题型一函数y=A sin(ωx+φ)的图象及变换⎛π⎫(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;⎛π⎫⎛π⎫2ππ23π⎛π⎫3列表如下:xXy=sinX⎛π⎫π-π12π212π3π7π123π2-1-25π62π描点画出图象,如图所示:(3)方法一 把 y =sin x 的图象上所有的点向左平移 个单位长度,得到 y =sin ⎝x +3⎭的图象; 再把 y = sin ⎝x +3⎭ 的图象上所有点的横坐标缩短到原来的sin ⎝2x +3⎭的图象;最后把 y =sin ⎝2x +3⎭上所有点的纵坐标伸长到原来的 2 倍(横坐标不变 ),即可得到 y =2sin ⎝2x +3⎭的图象.方法二 将 y =sin x 的图象上所有点的横坐标缩短为原来的 倍(纵坐标不变),得到 y =sin 2x再将 y =sin 2x 的图象向左平移 个单位长度,得到 y =sin ⎣2⎝x +6⎭⎦=sin ⎝2x +3⎭的图象;再将 y =sin ⎝2x +3⎭的图象上所有点的纵坐标伸长为原来的 2 倍(横坐标不变),即得到 y =2sin ⎝2x +3⎭的图象.设 z =ωx +φ,由 z 取 0, ,π, π,2π 来求出相应的 x ,通过列表,计算得出五点坐标,描(1)把函数 y =sin(x + )图象上各点的横坐标缩短到原来的 (纵坐标不变),再将图象向右平移 个单位长度,那么所得图象的一条对称轴方程为(填正确的序号).①x =- ;②x =- ;③x = ;④x = .(2)设函数 f (x )=cos ωx ( ω>0),将 y =f (x )的图象向右平移 个单位长度后,所得的图象与原图π ⎛ π⎫ 3⎛ π⎫ 1 2倍 ( 纵坐标不变 ) ,得到 y =⎛ π⎫⎛ π⎫⎛ π⎫12的图象;π ⎡ ⎛ π⎫⎤ ⎛ π⎫ 6⎛ π⎫⎛ π⎫思维升华 (1)五点法作简图:用“五点法”作 y =A sin(ωx +φ)的简图,主要是通过变量代换,π 3 2 2点后得出图象.(2)图象变换:由函数 y =sin x 的图象通过变换得到 y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.π 162π3π π π π2 4 8 4π3象重合,则 ω 的最小值等于.答案 (1)① (2)6解析(1)将y=sin(x+)图象上各点的横坐标缩短到原来的(纵坐标不变),得到函数y=sin(2x+);再将图象向右平移个单位长度,得到函数y=sin[2(x-)+]=sin(2x-),故x 2(2)由题意可知,nT=(n∈N*),例2(1)已知函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<)的图象上一个最高点的坐标为(2,2),答案(1)y=2sin⎝8x+4⎭(2)f(x)=2sin(2x+)⎫解析(1)由题意得A=2,=6-2,所以T=16,ω==.又sin⎝8×2+φ⎭=1,所以+φ=+2kπ(k∈Z).又因为|φ|<,所以φ=.41234π162πππππ63362π=-是其图象的一条对称轴方程.π32ππ∴n·ω=3(n∈N*),∴ω=6n(n∈N*),∴当n=1时,ω取得最小值6.题型二由图象确定y=Asin(ωx+φ)的解析式π2由这个最高点到其右侧相邻最低点间的图象与x轴交于点(6,0),则此函数的解析式为.(2)函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为.⎛ππ⎫π3T2ππ⎛ππ4T84πππ224(2)由题图可知A=2,T7πππ=-=,所以T=π,故ω=2,因此f(x)=2sin(2x+φ),又⎝12π,- 2⎭为最小值点, ∴2× π+φ=2k π+ ,k ∈Z ,∴φ=2k π+ ,k ∈Z ,∴φ= .故 f (x )= 2sin(2x + ).则 A = ,b = .(2)求 ω,确定函数的最小正周期 T ,则可得 ω= . “最大值点”(即图象的“峰点”)时 ωx +φ= ;“最小值点”(即图象的“谷点”)时 ωx +φ= .函数 f (x )=2sin(ωx +φ)⎝ω>0,-2<φ<2⎭的部分图象如图所示,则 φ=3解析 ∵ = π- π,⎛ 7 ⎫7 3π12 2π3又|φ|<π,π3π3思维升华 确定 y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法:(1)求 A ,b ,确定函数的最大值 M 和最小值 m ,M -m M +m2 22πT(3)求 φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时 A ,ω,b 已知)或代入图象与直线 y =b 的交点求 解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定 φ 值时,往往以寻找“最值点”为突破口.具体如下:π23π 2π答案 -T 1152 12 12∴T =π.2π又 T = ω (ω>0),2π∴ ω =π,⎛ ππ⎫.由五点作图法可知当x=π时,2即2×π+φ=,∴φ=-.y).若初始位置为P0⎝2,⎭,当秒针从P(注:此时t=0)正常开始走时,那么点P的纵坐答案y=sin⎝-30t+6⎭位是.又函数周期是60(秒)且秒针按顺时针旋转,即T=⎪ω⎪=60,所以|ω|=π⎪2π⎪ππ63030所以y=sin⎝-30t+6⎭.例4已知关于x的方程2sin2x-3sin2x+m-1=0在⎝2,π⎭上有两个不同的实数根,则m ∴ω=2.512πωx+φ=,5π122π3题型三三角函数图象性质的应用命题点1三角函数模型的应用例3如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P(x,⎛31⎫2标y与时间t的函数关系式为.⎛ππ⎫解析设点P的纵坐标y与时间t的函数关系式为y=sin(ωt+φ).由题意可得,函数的初相,即ω=-,⎛ππ⎫命题点2方程根(函数零点问题)⎛π⎫的取值范围是.答案(-2,-1)解析方程2sin2x-3sin2x+m-1=0可转化为m=1-2sin2x+3sin2x=cos2x+3sin2x=2sin⎝2x+6⎭,x∈⎝2,π⎭.设2x+=t,则t∈⎝6π,6π⎭,6=sin t,t∈⎝6π,6π⎭,有两个不同的实数根.∴y=和y=sin t,t∈⎝6π,6π⎭的图象有两个不同交点,如图:2由图象观察知,的范围为(-1,-),解析由例4知,的范围是⎣-1,2⎭,∴-2≤m<1,图象的两相邻对称轴间的距离为.(1)求f⎝8⎭的值;(2)求函数y=f(x)+f⎝x+4⎭的最大值及对应的x的值.=2⎣2=2sin⎝ωx+φ-6⎭.⎛π⎫⎛π⎫π⎛713⎫∴题目条件可转化为m⎛713⎫2m⎛713⎫m122故m的取值范围是(-2,-1).引申探究例4中,“有两个不同的实数根”改成“有实根”,则m的取值范围是.答案[-2,1)m⎡1⎫2∴m的取值范围是[-2,1).命题点3图象性质综合应用例5已知函数f(x)=3sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)π2⎛π⎫⎛π⎫解(1)f(x)=3sin(ωx+φ)-cos(ωx+φ)⎡31⎤sin(ωx+φ)-2cos(ωx+φ)⎦⎛π⎫因为f(x)是偶函数,则 φ- = +k π(k ∈Z ),所以 φ= +k π(k ∈Z ),又因为 0<φ<π,所以 φ= ,ωx +=2cos ωx .所以 f (x )=2sin 2⎭⎝因此 f =2cos = 2.⎝8⎭x +(2)y =2cos 2x +2cos 2⎣ ⎝ 4⎭⎦2x +=2cos 2x +2cos 2⎭⎝-2x =2 2sin ⎝4 ⎭2x -=-2 2sin4⎭⎝令 2x - =2k π- (k ∈Z ),y 有最大值 2 2,所以当 x =k π- (k ∈Z )时,y 有最大值 2 2.设函数 f (x )=3sin(ωx +φ)(ω>0,- <φ< )的图象关于直线 x = 对称,它的周期①f (x )的图象过点(0, );π π6 22π32π3⎛ π⎫ 2π π由题意得 ω =2· 2,所以 ω=2.故 f (x )=2cos 2x .⎛π⎫ π4⎡ ⎛ π⎫⎤⎛ π⎫=2cos 2x -2sin 2x⎛π ⎫⎛ π⎫ π π4 2π8思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型再利用三角函数的有关知识解决问题.(2)方程 根的个数可转化为两个函数图象的交点个数.(3)研究 y =A sin(ωx +φ)的性质时可将 ωx +φ 视 为一个整体,利用换元法和数形结合思想进行解题.π π 2π2 2 3是 π,则下列说法正确的是.(填序号)32②f (x )在[ , ]上是减函数;③f (x )的一个对称中心是( ,0);∴f (x )=3sin(2x +φ),f ( )=3sin( +φ),则 sin( +φ)=1 或-1.又 φ∈(- , ), +φ∈( , π),∴ +φ= ⇒φ= ,∴f (x )=3sin(2x + ).①:令 x =0⇒f (x )= ,正确.②:令 2k π+ <2x + <2k π+ ,k ∈Z⇒k π+ <x <k π+ ,k ∈Z .令 k =0⇒ <x < ,即 f (x )在( , )上单调递减,而在( , )上单调递增,错误.③:令 x = ⇒f (x )=3sin π=0,正确.④:应平移 个单位长度,错误.典例 (14 分)已知函数 f (x )=2 3sin( + )·cos( + )-sin(x +π).π 2π12 35π12④将 f (x )的图象向右平移|φ|个单位长度得到函数 y =3sin ωx 的图象.答案 ①③2π解析 ∵周期为 π,∴ ω =π⇒ω=2,2π 4π3 34π3π π 4π 5π 112 23 6 64π 3π π3 2 6π 632π π 3π2 6 2π 2π6 3π 2π63π 2π π π6 3 12 65π12π124.三角函数图象与性质的综合问题x π x π2 4 2 4(1)求 f (x )的最小正周期;(2)若将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上(2)将f(x)解析式中的x换成x-,得g(x),然后利用整体思想求最值.解(1)f(x)=23sin(+)·cos(+)-sin(x+π)=3cos x+sin x[4分]=2sin(x+),[6分]于是T==2π.[7分](2)由已知得g(x)=f(x-)=2sin(x+),[9分]∵x∈[0,π],∴x+∈[,],∴sin(x+)∈[-,1],[12分]∴g(x)=2sin(x+)∈[-1,2].[13分]a sinα+b cosα=a2+b2sin(α+φ)(其中tanφ=),或a sinα+b cosα=a2+b2cos(α-φ)(其中tanφ=),在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.(sin x·aπ6的最大值和最小值.思维点拨(1)先将f(x)化成y=A sin(ωx+φ)的形式再求周期;π6规范解答xπxπ2424π32π1ππ66ππ7π666π162π6故函数g(x)在区间[0,π]上的最大值为2,最小值为-1.[14分]解决三角函数图象与性质的综合问题的一般步骤:第一步:(化简)将f(x)化为a sin x+b cos x的形式;第二步:(用辅助角公式)构造f(x)=a2+b2·b+cos x·);a2+b2a2+b2第三步:(求性质)利用f(x)=a2+b2sin(x+φ)研究三角函数的性质;第四步:(反思)反思回顾,查看关键点、易错点和答题规范.温馨提醒(1)在第(1)问的解法中,使用辅助角公式baab(2)求g(x)的最值一定要重视定义域,可以结合三角函数图象进行求解.±1.函数y=cos⎝2x-3⎭的部分图象可能是⎫[方法与技巧]1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x而言,而不是看角ωx+φ的变化.2.