整数指数幂的运算
- 格式:ppt
- 大小:89.50 KB
- 文档页数:22
1.3.3 整数指数幂的运算法则学习目标1.了解整数指数幂的运算法则。
2.会根据整数指数幂的运算法则,正确熟练地进行指数幂的运算,会把运算结果统一写成正整数指数幂形式。
学习重点整数指数幂的运算法则。
学习难点熟练地运用整数指数幂运算法则解题。
学习过程一、知识链接1.默写正整数指数幂的运算法则(其中m 、n 都是正整数,且0,≠b a )(1)n m a )(=(2)n m a a ⋅= n m a a ÷=(3)_____)(_____)(==n n ba ab 2、默写零次幂与负整数指数幂的运算法则(其中0≠a ,n 为正整数)=0a _______==-n a二、自主学习阅读教材的内容,解答以下问题:1.整数指数幂的运算法则有哪些?用式子表述。
2、为什么同底数幂相除的运算公式,分式乘方的运算公式包括在上述公式中?3、请编写口诀归纳整数指数幂的计算方法幂乘方,指 ;幂乘除,指 ;积乘方 ;负指数幂 算。
4.整数指数幂的混合运算顺序是怎样的?运算结果应将负整数指数幂化成什么?5、完成教材P20练习。
三、合作探究1.先化简再求值4223224)()2()(m m m m m -+∙-+÷-4m ÷,其中1-=m 。
2、计算:223232)61()2()3(-----∙-∙xy y x y x四、总结提升1、本节课我们学过的公式主要有:2、熟记运算口诀。
五、当堂检测(满分100分)1.设0,0≠≠b a ,则_____)4(222=-ab 2.计算:_______)()2(32232=÷---b a c ab3.下列计算正确的是( )A.632a a a =+B.x x x 4)2(32=∙-- C.22)(--=ab ab D.326a a a =÷4.计算:123)(-÷b b 的结果为( )A.5bB.bC.51b D.b 1 5.计算:①)2()2(38232---÷-b a b a②3248)2(xyxy ---。
《整数指数幂的运算法则》教案教学目标1、通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则;2、会用整数指数幂的运算法则熟练进行计算.教学重点用整数指数幂的运算法则进行计算.教学难点指数指数幂的运算法则的理解.教学过程一、创设情境,导入新课.1、正整数指数幂有哪些运算法则?(1)mn m n a a a +⋅=(m 、n 都是正整数);(2)()m n mn a a =(m 、n 都是正整数) (3)()n n na b a b ⋅=, (4)mm n n a a a -=(m 、n 都是正整数,a ≠0) (5)()nn n a a b b =(m 、n 都是正整数,b ≠0)这些公式中的m 、n 都要求是正整数,能否是所有的整数呢?这5个公式中有没有内在联系呢?这节课我们来探究这些问题.板书课题:整数指数幂的运算法则二、合作交流,探究新知.1、公式的内在联系(1)用不同的方法计算:342(1)2 , ()3223⎛⎫ ⎪⎝⎭ 解:3341421(1)2323--===;3343(4)1421(1)222323-+--=⋅=== ()33322823327⎛⎫== ⎪⎝⎭,()331332182323832727--⎛⎫=⋅=⋅=⨯= ⎪⎝⎭ 通过上面计算你发现了什么?幂的除法运算可以利用幂的乘法进行计算,分式的乘方运算可以利用积的乘方进行运算.()mm n m n m n n a a a a a a-+--=⋅==,()11n n n n a a a b a b a b b b --⎛⎫=⋅=⋅=⋅= ⎪⎝⎭因此上面5个幂 的运算法则只需要3个就够了:(1)mn m n a a a +⋅=(m 、n 都是正整数);(2)()m n mn a a =(m 、n 都是正整数) (3)()n n n a b a b ⋅=,2、正整数指数幂是否可以推广到整数指数幂.计算:()()()3332122,23--⋅, 解:(1)3333330333(3)033122222212222122---+-⨯=⨯====⨯===, (2)()3322611333-⎛⎫== ⎪⎝⎭,()32(2)36613323--⨯-=== ()()()333311113232382721623-⨯====⨯⨯⨯ ()3333311111232323827216---⨯=⨯=⨯=⨯= 通过上面计算,你发现了什么?幂的运算公式中的指数m 、n 也可以是负数.也就是说,幂的运算公式中的指数m 、n 可以是整数,二不局限于正整数.我们把这些公式叫整数指数幂的运算法则.三、反思小结,拓展提高.(1)知道了整数指数幂的运算法则只需要三个就可以了.(2)正整数指数幂的运算法则可以推广到整数指数幂.。
指数的运算与指数函数4.1指数的运算【知识梳理】1. 整数指数幂1)定义:我们把n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数。
在上述定义中,n 为整数时,这样的幂叫做整数指数幂。
2)整数指数幂的运算法则:(1)n m a a = (2)=n m a )((3)=n maa (4)=m ab )(3)此外,我们作如下规定:零次幂:)0(10≠=a a ; 负整数指数幂:),0(1+-∈≠=N n a a a nn; 2. 根式:1)n 次方根:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *。