由图象确定函数解析式由图象确定y=A sin(ωx+φ)时,φ的确定是关键,尽量选择图象的最值点代入;若选零点代入,应根据图象升降找“五点法”作图中第一个零点.3.对称问题函数y=A sin(ωx+φ)的图象与x轴的每一个交点均为其对称中心,经过该图象上坐标为(x,A)的点与x轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻对称中心的距离).[失误与防范]1.由函数y=sin x的图象经过变换得到y=A sin(ωx+φ)的图象,如先伸缩,再平移时,要把x前面的系数提取出来.2.复合形式的三角函数的单调区间的求法.函数y=A sin(ωx+φ)(A>0,ω>0)的单调区间的确定,基本思想是把ωx+φ看做一个整体.若ω<0,要先根据诱导公式进行转化.3.函数y=A sin(ωx+φ)在x∈[m,n]上的最值可先求t=ωx+φ的范围,再结合图象得出y =A sin t的值域.A组专项基础训练(时间:40分钟)⎛π.2x -,∴当2x - =0,解析∵y =cos 3⎭⎝即 x = 时,函数取得最大值 1,结合图象看,可使函数在 x = 时取得最大值的只有④. 解析 取 K ,L 中点 N ,则 MN = ,因此 A = .由 T =2 得 ω=π.∵函数为偶函数,0<φ<π,∴φ= ,∴f (x )= cos πx ,3.已知函数 f (x )=2sin(ωx +φ)(ω>0,且|φ|< )的部分图象如图所示,则函数 解析 由函数的图象可得 T = π- π,又图象过点( π,2),∴2sin(2× π+φ)=2, ∴φ=- +2k π,k ∈Z ,∵|φ|< ,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则 f ( )的值为.答案3 ∴f ( )= cos = .答案 [k π- ,k π+ ],k ∈Z答案 ④⎛ π⎫ π 3π π6 62.设偶函数 f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,1641212π 2121 1 π 3 62 6 4π2f (x )的单调递增区间是.π 5π12 121 2 54 3 12∴T =π,则 ω=2.5 512 12π3π2∴取 k =0,则 φ=- ,即得 f (x )=2sin(2x - ),∴f (x )的单调增区间为 2k π- ≤2x - ≤2k π+ ,k ∈Z ,即单调递增区间为[k π- ,k π+ ],k ∈Z .4.已知曲线 f (x )=sin ωx + 3cos ωx (ω>0)相邻的两条对称轴之间的距离为 ,且曲线关于点 (x 0,0)中心对称,若 x 0∈⎣0,2⎦,则 x 0==2⎝ sin ωx + =2sin ⎝ωx +3⎭.∵曲线 f (x )=2sin ⎝ωx+3⎭相邻的两条对称轴之间的距离为 ,∴f (x )=2sin ⎝2x +3⎭. 又 x 0∈⎣0,2⎦,∴x 0= . 5.函数 f (x )=sin(2x +φ)⎝|φ|<2⎭的图象向左平移 个单位后所得函数图象的解析式是奇函数,则函数 f (x )在⎣0,2⎦上的最小值为 答案 - 3解析 由函数 f (x )的图象向左平移 个单位得 g (x )=sin ⎝2x +φ+3⎭的图象,π π3 3π π π2 3 2π 5π12 12π2⎡ π⎤.答案π3解析 f (x )=sin ωx + 3cos ωx⎛1 2 3 ⎫ 2 cosωx ⎭⎛ π⎫⎛ π⎫ π 22π∴最小正周期 T =π= ω ,∴ω=2,⎛ π⎫∵曲线关于点(x 0,0)中心对称;π∴2x 0+3=k π(k ∈Z ),k π π∴x 0= 2 -6(k ∈Z ),⎡ π⎤ π 3⎛ π⎫ π 6⎡ π⎤.2π ⎛ π⎫ 6因为是奇函数,所以 φ+ =k π,k ∈Z ,又因为|φ|< ,所以 φ=- ,2x -.所以 f (x )=sin 3⎭⎝0,,所以 2x - ∈ - ,,又 x ∈⎣ 2⎦ ⎣ 33 ⎦ ∴ω= =100π.∴I =10sin(100πt +φ).,10 ,∵图象过点⎝300⎭∴sin( +φ)=1, +φ=2k π+ ,k ∈Z ,∴φ=2k π+ ,k ∈Z ,又∵0<φ< ,∴φ= .100πt +,∴I =10sin6⎭⎝所以当 x =0 时,f (x )取得最小值为- 3.ω>0,0<φ< ) 的图象如右图所示,则当 t =秒时,电流强度是解析由图象知 A =10, = - = , ∴10sin(100π× +φ)=10,当 t = 秒时,I =-5 安.7.若函数 f (x )=sin(ωx +φ) (ω>0 且|φ|< )在区间⎣6, 3 ⎦上是单调递减函数,且函数从 1 减小2到-1,则 f ⎝4⎭= .答案3π3π π2 3⎛ π⎫⎡ π⎤ π ⎡ π 2π⎤ 326. 电流强度 I ( 安 ) 随时间 t ( 秒 ) 变化的函数I = A sin(ωt + φ)(A >0 ,π 12 100安.答案 -5T4 1 12 300 300 1002πT⎛ 1 ⎫ 1300π π π3 3 2π6π π2 6⎛ π⎫1100π ⎡π 2π⎤⎛π⎫2解析由题意可得,函数的周期为2×⎝3-6⎭=π,⎛⎫∴f(x)=sin⎝2x+6⎭,∴f⎝4⎭=sin⎝2+6⎭=cos=.8.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)在一个周期内的图象如图所示.若方程可得φ=答案或π解析由图象可知y=m和y=f(x)图象的两个交点关于直线x=或x=π对称,9.(2015·天津)已知函数f(x)=sin2x-sin2⎝x-6⎭,x∈R.(2)求f(x)在区间⎣-3,4⎦上的最大值和最小值.1-cos⎝2x-3⎭解(1)由已知,有f(x)=-⎛sin2x-所以f(x)的最小正周期T==π.⎛2ππ⎫2π即ω=π,∴ω=2,∴f(x)=sin(2x+φ).πππ由sin⎝2×6+φ⎭=1,|φ|<26,⎛π⎫⎛π⎫⎛ππ⎫π362π2f(x)=m在区间[0,π]上有两个不同的实数x1,x2,则x1+x2的值为.π433π263π4∴x1+x2=3或3π.⎛π⎫(1)求f(x)的最小正周期;⎡ππ⎤⎛π⎫1-cos2x221⎛13=2⎝2cos2x+2⎫1sin2x⎭-2cos2x=311π⎫44cos2x=2sin⎝2x-6⎭.2π2⎡ππ⎤⎡ππ⎤⎛π⎫1 (2)因为f(x)在区间⎣-3,-6⎦上是减函数,在区间⎣-6,4⎦上是增函数,且f⎝-3⎭=-4,4 所以 f (x )在区间⎣-3,4⎦上的最大值为 最小值为- .10.设函数 f (x )= 3- 3sin 2ωx -sin ωx cos ωx (ω>0),且 y =f (x )图象的一个对称中心到最近 的对称轴的距离为 .(2)求 f (x )在区间⎣π, 2 ⎦上的最大值和最小值.解 (1)f (x )= 3- 3sin 2ωx -sin ωx cos ωx= - 3× - sin 2ωx = 3 cos 2ωx - sin 2ωx=-sin ⎝2ωx -3⎭.依题意知 =4× ,ω>0,所以 ω=1.(2)由(1)知 f (x )=-sin ⎝2x -3⎭.当 π≤x ≤ 时, ≤2x - ≤ .⎛2 故 f (x )在区间⎣π, 2 ⎦上的最大值和最小值分别为 ,-1.11.已知函数 f (x )=A sin(ωx +φ) (A >0,|φ|< ,ω>0)的图象的一部分如图所⎛ π⎫1⎛π⎫3f ⎝-6⎭=-2,f ⎝4⎭=,⎡ π π⎤34 ,1 22π 4(1)求 ω 的值; ⎡ 3π⎤231-cos 2ωx 1 2 2 2 12 2⎛π⎫2π π 2ω 4⎛ π⎫3π 5π π 8π 2 3 3 3 所以- 3 π⎫2 ≤sin ⎝2x -3⎭≤1.所以-1≤f (x )≤ 3.⎡ 3π⎤3 2B 组 专项能力提升(时间:20 分钟)π 2示,则该函数的解析式为 .答案 f (x )=2sin ⎝2x +6⎭∴1=2sin(ω·0+φ),即 sin φ= .∵|φ|< ,∴φ= .又∵ π 是函数的一个零点,且是图象递增穿过 x 轴形成的零点,∴ ω+ =2π,∴ω=2. ∴f (x )=2sin ⎝2x +6⎭. 的交点中,若相邻交点距离的最小值为 ,则 f (x )的最小正周期为.解析 f (x )= 3sin ωx +cos ωx =2sin(ωx + )(ω>0).由 2sin(ωx + )=1 得 sin(ωx + )= ,∴ωx + =2k π+ 或 ωx + =2k π+ π(k ∈Z ).故 f (x )的最小正周期 T = =π.13.已知函数 f (x )=cos ⎝3x +3⎭,其中 x ∈⎣6,m ⎦,若 f (x )的值域是⎣-1,- 答案 ⎣ 9 ,18⎦⎛ π⎫解析 观察图象可知:A =2 且点(0,1)在图象上,1 π π2 2 611 11π π12 12 6⎛ π⎫12.(2014· 天津改编)已知函数 f (x )= 3sin ωx +cos ωx (ω>0),x ∈R .在曲线 y =f (x )与直线 y =1π3答案 ππ6π π 16 6 2π π π 56 6 6 6π π π 5令 k =0,得 ωx 1+6=6,ωx 2+6=6π,2π∴x 1=0,x 2=3ω.π 2π π由|x 1-x 2|=3,得3ω=3,∴ω=2.2π2值范围是.⎡2π 5π⎤解析 画出函数的图象.⎛ π⎫ ⎡π ⎤ ⎡ 3⎤ 2 ⎦ ,则 m 的取由 x ∈⎣6,m ⎦,可知 ≤3x + ≤3m + ,且 f ⎝ 9 ⎭=cos π=-1,=- 要使 f (x )的值域是⎣-1,-2 ⎦ 所以 π≤3m + ≤ π,则 ≤m ≤ ,即 m ∈⎣ 9 ,18⎦.14.已知 f (x )=sin ⎝ωx +3⎭ (ω>0),f ⎝6⎭=f ⎝3⎭,且 f (x )在区间⎝6,3⎭上有最小值,无最大值, 答案 146 3 π解析 依题意,x = = 时,y 有最小值,∴sin ⎝4ω+3⎭=-1,∴ ω+ =2k π+ (k ∈Z ),∴ω=8k + (k ∈Z ),∵f (x )在区间⎝6,3⎭上有最小值,无最大值, 15.已知函数 f (x )= 3sin ωx cos ωx +cos 2ωx - (ω>0),其最小正周期为 . (2)将函数 f (x )的图象向右平移 个单位长度,再将图象上各点的横坐标伸长到原来的 2 倍(纵坐标不变),得到函数 y =g (x )的图象,若关于 x 的方程 g (x )+k =0 在区间[0, ]上有且只有一解 (1)f (x )= 3sin ωx cos ωx +cos 2ωx -⎡π ⎤ 5π π π 6 3 3⎛π⎫ 5π 3 因为 f ⎝6⎭=cos 6 2⎛2π⎫,⎡ 3⎤ ,π 7 2π 5π3 6 9 18⎡2π 5π⎤⎛ π⎫ ⎛π⎫ ⎛π⎫ ⎛π π⎫则 ω=.3π π + 2 4⎛π π⎫π π 3π4 3 2143⎛π π⎫π π π 14 ∴3-4<ω,即 ω<12,令 k =0,得 ω= 3 .1 π2 2(1)求 f (x )的表达式;π8π2个实数解,求实数 k 的取值范围.12=sin2ωx+-=sin(2ωx+),所以ω=2,所以f(x)=sin(4x+).(2)将f(x)的图象向右平移个单位长度后,得到y=sin(4x-)的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin(2x-)的图象,所以g(x)=sin(2x-),因为0≤x≤,所以-≤2x-≤,cos2ωx+11所以g(x)∈[-3又g(x)+k=0在区间[0,]上有且只有一个实数解,即函数y=g(x)与y=-k在区间[0,]上≤-k<或-k=1,解得-3<k≤或k=-1,,]∪{-1}.3π2226π2πππ由题意知f(x)的最小正周期T=2,T=2ω=ω=2,π6ππ83ππ33πππ2π23332,1].ππ22有且只有一个交点,由正弦函数的图象可知-32233 22所以实数k的取值范围是(-33 22。
三角函数的图像与性质三角函数是数学中的重要概念,它们的图像和性质对于初中数学学习者来说是必须掌握的内容。
在本文中,我将详细介绍三角函数的图像与性质,并给出一些例子和说明,帮助中学生和他们的父母更好地理解和应用这些知识。
一、正弦函数的图像与性质正弦函数是最基本的三角函数之一,它的图像是一条连续的曲线,呈现出周期性变化。
正弦函数的性质包括:1. 周期性:正弦函数的周期是2π,即在每个2π的区间内,正弦函数的图像重复出现。
2. 幅度:正弦函数的幅度表示波峰和波谷的最大差值,通常记为A。
幅度越大,波峰和波谷的差值越大。
3. 对称性:正弦函数的图像关于y轴对称,即f(x) = -f(-x)。
4. 奇偶性:正弦函数是奇函数,即f(x) = -f(x)。
举例说明:假设有一条正弦函数的图像,周期为2π,幅度为1。
在区间[0, 2π]内,正弦函数的图像先从0逐渐上升到1,然后下降到0,再下降到-1,最后又上升到0。
这样的周期性变化会一直重复下去。
根据正弦函数的性质,可以得出该图像关于y轴对称,且是奇函数。
二、余弦函数的图像与性质余弦函数也是一种常见的三角函数,它的图像和正弦函数有些相似,但也有一些不同之处。
余弦函数的性质包括:1. 周期性:余弦函数的周期也是2π,与正弦函数相同。
2. 幅度:余弦函数的幅度也表示波峰和波谷的最大差值,通常记为A。
与正弦函数不同的是,余弦函数的幅度表示波峰和波谷的绝对值最大差值。
3. 对称性:余弦函数的图像关于y轴对称,即f(x) = f(-x)。
4. 奇偶性:余弦函数是偶函数,即f(x) = f(x)。
举例说明:假设有一条余弦函数的图像,周期为2π,幅度为1。
在区间[0, 2π]内,余弦函数的图像先从1逐渐下降到0,然后下降到-1,再上升到0,最后又上升到1。
这样的周期性变化会一直重复下去。
根据余弦函数的性质,可以得出该图像关于y轴对称,且是偶函数。
三、正切函数的图像与性质正切函数是三角函数中的另一种重要函数,它的图像与正弦函数和余弦函数有很大的不同。
专题三角函数与渐近线-渐近线中三角形函数的综合运用在数学中,三角函数和渐近线是两个重要的概念。
三角函数是描述角度和三角形之间关系的函数,而渐近线是曲线的特殊直线。
本文将讨论在渐近线中综合运用三角函数的问题。
三角函数简介三角函数是数学中一类常见的函数,包括正弦函数、余弦函数和正切函数等。
它们可以描述角度和三角形的各种关系。
例如,正弦函数可以用来计算一个角的对边与斜边的比值,余弦函数可以计算一个角的邻边与斜边的比值。
三角函数在几何、物理和工程等领域中有广泛的应用。
渐近线简介渐近线是曲线的一种特殊直线,具有特定的性质。
当曲线的函数值在趋于无穷大或负无穷大时,渐近线可以用来描述函数的趋势。
常见的渐近线包括水平渐近线和垂直渐近线。
水平渐近线表示函数在某个特定的水平高度趋于无穷大或负无穷大,垂直渐近线表示函数在某个特定的垂直位置无限接近某一值。
渐近线中三角函数的综合运用在渐近线的研究中,可以综合运用三角函数来描述曲线的性质。
例如,在一条曲线的渐近线方程中出现三角函数,可以通过求解方程来确定曲线与渐近线的交点。
这对于分析曲线的形态和特征十分重要。
此外,三角函数还可以用来描述曲线的周期性和周期函数的一些性质。
例如,正弦函数和余弦函数在图像上呈现周期性变化,通过计算周期和振幅,可以推导出曲线的周期性特征。
综合运用三角函数和渐近线的分析方法,可以帮助我们更好地理解曲线的性质,推导出更多的数学结论。
这对于数学领域中的研究和应用具有重要的意义。
结论三角函数和渐近线是数学中重要的概念,它们在数学研究和应用中具有广泛的应用价值。
在渐近线中综合运用三角函数可以帮助我们更好地理解曲线的性质和特征。
通过深入研究三角函数和渐近线的关系,可以推导出更多的数学结论,为数学的发展做出贡献。
以上是关于专题"三角函数与渐近线-渐近线中三角形函数的综合运用"的简要介绍。
希望对您的研究和学习有所帮助!。
三角函数的图像与性质复习教案第一章:引言1.1 三角函数的概念复习三角函数的定义和基本概念,如正弦、余弦、正切等。
引导学生理解三角函数的周期性和奇偶性。
1.2 三角函数的图像复习三角函数的图像特点,如正弦函数的波浪形状、余弦函数的波动形状等。
引导学生理解图像的平移、伸缩等变换。
第二章:正弦函数的图像与性质2.1 正弦函数的图像复习正弦函数的图像特点,如周期性、振幅等。
引导学生理解图像的平移、伸缩等变换。
2.2 正弦函数的性质复习正弦函数的性质,如单调性、奇偶性等。
引导学生理解函数的极值和拐点。
第三章:余弦函数的图像与性质3.1 余弦函数的图像复习余弦函数的图像特点,如周期性、振幅等。
引导学生理解图像的平移、伸缩等变换。
3.2 余弦函数的性质复习余弦函数的性质,如单调性、奇偶性等。
引导学生理解函数的极值和拐点。
第四章:正切函数的图像与性质4.1 正切函数的图像复习正切函数的图像特点,如周期性、振幅等。
引导学生理解图像的平移、伸缩等变换。
4.2 正切函数的性质复习正切函数的性质,如单调性、奇偶性等。
引导学生理解函数的极值和拐点。
第五章:三角函数的图像与性质的综合应用5.1 三角函数的图像与性质的综合应用引导学生理解三角函数图像与性质之间的关系,如周期性、奇偶性等。
举例讲解如何利用三角函数的图像与性质解决实际问题。
第六章:三角函数图像的变换6.1 图像的平移讲解如何通过平移变换得到不同三角函数的图像。
引导学生理解平移的方向和距离对图像的影响。
6.2 图像的伸缩讲解如何通过伸缩变换得到不同三角函数的图像。
引导学生理解伸缩的比例和对称性对图像的影响。
第七章:三角函数的周期性和对称性7.1 周期性复习三角函数的周期性,包括基本周期和周期函数的性质。
引导学生理解周期性在图像上的表现。
7.2 对称性复习三角函数的对称性,包括奇偶性和对称轴。
引导学生理解对称性在图像上的表现。
第八章:三角函数的极值和拐点8.1 极值讲解如何确定三角函数的极大值和极小值。
三角函数的图像和常用公式三角函数是高中数学中的重要部分,主要分为正弦函数、余弦函数和正切函数。
它们的图像和常用公式是学习三角函数的基础,掌握了它们,才能更好地理解三角函数的应用。
一、正弦函数的图像和常用公式正弦函数的图像是一条周期为2π的波形,它的顶峰在(π/2, 1)处,谷底在(3π/2, -1)处。
通过观察正弦函数的图像可以看出,正弦函数是一条奇函数,即关于原点对称的函数。
正弦函数的常用公式有:1. sin(-x) = -sinx2. sin(x + 2πk) = sinx (k∈Z)3. sin(π - x) = sinx4. sin(π + x) = -sinx5. sin(2π - x) = sinx其中,公式1表明正弦函数是一条奇函数,即如果把正弦函数的自变量取相反数,那么正弦函数的函数值也会取相反数。
公式2表明正弦函数具有周期性,即在每隔2π的距离上,正弦函数的函数值重复。
公式3至5则是正弦函数对于特定角度的值的变化规律,这些公式的掌握对于计算三角函数的值很有帮助。
二、余弦函数的图像和常用公式余弦函数的图像也是一条周期为2π的波形,但是它的顶峰在(0,1)处,谷底在(π,-1)处。
与正弦函数不同的是,余弦函数是一条偶函数,即关于y轴对称的函数。
余弦函数的常用公式有:1. cos(-x) = cosx2. cos(x + 2πk) = cosx (k∈Z)3. cos(π - x) = -cosx4. cos(π + x) = -cosx5. cos(2π - x) = cosx与正弦函数相似,余弦函数的公式1和公式2表明了余弦函数的对称性和周期性。
不同的是,余弦函数的公式3至5反映了余弦函数对于特定角度值的变化规律。
三、正切函数的图像和常用公式正切函数的图像是一条周期为π的波形,它的极值在(π/2, 正无穷)和(3π/2, 负无穷)处。
正切函数与前两个三角函数不同的是,它是一条奇函数且是无界的。
三角函数的图像性质及应用三角函数是数学中的重要概念之一,主要包括正弦函数、余弦函数和正切函数等。
它们的图像性质及应用广泛存在于物理、工程、计算机图形学等领域,下面将对其进行详细介绍。
首先介绍正弦函数的图像性质及应用。
正弦函数的图像是一条连续、周期为2π的曲线,其形状为振荡在y轴上下的波浪线。
正弦函数的最大值为1,最小值为-1,中心线为y=0,对称轴为中心线。
在一单位周期内,正弦函数从最小值经过中心线到最大值,再回到中心线。
正弦函数的周期性质与弧度相关,其周期公式为T=2π,其中T为周期。
正弦函数的应用非常广泛,比如在物理学中可以用来描述波动的运动状态,如光波、声波等。
在工程学中,正弦函数可以用来描述交流电的变化规律,同时在信号处理中也有重要作用。
接着介绍余弦函数的图像性质及应用。
余弦函数的图像也是一条连续、周期为2π的曲线,与正弦函数非常相似,但其图像在y轴向左移动了π/2。
余弦函数的最大值为1,最小值为-1,中心线为y=0,对称轴为中心线。
在一单位周期内,余弦函数从最大值经过中心线到最小值,再回到中心线。
余弦函数与正弦函数的周期、相位存在关系,其中余弦函数的相位比正弦函数的相位延迟π/2。
余弦函数的应用也非常广泛,在物理学中可以用来描述振动的运动状态,如弹簧振子、机械波等。
在工程学中,余弦函数可以用来描述交流电的变化规律,同时在图像处理中也常常用到。
最后介绍正切函数的图像性质及应用。
正切函数的图像是一条周期为π的曲线,其形状具有对称性,在每个周期内从负无穷大变到正无穷大,同时具有垂直渐近线和周期渐近线。
正切函数的应用主要体现在三角解析中,可以用于求解各种三角方程以及解决各种与角度有关的问题,如航空飞行、旗杆倾斜、测高仪等。
除了上述的图像性质和应用之外,三角函数还与解析几何、微积分等数学分支紧密相关。
在解析几何中,三角函数可以用来描述平面和空间中点的位置关系、角的大小以及各种几何形状的性质。
在微积分中,三角函数是常见的函数类型,与指数、对数函数一样,具有重要的微分和积分性质,经常被用于求导、积分、级数展开等。
三角函数的图像与性质引言三角函数在数学中起着非常重要的作用,它们的图像与性质也是数学学习过程中的基础内容。
本文将介绍三角函数的图像和常见性质,包括正弦函数、余弦函数和正切函数。
正弦函数的图像与性质正弦函数是三角函数中最常见的函数之一,它的图像呈现周期性的波动。
正弦函数的定义域为实数集,值域为[-1, 1]。
正弦函数的图像可以用下面的公式表示:$$y = \\sin(x)$$正弦函数的图像在周期范围内呈现上升和下降的特点,其中最高点和最低点的纵坐标分别为1和-1。
正弦函数的图像以曲线方式连续无间断地进行。
正弦函数的性质包括: - 正弦函数的周期为$2\\pi$,即在每个周期内,正弦函数的图像完整地重复一次。
- 正弦函数的对称轴为x轴。
- 正弦函数的图像在$[\frac{\pi}{2},\frac{3\pi}{2}] $ 上是增函数,在$[0, \frac{\pi}{2}] $ 和$[\frac{3\pi}{2}, 2\pi] $ 上是减函数。
余弦函数的图像与性质余弦函数也是三角函数中常见的函数,它的图像与正弦函数非常相似,但是相位不同。
余弦函数的定义域为实数集,值域为[-1, 1]。
余弦函数的图像可以用下面的公式表示:$$y = \\cos(x)$$余弦函数的图像在周期范围内呈现上升和下降的特点,其中最高点和最低点的纵坐标分别为1和-1。
余弦函数的图像以曲线方式连续无间断地进行。
余弦函数的性质包括: - 余弦函数的周期为$2\\pi$,即在每个周期内,余弦函数的图像完整地重复一次。
- 余弦函数的对称轴为y轴。
- 余弦函数的图像在$[\pi, 2\pi] $ 上是增函数,在$[0, \pi] $ 上是减函数。
正切函数的图像与性质正切函数是另一个重要的三角函数,它的图像在不同的区间内有不同的特点。
正切函数的定义域是除了$\\frac{\\pi}{2} + k\\pi$(其中k是整数)的所有实数,值域是整个实数集。
三角函数的图像和性质三角函数是数学中的重要概念,它们在几何、物理、工程等领域都有广泛的应用。
本文将重点讨论三角函数的图像和性质,并通过具体的例子来说明。
一、正弦函数的图像和性质正弦函数是最基本的三角函数之一,它的图像可以用来描述周期性变化的现象。
正弦函数的图像是一条连续的曲线,它在[-π/2, π/2]区间内单调递增,在[π/2, 3π/2]区间内单调递减。
在整个定义域[-∞, ∞]上,正弦函数的值域为[-1, 1],且具有奇对称性。
例如,我们考虑正弦函数y = sin(x)在[0, 2π]上的图像。
根据正弦函数的性质,当x=0时,y=0;当x=π/2时,y=1;当x=π时,y=0;当x=3π/2时,y=-1;当x=2π时,y=0。
连接这些点,我们可以得到正弦函数在[0, 2π]上的图像,即一条上下波动的连续曲线。
二、余弦函数的图像和性质余弦函数是另一个基本的三角函数,它也可以用来描述周期性变化的现象。
与正弦函数相比,余弦函数的图像在水平方向上发生了平移,它在[0, 2π]区间内单调递减,在[-π/2, π/2]和[3π/2, 5π/2]区间内单调递增。
在整个定义域[-∞, ∞]上,余弦函数的值域为[-1, 1],且具有偶对称性。
以余弦函数y = cos(x)在[0, 2π]上的图像为例,当x=0时,y=1;当x=π/2时,y=0;当x=π时,y=-1;当x=3π/2时,y=0;当x=2π时,y=1。
连接这些点,我们可以得到余弦函数在[0, 2π]上的图像,即一条波动的连续曲线。
三、正切函数的图像和性质正切函数是三角函数中的另一个重要概念,它描述了斜率的变化。
正切函数的图像具有周期性,其周期为π。
正切函数在定义域的每个周期内,都有无穷多个渐近线,即x=π/2+kπ,其中k为整数。
正切函数的值域为(-∞, ∞)。
以正切函数y = tan(x)在[-π/2, π/2]上的图像为例,当x=-π/4时,y=-1;当x=0时,y=0;当x=π/4时,y=1。
专题01 三角函数的图象与综合应用【命题规律】三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1、三角函数的图象,涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2、利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查.3、三角恒等变换的求值、化简是高考命题的热点,常与三角函数的图象、性质结合在一起综合考查,如果单独命题,多用选择、填空题中呈现,难度较低;如果三角恒等变换作为工具,将其与三角函数及解三角形相结合求解最值、范围问题,多以解答题为主,中等难度.【核心考点目录】核心考点一:齐次化模型 核心考点二:辅助角与最值问题 核心考点三:整体代换与二次函数模型 核心考点四:绝对值与三角函数综合模型 核心考点五:ω的取值与范围问题 核心考点六:三角函数的综合性质【真题回归】1.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( ) A .1B .32C .52D .32.(2022·全国·高考真题(理))设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤⎥⎝⎦D .1319,66⎛⎤⎥⎝⎦3.(2022·全国·高考真题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+⎪⎝⎭,则( )A .()tan 1αβ-=B .()tan 1αβ+=C .()tan 1αβ-=-D .()tan 1αβ+=-4.(2022·全国·高考真题(文))将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( )A .16B .14C .13D .125.(多选题)(2022·全国·高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( )A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减 B .()f x 在区间π11π,1212⎛⎫-⎪⎝⎭有两个极值点 C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =-是曲线()y f x =的切线 6.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为____________. 【方法技巧与总结】1、三角函数图象的变换(1)将sin y x =的图象变换为sin()y A x ωϕ=+(0,0)A ω>>的图象主要有如下两种方法:(2)平移变换函数图象的平移法则是“左加右减、上加下减”,但是左右平移变换只是针对x 作的变换; (3)伸缩变换①沿x 轴伸缩时,横坐标x 伸长(01)ω<<或缩短(1)ω>为原来的1ω(倍)(纵坐标y 不变);②沿y 轴伸缩时,纵坐标y 伸长(1)A >或缩短(01)A <<为原来的A (倍)(横坐标x 不变). (4)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移. 2、三角函数的单调性 (1)三角函数的单调区间sin y x =的单调递增区间是2,2()22k k k ππ⎡⎤π-π+∈⎢⎥⎣⎦Z ,单调递减区间是32,2()22k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ; cos y x =的单调递增区间是[2,2]()k k k π-ππ∈Z ,单调递减区间是[2,2]()k k k ππ+π∈Z ;tan y x =的单调递增区间是,()22k k k ππ⎛⎫π-π+∈ ⎪⎝⎭Z .(2)三角函数的单调性有时也要结合具体的函数图象如结合|sin |y x =,sin ||y x =, |cos |y x =,cos ||cos y x x ==的图象进行判断会很快得到正确答案.3、求三角函数最值的基本思路(1)将问题化为sin()y A x B ωϕ=++的形式,结合三角函数的图象和性质求解. (2)将问题化为关于sin x 或cos x 的二次函数的形式,借助二次函数的图象和性质求解. (3)利用导数判断单调性从而求解. 4、对称性及周期性常用结论 (1)对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.(2)与三角函数的奇偶性相关的结论若sin()y A x ωϕ=+为偶函数,则有()2k k ϕπ=π+∈Z ;若为奇函数,则有()k k ϕ=π∈Z .若cos()y A x ωϕ=+为偶函数,则有()k k ϕ=π∈Z ;若为奇函数,则有()2k k ϕπ=π+∈Z . 若tan()y A x ωϕ=+为奇函数,则有()k k ϕ=π∈Z . 5、已知三角函数的单调区间求参数取值范刪的三种方法(1)子集法:求出原函数相应的单调区间,由已知区间是所求某区间的子集,列不等式(组)求解. (2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正弦、余弦函数的某个单调区间的子集,列不等式(组)求解.(3)周期性:由所给区间的两个端点到其相应对称中心的距离不超过14个周期列不等式(组)求解.【核心考点】核心考点一:齐次化模型【规律方法】齐次分式:分子分母的正余弦次数相同,例如:αααα++sin cos sin cos a b c d (一次显型齐次化)或者αααααααααα++⇒+222222sin cos +sin cos sin cos +sin cos sin cos a b c a b c (二次隐型齐次化)这种类型题,分子分母同除以αcos (一次显型)或者α2cos (二次隐型),构造成αtan 的代数式,这个思想在圆锥曲线里面关于斜率问题处理也经常用到.【典型例题】例1.(2022·广东揭阳·高三阶段练习)若tan 2θ=-,则()sin 1sin 24θθπθ-=⎛⎫- ⎪⎝⎭( )A .25B .25-C .65D .65-例2.(2022·江苏省丹阳高级中学高三阶段练习)已知tan 3α=,则3cos cos πcos 2ααα-=⎛⎫+ ⎪⎝⎭( )A .34-B .34C .310-D .310例3.(2022·湖南·高三阶段练习)已知曲线y =()1,4处的切线的倾斜角为2α,则1sin cos π14ααα++=⎛⎫+ ⎪⎝⎭( ) AB.C .12D .1例4.(2022·湖北·襄阳五中高三开学考试)若ππ2θ<<,tan 3θ=-,=( ) A .35 B .54-C .45-D .45核心考点二:辅助角与最值问题【规律方法】第一类:一次辅助角:αα±sin cos a b αϕ±).(其中ϕ=tan b a)第二类:二次辅助角()ωωω±>2sin cos cos ,0a x x b x a bωωω±=2sin cos cos a x x b x ()()ωωωϕϕ±+=±±=sin2cos212(tan )222a b b b x x x a【典型例题】例5.(2022·内蒙古·赤峰二中高三阶段练习(理))已知函数()41sin cos 55f x x x =+,当x β=时,()f x 取得最大值,则cos β=( ) ABC .47D .17例6.(2022·四川省成都市新都一中高三阶段练习(理))若2,43⎡⎤∈⎢⎥⎣⎦x ππ,则函数2()3sin cos =f x x x x 的值域为( )A.⎡⎢⎣⎦B.⎡⎢⎣⎦C.D.[0,3+例7.(2022·四川省成都市新都一中高三阶段练习(文))若π0,2x ∈⎡⎤⎢⎥⎣⎦,则函数()23sin cos f x x x x=的值域为( )A.⎡⎢⎣⎦B.⎡⎢⎣⎦C.⎡⎣ D.0,3⎡⎣例8.(2022·全国·高三专题练习)函数()222sin f x x x =+,若()()123f x f x ⋅=-,则122x x -的最小值是( ) A .23πB .4πC .3πD .6π例9.(2022·浙江省杭州第二中学高三阶段练习)已知关于x 的方程sin cos 2a x b x +=有实数解,则()()2211a b -+-最小值是______.例10.(2022·全国·高三专题练习)函数()44sin sin cos 44xf x x x =+的最小值为___________. 例11.(2022·全国·高三专题练习)已知2251x y -+=,,x y R ∈,则22x y +的最小值为____.核心考点三:整体代换与二次函数模型【规律方法】三角函数和二次函数交汇也是一种常见题型,我们将其分为三类,第一类是最简单的,就是sin x ,cos x 与cos2x 之间的二次函数关系,第二类则有一点隐藏,就是±sin cos x x 与sin cos x x 之间的关系,第三类则是+sin cos a x b x 与sin2x 之间的关系.【典型例题】例12.(2022·全国·高三专题练习)函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 例13.(2022·全国·高考真题(文))函数cos 22sin y x x =+的最大值为________.例14.(2022·全国·高考真题(理))函数sin cos sin cos y x x x x =++的最大值是_________. 例15.(2022·全国·高三专题练习)已知函数()sin cos 2sin cos 2f x x x x x =+++,则()f x 的最大值为___________.例16.(2022·全国·高三专题练习)若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =+-的最小值是 A.12+B.12-+C .1 D核心考点四:绝对值与三角函数综合模型 【规律方法】关于=sin y x 和=sin y x ,如图,=sin y x 将=sin y x 图像中x 轴上方部分保留,x 轴下方部分沿着x 轴翻上去后得到,故=sin y x 是最小正周期为π的函数,同理ωφ=+sin()y A x 是最小正周期为πω的函数;=sin y x 是将=sin y x 图像中y 轴右边的部分留下,左边的删除,再将y 轴右边图像作对称至左边,故=sin y x 不是周期函数.我们可以这样来表示:ππππππ⎧∈+⎪=⎨-∈-⎪⎩,,sin ([22])sin sin ((22))x x k k x x x k k ,⎧≥⎪=⎨-<⎪⎩sin (0)sin sin (0)x x x x x 【典型例题】例17.(2022·安徽·铜陵一中高三阶段练习(理))已知函数()sin cos f x x x =+,则下列说法正确的是( ) A .()f x 的最小正周期为πB .()f xC .()3f x f x π⎛⎫-= ⎪⎝⎭D .()f x 5,012π⎡⎤-⎢⎥⎣⎦上有解 例18.(2022·全国·高三专题练习)已知()sin |||sin |cos |||cos |=+++f x x x x x ,给出下述四个结论: ①()y f x =是偶函数; ②()y f x =在3,22ππ⎛⎫⎪⎝⎭上为减函数; ③()y f x =在(,2)ππ上为增函数; ④()y f x =的最大值为 其中所有正确结论的编号是( )A .①②④B .①③④C .①②③D .①④例19.(2022·江苏·泗阳县实验高级中学高三阶段练习)已知函数()cos ||2|sin |f x x x =-,以下结论正确的是( )A .π是()f x 的一个周期B .函数在2π0,3⎡⎤⎢⎥⎣⎦单调递减C .函数()f x 的值域为[D .函数()f x 在[2π,2π]-内有6个零点例20.(多选题)(2022·安徽·砀山中学高三阶段练习)已知函数()sin cos 336x x f x π⎛⎫=++ ⎪⎝⎭,则( ) A .()f x 的最小正周期为3π B .()f xC .()f x 在[5,7]ππ上单调递减D .()f x 在[4,4]ππ-上有4个零点例21.(2022·湖南省临澧县第一中学高三阶段练习)函数()sin sin cos cos f x x x x x =+++的最大值为______.例22.(2022·全国·高三专题练习)已知函数()sin 2f x x x π⎛⎫=- ⎪⎝⎭,则 ①()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的最小值是1; ②()f x 的最小正周期是2π;③直线()2k x k Z π=∈是()fx 图象的对称轴;④直线2y x π=与()fx 的图象恰有2个公共点.其中说法正确的是________________.例23.(2022·陕西·长安一中高一期末)关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间()2,π上递增; ③()f x 在[]π,π-上有4个零点; ④()f x 的最大值为2.其中所有正确结论的编号__________.例24.(2022·云南省玉溪第一中学高二期中(文))设函数()cos 2sin f x x x =+,下述四个结论正确结论的编号是__________.①()f x 是偶函数; ②()f x 的最小正周期为π; ③()f x 的最小值为0; ④()f x 在[]0,2π上有3个零点.核心考点五:ω的取值与范围问题【规律方法】1、()sin()f x A x ωϕ=+在()sin()f x A x ωϕ=+区间()a b ,内没有零点⎪⎪⎩⎪⎪⎨⎧+≤+<+<+≤≤-⇒ππϕωπππϕωπk b k k a k T a b 2⎪⎪⎪⎩⎪⎪⎪⎨⎧-+≤-≥≤-⇒ωϕππωϕπk b k a T a b 2 同理,()sin()f x A x ωϕ=+在区间[]a b ,内没有零点 ⎪⎪⎩⎪⎪⎨⎧+<+<+<+<≤-⇒ππϕωπππϕωπk b k k a k T a b 2⎪⎪⎪⎩⎪⎪⎪⎨⎧-+<-><-⇒ωϕππωϕπk b k a T a b 2 2、()sin()f x A x ωϕ=+在区间()a b ,内有3个零点⎪⎩⎪⎨⎧+≤+<++<+≤≤-<⇒ππϕωππππϕωπk b k k a k Ta b T 432(1)(3)(24)T b a k T k a k k b πϕπϕωωπϕπϕωω⎧⎪⎪-+-⎪⇒≤<⎨⎪⎪+<-≤-+-<≤⎪⎩同理()sin()f x A x ωϕ=+在区间[]a b ,内有2个零点⎪⎪⎩⎪⎪⎨⎧+<+≤++≤+<<-≤⇒ππϕωππππϕωπk b k k a k T a b T 32232(2))2(332k TT b k a k b a k πϕππϕωωπϕπϕωω⎧⎪⎪-+-⎪⇒<≤⎨⎪⎪+≤-<-+-≤<⎪⎩ 3、()sin()f x A x ωϕ=+在区间()a b ,内有n 个零点⇒(()(+1)1)(1)22n Tn T b a k k a k n k n b πϕππϕωωπϕπϕωω-+≤-⎧⎪⎪-+-⎪≤<⎨⎪⎪+-+-<≤⎩<⎪同理()sin()f x A x ωϕ=+在区间[]a b ,内有n 个零点(1)(1()()22+1)n T n T b k k a k n k n b a πϕππϕωωπϕπϕωω-+≤-<⎧⎪⎪-+-⎪⇒<≤⎨⎪⎪+-+-≤<⎪⎩4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为214n T +,则21(21)42n n T b a πω++==-. 5、已知单调区间(,)a b ,则2T a b -≤.【典型例题】例25.(2022·河南·模拟预测(文))已知函数()()2sin 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,3x π=-为()f x 的一个零点,3x π=为()y f x =图象的一条对称轴,且()f x 在,20216ππ⎛⎫⎪⎝⎭内不单调,则ω的最小值为______. 例26.(2022·全国·高三专题练习)若函数()()cos 0f x x ωω=>在区间()2,3ππ内既没有最大值1,也没有最小值1-,则ω的取值范围是___________.例27.(2022·上海·高三专题练习)已知函数cos ,[],y a x x ωππ=+∈-(其中,a ω为常数,且0ω>)有且仅有3个零点,则ω的最小值是_________.例28.(2022·宁夏·平罗中学高三期中(理))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在()2ππ,内单调且有一个零点,则ω的最大值是______________.例29.(2022·湖南·永州市第一中学高三阶段练习)若函数()()π2sin 04f x x ωω⎛⎫=+> ⎪⎝⎭在ππ,46⎡⎤-⎢⎥⎣⎦上为增函数,则ω的最大值为________.例30.(2022·全国·高三阶段练习(理))已知函数π()2cos (0)4f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为T ,()f x 的一个极值点为πx=.若π2π33T <<,则ω的最大值是_____.例31.(2022·陕西·蒲城县蒲城中学高三阶段练习(文))将函数()sin2cos 222x x x f x ωωω⎛⎫=-+ ⎪⎝⎭(0ω>)的图象向左平移π3个单位长度,得到曲线C .若C 关于y 轴对称,则ω的最小值是______.例32.(2022·北京师大附中高三阶段练习)记函数()()()cos 0,0f x x ωϕωϕ=+><<π的最小正周期为T ,若()f T =π12x =为()f x 的零点,则ω的最小值为_______. 例33.(2022·云南·高三阶段练习)已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,若π,06⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,()f x 在区间5π7π,1818⎛⎫⎪⎝⎭上有最大值点无最小值点,且5π7π1818f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,记满足条件的ω的取值集合为M ,则=M ______.例34.(2022·四川成都·模拟预测(理))已知函数()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭,若03f π⎛⎫=⎪⎝⎭,且()f x 在5,312ππ⎛⎫ ⎪⎝⎭上有最大值,没有最小值,则ω的最大值为______. 例35.(2022·全国·高三专题练习(理))设函数()sin()f x x ωϕ=+,其中0ω>.且1(0),0263f f f ππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,则ω的最小值为________.例36.(2022·福建省福州教育学院附属中学高三开学考试)已知()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭,63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,则ω=______.例37.(多选题)(2022·山西·高三阶段练习)已知函数()(0)6f x x πωω⎛⎫=-> ⎪⎝⎭,若()f x 在区间π,π3⎛⎤⎥⎝⎦内没有零点,则ω的值可以是( )A .18B .12C .76D .32核心考点六:三角函数的综合性质 【典型例题】例38.(多选题)(2022·山东德州·高三期中)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭同时满足下列三个条件:②该函数图象的两条对称轴之间的距离的最小值为π; ③该函数图象关于5,03π⎛⎫⎪⎝⎭对称. 那么下列说法正确的是( ) A .ϕ的值可唯一确定B .函数56f x π⎛⎫-⎪⎝⎭是奇函数 C .当52()6x k k ππ=-∈Z 时,函数()f x 取得最小值 D .函数()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增例39.(多选题)(2022·湖北襄阳·高三期中)函数π()sin(2)3f x x =-的图象向左平移π4个单位长度,得到函数()g x 的图象,则下列结论正确的有( ) A .直线5π6x =-是()g x 图象的一条对称轴B .()g x 在ππ(,)26-上单调递增C .若()g x 在(0,)α上恰有4个零点,则23π29π(,]1212α∈ D .()g x 在ππ[,]42上的最大值为12例40.(多选题)(2022·江苏南通·高三期中)已知函数()f x ,()g x 的定义域均为R ,它们的导函数分别为()f x ',()g x '.若()1y f x =+是奇函数,()()cos g x x π'=,()f x 与()g x 图象的交点为()11,x y ,()22,x y ,…,(),m m x y ,则( )A .()f x 的图象关于点()1,0-对称B .()f x '的图象关于直线1x =对称C .()g x 的图象关于直线12x =对称D .()1mi i i x y m =+=∑例41.(多选题)(2022·山东菏泽·高三期中)已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,则下列说法正确的是( ).A .π2f ⎛⎫= ⎪⎝⎭B .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减 C .()f x 在区间π11π,1212⎛⎫-⎪⎝⎭上有且仅有2个零点 D .将()f x 的图象向右平移π12个单位长度后,可得到一个奇函数的图象 例42.(多选题)(2022·河北·模拟预测)已知函数π()sin()(0,0π),()04f x x f ωϕωϕ=+><<=,且对任意x ∈R均有π()(),()2f x f f x 在π[0,]2上单调递减,则下列说法正确的有( ) A .函数()f x 为偶函数B .函数()f x 的最小正周期为2πC .若1()([0,2π])3f x x =∈的根为(1i x i =,2,⋯,)n ,则14πn i i x ==∑ D .若(2)()f x f x >在(,)m n 上恒成立,则n m -的最大值为π3例43.(多选题)(2022·广东·深圳实验学校光明部高三期中)已知函数π()sin()0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图(1)所示,函数()()1111()cos 0,0,||πg x A x A ωαωα=+>><的部分图象如图(2)所示,下列说法正确的是( )A .函数()y f x =的周期为2πB .函数()y f x =的图象关于直线1912x π=对称 C .函数()1y f x =-在区间[0,2]π上有4个零点 D .将函数()y f x =的图像向左平移23π可使其图像与()y g x =图像重合例44.(多选题)(2022·福建·厦门外国语学校高三期中)将函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭图像上所有的点向右平移π6个单位长度,得到函数()g x 的图像,则下列说法正确的是( ) A .()g x 的最小正周期为π B .()g x 图像的一个对称中心为7π,012⎛⎫⎪⎝⎭C .()g x 的单调递增区间为()π5ππ,πZ 36k k k ⎡⎤++∈⎢⎥⎣⎦D .()g x 的图像与函数πsin 26y x ⎛⎫=- ⎪⎝⎭的图像重合例45.(多选题)(2022·黑龙江齐齐哈尔·高三期中)已知()44cossin 22x xf x =+,则下列说法错误的是( ) A .函数()f x 的最小正周期为2π B .函数4f x π⎛⎫- ⎪⎝⎭为奇函数C .函数()f x 在,63ππ⎛⎫⎪⎝⎭上的值域为5,18⎛⎫⎪⎝⎭D .函数()34y f x =-在区间[]2,2ππ-上的零点个数为8【新题速递】一、单选题1.(2022·河北·张家口市第一中学高三期中)函数()()πtan 0,02f x x ωϕϕω⎛⎫=+<<> ⎪⎝⎭某相邻两支图象与坐标轴分别交于点π,06A ⎛⎫ ⎪⎝⎭,2π,03B ⎛⎫⎪⎝⎭,则方程()[]πsin 2,0,π3f x x x ⎛⎫=-∈ ⎪⎝⎭所有解的和为( ) A .5π12B .5π6 C .π2D .π2.(2022·北京市第十一中学高三阶段练习)已知函数()2π2cos 4f x x ⎛⎫=- ⎪⎝⎭则( )A .()f x 是奇函数B .函数()f x 的最小正周期为4πC .曲线()y f x =关于π2x =对称D .()()12f f >3.(2022·贵州·顶效开发区顶兴学校高三期中(理))已知函数()()sin f x x ωϕ=+(0ω>,π<ϕ),其图象相邻两条对称轴的距离为π2,且对任意x ∈R ,都有()7π12f x f ⎛⎫⎪⎝⎭,则在下列区间中,()f x 为单调递减函数的是( ) A .ππ,63⎡⎤-⎢⎥⎣⎦B .7π0,12⎡⎤⎢⎥⎣⎦C .π12π,2⎡⎤⎢⎥⎣⎦D .7π,π12⎡⎤⎢⎥⎣⎦4.(2022·吉林长春·模拟预测)定义域为[]0,π的函数())()1cos cos 02f x x x x ωωωω=-+>,其值域为1,12⎡⎤-⎢⎥⎣⎦,则ω的取值范围是( ) A .30,2⎛⎤ ⎥⎝⎦B .3,32⎡⎤⎢⎥⎣⎦C .10,3⎛⎤⎥⎝⎦D .12,33⎡⎤⎢⎥⎣⎦5.(2022·江苏南通·高三期中)已知112tan sin =-αα,则πtan 4α⎛⎫-= ⎪⎝⎭( )A .7-B .17-C .19D .436.(2022·河南·高三阶段练习(理))设函数()sin()(0)5f x x πωω=+>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论中,正确结论的编号是( ) ①()f x 在(0,2)π有且仅有3个极大值点②()f x 在(0,2)π有且仅有2个极小值点③()f x 在05π⎛⎫⎪⎝⎭,单调递增④ω的取值范围是1229510⎡⎫⎪⎢⎣⎭, A .①④B .②③C .①②③D .①③④7.(2022·天津市南开中学滨海生态城学校高三阶段练习)下列关于函数()4cos cos 3f x x x ⎛⎫=- ⎪⎝⎭π的命题,正确的有( )个(1)它的最小正周期是π2(2)π,012⎛⎫-⎪⎝⎭是它的一个对称中心 (3)π6x =是它的一条对称轴 (4)它在π0,3⎛⎤⎥⎝⎦上的值域为[]2,3A .0B .1C .2D .38.(2022·宁夏六盘山高级中学高三期中(理))已知函数()()sin f x x ωϕ=+(其中0,2πωϕ><),()30,88f f x f ππ⎛⎫⎛⎫-=≤ ⎪ ⎪⎝⎭⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫- ⎪⎝⎭上单调,给出下列命题①()f x 是偶函数;②()304f f π⎛⎫= ⎪⎝⎭;③ω是奇数;④ω的最大值为3;其中正确的命题有( )A .①②③B .①②④C .②③④D .①③④二、多选题9.(2022·重庆八中高三阶段练习)已知函数()()sin 2(0π)f x x ϕϕ=+<<,曲线()y f x =关于点7π,012⎛⎫- ⎪⎝⎭中心对称,则( )A .将该函数向左平移π6个单位得到一个奇函数B .()f x 在3π7π,46⎛⎫⎪⎝⎭上单调递增 C .()f x 在π7π,1212⎛⎫-⎪⎝⎭上只有一个极值点 D .曲线()y f x '=关于直线π6x =对称10.(2022·福建·泉州五中高三期中)已知函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭,则下列结论正确的是( )A .直线7π6x =是()fx 的对称轴B .点2π,03⎛⎫⎪⎝⎭是()f x 的对称中心 C .()f x 在区间π22π,3⎡⎤⎢⎥⎣⎦上单调递减D .()f x 的图象向右平移7π12个单位得cos 2y x =的图象11.(2022·山东青岛·高三期中)已知函数i π()sin 23s n 2cos π66f x x x x x ⎛⎫⎛⎫=++-- ⎪ ⎪⎝⎭⎝⎭,则( )A .()f x 的最大值为2B .π3x =是()f x 的图象的一条对称轴C .()f x 在ππ,63⎛⎫-⎪⎝⎭上单调递减 D .()f x 的图象关于π,06⎛⎫ ⎪⎝⎭对称12.(2022·湖北·荆门市龙泉中学高三阶段练习)设()()sin f x x ωϕ=+(其中ω为正整数,π2<ϕ),且()f x 的一条对称轴为π12x =-;若当0ϕ=时,函数()f x 在ππ,55⎡⎤-⎢⎥⎣⎦单调递增且在ππ,33⎡⎤-⎢⎥⎣⎦不单调,则下列结论正确的是( ) A .2ω=B .()f x 的一个对称中心为5π,06⎛⎫⎪⎝⎭C .函数()f x 向右平移π12个单位后图象关于y 轴对称 D .将()f x 的图象的横坐标变为原来的一半,得到()g x 的图象,则()g x 的单调递增区间为()ππ5ππ,Z 242242k k k ⎛⎫-++∈ ⎪⎝⎭三、填空题13.(2022·甘肃·兰州市外国语高级中学高三阶段练习(文))已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+><<⎪⎝⎭的相邻对称轴之间的距离为π2,且()f x 图象经过点π,03P ⎛⎫⎪⎝⎭,则下列说法正确的是___________.(写出所有正确的题号)A .该函数解析式为()πsin 23f x x ⎛⎫=+ ⎪⎝⎭;B .函数()f x 的一个对称中心为2π,03⎛⎫-⎪⎝⎭C .函数y =()π5ππ,π2424k k k ⎡⎤-++∈⎢⎥⎣⎦Z D .将函数()y f x =的图象向右平移(0)b b >个单位,得到函数()g x 的图象,且函数()g x 的图象关于原点对称,则b 的最小值为π3.14.(2022·四川省遂宁市教育局模拟预测(文))正割(Secant ,sec )是三角函数的一种,正割的数学符号为sec ,出自英文secant .该符号最早由数学家吉拉德在他的著作《三角学》中所用,正割与余弦互为倒数,即1sec cos x x=.若函数()sec sin f x x x x =⋅-,则下列结论正确的有__ ①函数()f x 的图像关于直线x π=对称;②函数()f x 图像在(),()f ππ处的切线与x 轴平行,且与x 轴的距离为π; ③函数()f x 在区间95,168ππ⎡⎤⎢⎥⎣⎦上单调递增; ④()f x 为奇函数,且()f x 有最大值,无最小值.15.(2022·河南·驻马店市第二高级中学高三阶段练习(理))若1sin cos 2θθ=,则()sin 1sin 2sin cos θθθθ-=+______.16.(2022·吉林·东北师大附中模拟预测)已知函数()sin ||f x x x =,若关于x 的方程()f x m =在4π,2π3⎛⎤- ⎥⎝⎦上有三个不同的实根,则实数m 的取值范围是_________. 四、解答题17.(2022·江西·丰城九中高三开学考试(理))已知函数()2cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)若函数()()g x f x k =-在区间π0,2⎡⎤⎢⎥⎣⎦内有两个不同的零点,求实数k 的取值范围.18.(2022·江苏盐城·高三阶段练习)已知函数()22cos 2sin cos sin (04)f x x x x x ωωωωω=+-<<,且_____.从以下①②③三个条件中任选一个,补充在上面条件中,并回答问题:①过点;8π⎛⎝②函数()f x 图象与直线0y 的两个相邻交点之间的距离为;π③函数()f x 图象中相邻的两条对称轴之间的距离为2π.(1)求函数()f x 的单调递增区间;(2)设函数()2cos 23g x x π⎛⎫=-⎪⎝⎭,则是否存在实数m ,使得对于任意1[0,]2x π∈,存在2[0,]2x π∈,()()21m g x f x =-成立?若存在,求实数m的取值范围;若不存在,请说明理由.19.(2022·黑龙江·哈师大附中高三阶段练习)已知函数()4sin cos 3f x x x π⎛⎫=- ⎪⎝⎭(1)求函数()f x 的单调递增区间;(2)若函数()()32g x f x =-在区间(0,π)上恰有2个零点()1212,x x x x <,求()12cos x x -的值.20.(2022·福建省诏安县桥东中学高三期中)已知函数()()()sin 0,0,πf x A x A ωϕωϕ=+>><的部分图象如图所示.(1)求()f x 的解析式及对称中心;(2)先将()f x 的图象横坐标不变,纵坐标缩短到原来的12倍,得到函数()g x 图象,再将()g x 图象右平移π12个单位后得到()h x 的图象,求函数()y h x =在π3π,124x ⎡⎤∈⎢⎥⎣⎦上的单调减区间.21.(2022·青海·西宁市海湖中学高三期中)某同学用“五点法”画函数()sin()0,||2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在某一个周期内的图象时,列表并填入了部分数据,如下表:()f x 的解析式;(2)将()y f x =图象上所有点向左平移(0)θθ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5,012π⎛⎫⎪⎝⎭,求θ的最小值.22.(2022·北京·北大附中高三阶段练习)已知函数()()sin 0,22f x x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭的部分图像如下图所示.(1)直接写出()f x 的解析式;(2)若对任意0,3s π⎡⎤∈⎢⎥⎣⎦,存在[]0,t m ∈,满足()()f s f t =-,求实数m 的取值范围.。
三角函数的图像和性质三角函数是高中数学中的重要概念之一。
它包括正弦函数、余弦函数、正切函数等。
在三角函数中,最基本的一个概念是函数的图像和性质,下面将就三角函数的图像和性质进行探讨。
一、正弦函数的图像和性质正弦函数是三角函数中最基本的函数之一,它表示的是一个周期为2π,振幅为1的波动函数。
在坐标系中,正弦函数的图像是一条标准正弦曲线,左右对称,穿过原点,波形呈现峰值、谷值循环的过程。
正弦函数的性质包括:1. 周期性:正弦函数的周期为2π。
2. 奇偶性:正弦函数是奇函数,即sin(-x)=-sin(x)。
3. 对称性:正弦函数以y轴为中心对称。
二、余弦函数的图像和性质余弦函数也是三角函数中的一个重要函数,它表示的是一个周期为2π,振幅为1的波动函数。
与正弦函数不同的是,余弦函数的图像是一个横向平移的正弦曲线,左右对称,波形呈现峰值、谷值循环的过程。
余弦函数的性质包括:1. 周期性:余弦函数的周期为2π。
2. 奇偶性:余弦函数是偶函数,即cos(-x)=cos(x)。
3. 对称性:余弦函数以x轴为中心对称。
三、正切函数的图像和性质正切函数是另一种常见的三角函数,它表示的是正弦函数与余弦函数之比。
正切函数的图像呈现周期性,但是与正弦函数、余弦函数不同的是,它有着不连续的特点。
在正切函数上,存在无数个极点,并没有定义值。
正切函数的性质包括:1. 周期性:正切函数的周期为π。
2. 奇偶性:正切函数是奇函数,即tan(-x)=-tan(x)。
3. 对称性:正切函数以原点为中心对称。
四、三角函数的应用三角函数不仅仅是一些抽象的数学概念,同时也涵盖着很多重要的应用。
例如在物理学中,三角函数常用于描述波动现象、声音、光线等的特性。
在力学中,三角函数被广泛地用于描述力的方向、角度等概念。
在设计、建造领域中,三角函数也被应用于各种形式的结构计算。
总结:以上是对三角函数的图像和性质及其在实际应用中的相关探讨。
通过对这些概念的深入了解和掌握,我们可以更好地理解数学、物理等学科中的基本概念和现象。
三角函数的图像与性质详解三角函数是数学中重要的一个分支,它们在许多领域中都有广泛的应用。
本文将详细解析三角函数的图像与性质,帮助读者更好地理解和运用三角函数。
在介绍三角函数之前,我们首先需要了解什么是角度和弧度。
角度是常用的衡量角的单位,它用度(°)表示。
而弧度则是圆的弧与半径的比值,用弧度符号表示。
角度和弧度之间的相互转换可以通过下面的公式实现:弧度 = 角度× π / 180角度 = 弧度× 180 / π三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
它们的图像可以通过绘制对应的函数图像来表示。
下面我们一一来详细介绍这些三角函数的图像特点和性质。
一、正弦函数(sin)正弦函数是一个周期函数,它的周期是2π。
在一个周期内,正弦函数的取值范围在[-1, 1]之间。
当自变量的取值增大时,正弦函数的图像呈现上升的趋势,而当自变量的取值减小时,正弦函数的图像呈现下降的趋势。
在角度单位下,正弦函数的最小正周期是360°,即相邻两个正弦函数图像重合的最小角度为360°。
二、余弦函数(cos)余弦函数也是一个周期函数,它的周期同样是2π。
在一个周期内,余弦函数的取值范围也在[-1, 1]之间。
与正弦函数相比,余弦函数的图像在横轴上与正弦函数的图像对称。
当自变量的取值增大时,余弦函数的图像呈现下降的趋势,而当自变量的取值减小时,余弦函数的图像呈现上升的趋势。
余弦函数的最小正周期同样也是360°。
三、正切函数(tan)正切函数的周期是π,因此在一个周期内,正切函数的取值范围是无穷的,即正切函数在某些点上没有定义。
正切函数图像在自变量取不同值的时候,会出现若干个奇点,这些奇点对应着正切函数图像的无穷大值和无穷小值。
正切函数的最小正周期是180°。
除了图像外,三角函数还具有以下重要性质:1. 奇偶性:正弦函数是奇函数,即满足sin(-x) = -sin(x);余弦函数和正切函数是偶函数,即满足cos(-x) = cos(x)和tan(-x) = tan(x)。
三角函数的综合运用三角函数是数学中重要的一门分支,广泛应用于各个领域。
它们不仅可用于解决几何问题,还在物理、工程和计算机科学等领域起着重要作用。
本文将探讨三角函数的综合运用,并介绍一些相关的实际应用。
1. 三角函数的基本概念在开始讨论三角函数的综合运用之前,我们首先需要了解一些基本概念。
三角函数包括正弦函数、余弦函数和正切函数,分别表示为sin、cos和tan。
2. 三角函数的性质三角函数具有一些重要的性质,这些性质在综合运用中起到了关键作用。
例如,它们的周期性质使得它们常常在波浪形的变化中产生应用;另外,三角函数之间具有重要的关系,如余弦函数和正弦函数的和差公式等。
3. 三角函数的图形表示三角函数的图形可帮助我们更好地理解它们的性质和变化规律。
通过绘制正弦、余弦和正切函数的图像,我们可以观察到它们的周期性、振幅、分段性等特点。
4. 三角函数在几何中的应用三角函数在几何中有着广泛的应用。
例如,我们可以利用正弦函数来计算三角形的高度,或者利用余弦函数来计算其边长。
通过使用三角函数,我们可以更加准确地解决各种几何问题。
5. 三角函数在物理中的应用三角函数在物理学中也扮演着重要的角色。
例如,我们可以通过正弦函数来描述声音的波动、通过余弦函数来描述电流的变化,或者通过正切函数来解决带有摩擦力的斜面问题。
三角函数的应用使得物理学问题的解决更加精确。
6. 三角函数在工程中的应用在工程领域,三角函数的应用更加广泛。
例如,在建筑设计中,我们可以利用正弦函数来计算建筑物的斜塔高度;在通信工程中,我们可以利用三角函数来计算信号的传播距离。
三角函数在工程中的应用使得工程设计更加可靠和准确。
7. 三角函数在计算机科学中的应用在计算机科学领域,三角函数也有着重要的应用。
例如,图形学中的三角函数可用于计算图像的旋转和变换;在模拟仿真中,三角函数可用于计算物体的运动轨迹。
三角函数的应用使得计算机科学中的数值计算更加精确和高效。
三角函数的图像与性质三角函数是数学中常见的一类函数,包括正弦函数、余弦函数、正切函数等等。
它们在数学和物理学等领域中具有重要的应用和性质。
本文将讨论三角函数的图像与性质,并通过图像展示它们的特点。
一、正弦函数(sine function)正弦函数是最基本的三角函数之一,由于其周期性的特点,在图像上呈现出波浪形状。
在单位圆上,正弦函数的图像可以用来表示角度和弧度的关系。
正弦函数的图像可以通过以下步骤绘制出来:1. 将横轴分成一定的单位,例如每个单位代表30°或π/6。
2. 在每个单位上确定正弦函数的值,即纵坐标的位置。
3. 将所有的点依次连接起来,得到正弦函数的图像。
正弦函数的图像具有以下性质:1. 周期性:正弦函数的一个周期是360°或2π。
在一个周期中,正弦函数的值从最小值到最大值再返回最小值。
2. 对称性:正弦函数是奇函数,其图像关于原点对称。
即f(x) = -f(-x)。
3. 幅值:正弦函数的幅值为1,即图像的振幅为1。
4. 位置:正弦函数的图像在(x, f(x))的点上经过零点。
二、余弦函数(cosine function)余弦函数是另一个重要的三角函数,其图像也呈现出波浪形状,但与正弦函数有一定的相位差。
余弦函数在数学中的应用广泛,例如表示交流电信号的变化。
余弦函数的图像可以通过类似于正弦函数的步骤绘制出来。
余弦函数的图像具有以下性质:1. 周期性:余弦函数的一个周期也是360°或2π。
在一个周期中,余弦函数的值从最大值到最小值再返回最大值。
2. 对称性:余弦函数是偶函数,其图像关于y轴对称。
即f(x) = f(-x)。
3. 幅值:余弦函数的幅值也为1,即图像的振幅为1。
4. 位置:余弦函数的图像在(x, f(x))的点上经过最大值。
三、正切函数(tangent function)正切函数是三角函数中最特殊的一个,其图像呈现出一系列的尖峰和波谷。
正切函数在解决直角三角形问题时经常使用,也在物理学中广泛应用。
三角函数的图像与性质三角函数是数学中的重要概念,涉及到三角比例和角度,广泛应用于几何、物理、工程等领域。
在本文中,我们将讨论三角函数的图像以及其性质。
一、正弦函数(sin)正弦函数是最基本的三角函数之一,用sin表示。
正弦函数的图像为一条连续不断的曲线,其横坐标表示角度(以弧度为单位),纵坐标表示正弦值。
正弦函数的周期是2π,即在区间[0, 2π]内,正弦函数的图像会完整地重复出现。
正弦函数的图像特点如下:1. 在0度(或0弧度)和180度(或π弧度)处,正弦函数的值为0;2. 在90度(或π/2弧度)处,正弦函数的值最大,为1;3. 在270度(或3π/2弧度)处,正弦函数的值最小,为-1;4. 在其他角度处,正弦函数的值位于-1和1之间,根据角度的大小而变化。
二、余弦函数(cos)余弦函数是另一个常见的三角函数,用cos表示。
余弦函数的图像也是一条连续曲线,其横坐标为角度,纵坐标为余弦值。
余弦函数的周期也是2π,即在区间[0, 2π]内,余弦函数的图像会一次完整地重复。
余弦函数的图像特点如下:1. 在0度(或0弧度)和360度(或2π弧度)处,余弦函数的值为1;2. 在180度(或π弧度)处,余弦函数的值最小,为-1;3. 在其他角度处,余弦函数的值位于-1和1之间,根据角度的大小而变化。
三、正切函数(tan)正切函数是三角函数中的第三个重要函数,用tan表示。
正切函数的图像也是一条光滑的曲线,以角度为横坐标,正切值为纵坐标。
正切函数的周期是π,即在区间[0, π]内,正切函数的图像会完整地重复。
正切函数的图像特点如下:1. 在0度(或0弧度)和180度(或π弧度)处,正切函数的值为0;2. 在90度(或π/2弧度)处,正切函数的值不存在,即为无穷大(正无穷或负无穷);3. 在其他角度处,正切函数的值在正无穷和负无穷之间变化。
四、其他三角函数除了正弦、余弦和正切函数外,还有一些相关的三角函数,如余割函数(cosec)、正割函数(sec)和余切函数(cot)等。
高中数学导数与三角综合导数是数学中的重要概念之一,与三角函数的综合运用也是高中数学的重要内容。
本文将重点探讨导数与三角函数的综合应用,以帮助学生更好地理解和应用这一知识点。
一、导数的定义与基本性质导数的定义是指函数在某一点处的变化率,可以用极限的概念来表示。
常见的导数记号有f'(x)、dy/dx或y',表示函数f(x)关于自变量x的导数。
在计算导数时,我们可以利用基本的求导法则,如常数法则、乘积法则、链式法则等来简化计算过程。
此外,导数还具有一些基本性质,如线性性、可导必连续等,这些性质在计算中十分重要。
二、导数的应用导数在实际问题中有广泛的应用,尤其在物理学和经济学等领域中经常被使用。
下面我们将重点讨论导数在三角函数中的应用。
1. 最值问题通过对函数进行求导,我们可以找到函数的驻点和拐点,进而确定函数的最值点。
在三角函数中,最常见的最值问题是求解极值点和最大最小值问题。
2. 函数图像的描绘函数的导数可以告诉我们函数图像的变化趋势,在描绘函数图像时起到了关键的作用。
通过分析导函数的正负性、零点、增减区间等信息,我们可以描绘出函数的基本形态,并且确定函数的极值点和拐点。
三、三角函数的综合应用三角函数是高中数学中的重要内容,也是数学与实际问题相结合的桥梁。
下面我们将介绍一些三角函数的综合应用。
1. 三角函数的周期性三角函数的周期性是指函数图像在一定区间内呈现出重复的规律性。
利用三角函数的周期性,我们可以解决各种周期性问题,如周期函数的图像变化、正弦定理、余弦定理等。
2. 三角函数的和差角公式三角函数的和差角公式是指将两个三角函数的角度进行加减运算时所满足的一些关系。
这些公式在解决三角函数的综合问题中十分有用,例如求解三角方程、计算三角函数的具体数值等。
通过本文的探讨,我们对高中数学中的导数与三角综合有了更深入的了解。
导数的应用可以帮助我们解决函数的最值问题和描绘函数图像,而三角函数的综合应用则为我们解决各种周期性问题和三角方程提供了方法和工具。
三角函数最值及其综合运用【考纲说明】1、了解三角函数的最值(值域),理解三角函数取最值的条件,掌握求三角函数最值的常用方法。
2、结合三角函数的性质,会求形如函数)0>,0≠)(+sin(=w A φwx A y 、)0>,0≠)(+cos(=w A φwx A y 、)0>,0≠)(+tan(=w A φwx A y 的综合问题。
【知识梳理】一、三角函数的最值 1、定义 (1)当2-2=ππk x )∈(Z k 时,x y sin =取最小值1-;当2+2=ππk x )∈(Z k 时,x y sin =取最大值1;正弦函数x y sin =)∈(R x 的值域为[]1,1-。
(2)当ππk x +2=)∈(Z k 时,x y cos =取最小值1-;当πk x 2=)∈(Z k 时,x y cos =取最大值1;余弦函数x y cos =)∈(R x 的值域为[]1,1-。
(3))2+≠,∈(tan =ππk x R x x y 的值域为R 。
2、常用方法(1)求三角函数最值的常用方法①配方法(主要利用二次函数理论及三角函数的有界性);②化为一个角的三角函数(主要利用和差角公式及三角函数的有界性);③数形结合法(常用到直线的斜率关系);④换元法(如万能公式,将三角问题转化为代数问题);⑤基本不等式法等。
(2)三角函数的最值都是在给定区间上取得的,因而特别要注意题设中所给出的区间。
①求三角函数最值时,一般要进行一些代数变换和三角变换,要注意函数有意义的条件及弦函数的有界性②含参数函数的最值问题,要注意参数的作用和影响。
(3)具体方法:①y =a sin x +b cos x 型函数最值的求法:常转化为y (x +ϕ) ②y =a sin 2x +b sin x +c 型:常通过换元法转化为y =at 2+bt +c 型: ③y =dx c b x a ++cos sin 型:i 当x R ∈时,将分母与y 乘转化变形为sin (x +ϕ)=()f y 型。
三角函数的图象与性质一、基础知识:1.三角函数的图象和性质2.正弦函数y =sin x 当x =2k π+π2(k ∈Z ),取最大值1;当x =2k π-π2(k ∈Z )时,取最小值-1.3余弦函数y =cos x 当x =2k π(k ∈Z )时,取最大值1;当x =2k π+π(k ∈Z )时,取最小值-1.4.y =sin x 、y =cos x 、y =tan x 的对称中心分别为(k π,0)(k ∈Z )、 ⎝ ⎛⎭⎪⎫k π+π2,0(k ∈Z ) ⎝ ⎛⎭⎪⎫k π2,0(k ∈Z ).5.y =sin x 、y =cos x 的对称轴分别为 x =k π+π2(k ∈Z )和_ x =k π(k ∈Z ),y =tan x 没有对称轴.二、综合运用:1、五点法绘y =A sin(ωx +φ)或y=A + 的图像:依据:以 = + 为例; =0,=1, = ,=-1, =0在实际画图中,要分别令 + =0、、 、 、 ,再求出x 与y 的值,确定对应的五点坐标。
例:“五点法”绘出y=2图像。
例:“五点法”绘出y= ()的图像,其中x 图像。
注:正切函数的图像采用三点两线的办法。
2、解有关三角函数的方程。
思路:在一个周期内,利用原始函数的图像求出对应的x 的值,然后使用整体替代的思路,解出方程中的x. 例1: -例2:=-例3:2 ()=1 例4:︱ ()︱=例5︱ ()︱=注:在解有关三解函数的非常规方程时,需要使用数形结合的思想,用图像交点的个数来代表方程的解的个数。
例:分析方程 - =0的解的个数。
(2个)例:分析方程x- =0的解的个数。
(1个)提示:利用三角函数线的性质, α时, α α tan α。
例设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实根α、β.(1)求实数a 的取值范围;(2)求α+β的值.【答题模板】解 (1)原方程可化为sin(θ+π3)=-a2,作出函数y =sin(x +π3)(x ∈(0,2π))的图象]由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎪⎨⎪⎧-1<-a2<1-a 2≠32.即-2<a <-3或-3<a <2.(2)由图知:当-3<a <2,即-a 2∈(-1,32)时,直线y =-a2与三角函数y =sin(x +π3)的图象交于C 、D两点,它们中点的横坐标为76π,∴α+β2=7π6,∴α+β=7π3.当-2<a <-3,即-a 2∈(32,1)时,直线y =-a2与三角函数y =sin(x +π3)的图象有两交点A 、B ,由对称性知,α+β2=π6,∴α+β=π3. 综上所述,α+β=π3或α+β=73π.3、解有关三角函数的不等式。
思路:在原始函数的一个周期内,标出有效范围(符合不等式条件的图像),再利用整体替代法求出x 的范围。
例1:例2: ()例3:例4: ()注:在求解三角函数的不等式中,若有效图像为2段,可以通过平移的办法把2段图像合并为一段,而端点的横坐标遵循右移+2 左移 的法则。
例:求函数y =2+log 12x +tan x 的定义域.则⎩⎪⎨⎪⎧2+log 12x ≥0,x >0,tan x ≥0,x ≠k π+π2 (k ∈Z ),得⎩⎪⎨⎪⎧0<x ≤4,k π≤x <k π+π2(k ∈Z ).所以函数的定义域为⎩⎨⎧⎭⎬⎫x |0<x <π2或π≤x ≤4.例:函数y =1-2cos x +lg(2sin x -1)的定义域为__⎣⎢⎡⎭⎪⎫π3+2k π,5π6+2k π.⎩⎪⎨⎪⎧1-2cos x ≥02sin x -1>0⇒⎩⎪⎨⎪⎧cos x ≤12sin x >12得⎩⎪⎨⎪⎧π3+2k π≤x ≤5π3+2k π,k ∈Z π6+2k π<x <5π6+2k π,k ∈Z,x ∈⎣⎢⎡⎭⎪⎫π3+2k π,5π6+2k π4、求有关三角函数的值域。
①“纯”三角函数:求出有效角度的取值范围,并画出有效图像,确定最高点和最低点,它们的纵坐标分别为函数的最大值和最小值。
例:y= ,其中,分析值域。
例:y= ( ),其中,分析值域。
例:y= , 其中, 分析值域。
②结合一次函数、二次函数、分式函数求值域。
例:y=2+1,,分析值域。
例:y=a +b,值域为[- , ,求a 和b. { a=,b=或a=,b=例:函数F(x)=-2a+2a+b,当x时,F(x) [-5,1],求a 和b 。
{a=2,b=-5或a=-2,b=1 例:已知函数f (x )=2a sin(2x -π3)+b 的定义域为[0,π2],函数的最大值为1,最小值为-5,求a 和b 的值.解 ∵0≤x ≤π2,∴-π3≤2x -π3≤23π,∴-32≤sin(2x -π3)≤1,若a >0,则⎩⎪⎨⎪⎧2a +b =1-3a +b =-5,解得⎩⎪⎨⎪⎧a =12-63b =-23+123;若a <0,则⎩⎪⎨⎪⎧2a +b =-5-3a +b =1,解得⎩⎪⎨⎪⎧a =-12+63b =19-123.综上可知,a =12-63,b =-23+123或a =-12+63,b =19-12 3.例求下列函数的值域:(1)y =-2sin 2x +2cos x +2; (2)y =sin x +cos x +sin x cos x . 解(1)y =-2sin 2x +2cos x +2=2cos 2x +2cos x =2(cos x +12)2-12,cos x ∈[-1,1]. 当cos x =1时,y max =4,当cos x =-12时,y min =-12,故函数值域为[-12,4](2)令t =sin x +cos x ,则sin x cos x =t 2-12,且|t |≤2.∴y =t +t 2-12=12(t +1)2-1,∴当t =-1时,y min =-1;当t =2时,y max =12+2.∴函数值域为[-1,12+2].例:求y=的值域。
例:求y=的值域。
5、有关三角函数的奇偶性研究:依据: ( )=- , ,故y= 为奇函数,y= 为偶函数。
推广:y= 为奇函数,y=A 为偶函数。
注:(1)若f(x)= + 或g(x)= A 为奇函数,由于三角函数图像的特殊性,则图像过原点。
例:已知f(x)=2 ( )为奇函数,则 =k +(2)若f(x)= + 或g(x)= A 为偶函数,则图像与Y 轴的交点为最高点或者最低点,这样才能保证图像关于Y 轴对称,即x=0时, + = 或 = 。
例:f(x)=2 ( )为偶函数,则 =k +例:f(x)= ( ) ( )的奇偶性。
[偶函数] 例:f(x)=a +b +7,若f(3)=8,则f(-3)= 6 6、三角函数图像平移、伸缩及对称与翻折:一、图像概念:当函数y =A sin(ωx +φ) (A >0,ω>0),x ∈(-∞,+∞)表示一个振动量时,则A 叫做振幅,T =2πω叫做周期,f =1T_叫做频率,ωx +φ叫做相位,φ叫做初相.二.图象变换基本法则:函数y =A sin(ωx +φ) (A >0,ω>0)的图象可由函数y =sin x 的图象作如下变换得到: (1)相位变换[左右平移]:y =sin x →y =sin(x +φ),把y =sin x 图象上所有的点向左(φ>0)或向右(φ<0)平行移动|φ|个单位.(2)周期变换[伸缩变化]:y =sin (x +φ)→y =sin(ωx +φ),把y =sin(x +φ)图象上各点的横坐标伸长(0<ω<1)或缩短(ω>1)到原来的1ω倍(纵坐标不变).(3)振幅变换:y =sin (ωx +φ)→y =A sin(ωx +φ),把y =sin(ωx +φ)图象上各点的纵坐标伸长(A >1)或缩短(0<A <1)到原来的 A 倍(横坐标不变).例:说明y=2 π+5是由y= 的图像经过怎样的变化得到的。
例:说明y= 的图像经过怎样的变化可以得到y=的图像?例:.(2011·池州月考)要得到函数y =sin ⎝⎛⎭⎪⎫2x -π4的图象,可以把函数y =sin 2x 的图象( B )A .向左平移π8个单位B .向右平移π8个单位C .向左平移π4个单位D .向右平移π4个单位例:.已知函数f(x)=sin ⎝⎛⎭⎪⎫ωx +π4 (x ∈R ,ω>0)的最小正周期为π.将y =f(x)的图象向左平移|φ|个单位长度,所得图象关于y 轴对称,则φ的一个值是 (D ) A.π2B.3π8C.π4D.π8例:已知函数f(x)=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g(x)=cos ωx 的图象,只要将y=f(x)的图象 ( A )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度(3)、图像的对称与翻折:①y= 相同时, 互为相反数,故两函数图像关于 轴对称y=- y= 沿 轴上下翻转y=-结论:y= 沿 轴上下翻转y= 或者 y=A 沿 轴上下翻转y=-A ②y= 相同时, 互为相反数,故两函数图像关于 轴对称y= ( ) y= 沿 轴左右翻转y= ( )结论:y= ( )沿 轴左右翻转y= ( )或者 y=A ( ) 沿 轴左右翻转y=A ( ) ③y= 轴上方图像不变,下方翻至上方y=| |结论:y= ( ) 轴上方图像不变,下方翻至上方y=| ( )| ④y= 轴右方图像不变,左方图像由右方图像对称得到y= | | 注:含绝对值符号的三角函数,可以用分段函数的意义进行分析。
7、三角函数单调性的研究:思路:以y= 和y= 的单调区间为依据,使用整体替代的思路,求出x 的取值范围,在实际应用中,要注意负号和绝对值符号对单调区间的影响。
主要体现在负号可能使得单调区间的相互调换,而绝对值符号影响了原始函数和周期。
例:求函数的y =sin ⎝ ⎛⎭⎪⎫2x -π4的单调区间。
例:求函数y =2sin ⎝ ⎛⎭⎪⎫π4-x 的单调区间.例:求函数y =sin ⎝ ⎛⎭⎪⎫π3-2x ,x ∈[-π,π]的单调递减区间;例:求函数y =3tan ⎝ ⎛⎭⎪⎫π6-x 4的周期及单调区间.例:求函数y=| sin ⎝⎛⎭⎪⎫2x -π4|单调递增区间。
8、三角函数对称轴的求法及应用:依据:y= 图像中对称轴为:x=k;y= 图像中对称轴为:x=k例:求y =-2sin ⎝⎛⎭⎪⎫2x -π4的对称轴。