注:①当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数,分别表示为n a -,n a ;负数的偶次方根在实数范围内不存在;②当n 是奇数时,正数的n 次方根是一个正数;负数的n 次方根是一个负数,都表示为na ;③0的任何次方根都是0,记作00=n。
2)正数a 的正n 次方根叫做a 的n 次算数根。
当na 有意义时,n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.注:当n 是奇数时,a a nn =;当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn ;3. 有理指数幂1)我们进行如下规定: n na a=1 (0>a )那么,我们就将整数指数幂推广到分数指数幂。
此外,下面定义也成立: )1,,,0(*>∈>=n N n m a a a n m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm注:0的正分数指数幂等于0,0的负分数指数幂没有意义。
2)规定了分数指数幂的意义后,指数的概念就从整数指数幂推广到了有理数指数幂。
3)有理指数幂的运算性质:(1)r a ·sr r aa +=),,0(Q s r a ∈>; (2)rs s r a a =)(),,0(Q s r a ∈>;(3)s r r a a ab =)(),0,0(Q r b a ∈>> 题型一 根式与幂的化简与求值 【例1】.求下列各式的值:(1)223223-++ (2)347246625-+--+【例2】.计算下列各式的值: (1)()[]75.0343031162)87(064.0---+-+-- (2)()()()012132232510002.0833-+--+⎪⎭⎫⎝⎛----【例3】.化简下列各式:(1)()0,0332>>b a b a ab ba (2)212121211111a a a a a ++------【过关练习】1.求值:(1)335252-++ (2)3332332313421248a a b a ab b ba a ⋅⎪⎪⎭⎫ ⎝⎛-÷++-2.化简:(1)111113131313132---+++++-x xx x x x x x(2)()()14214214433332)1()1(1))((----------++-++-++-+a a a a a a a a a a a a a a a a3.下列关系式中,根式与分数指数幂的互化正确的是_____.())0()4)(0()1()3();0()2();0()1(434334316221>=>=<=>-=--a a a a x xxy y y x x x题型二 含附加条件的求值问题 【例1】(1)若3193=⋅ba,则下列等式正确的是( ) A. 1-=+b a B. 1=+b a C. 12-=+b a D.12=+b a(2)若,123-=++x x x 则2827211227281x x x x x x x x ++⋅⋅⋅++++++⋅⋅⋅++----的值是_____.【例2】(1)已知,32,21==y x 求yx y x y x y x +---+的值; (2)已知b a ,是方程0462=+-x x 的两个根,且0>>b a ,求ba ba +-的值.【过关练习】 1.已知.88(22的值常数),求x x xxa --+=+2.已知32121=+-a a ,求21212323----aa a a 的值.3. 已知122+=xa ,求xx xx aa a a --++33的值题型三 解含幂的方程与等式的证明 【例1】解下列方程 (1)x x )41(212=+ (2)03241=-++x x【例2】已知433cz by ax ==,且1111=++zy x ,求证31313131222)(c b a cz by ax ++=++【过关练习】 1. 解下列方程(1)2291381+⎪⎭⎫⎝⎛=⨯x x (2)0123222=-⨯++x x2.设c b a ,,都是正数,且cb a 643==,求证ba c 122+=.4.2 指数函数及其性质【知识梳理】1. 指数函数 函数 )1,0(≠>=a a a y x叫做指数函数. 2. 指数函数的性质(1)定义域 :实数集合R ; (2)值域 :0>y ;(3) 奇偶性:指数函数是非奇非偶函数(4)单调性:1>a 时,函数 )1,0(≠>=a a a y x在),(+∞-∞上为增函数;10<<a 时,函数)1,0(≠>=a a a y x 在),(+∞-∞上为减函数;(5)函数值:0=x 时,1=y ,图象恒过点(0,1);(6)当0,1>>x a 时1>y ;0,1<>x a 时,10<<y .当10<<a ,0>x 时,10<<y ;0,10<<<x a 时,1>y .题型一 指数函数的概念例1 .已知指数函数)3)(2(--+=a a a y x的图像经过点(2,4),求a 的值.【过关练习】.若指数函数)(x f 的图像经过点(2,9),求)(x f 的解析式及)1(-f 的值.题型二 指数型复合函数的定义域和值域 【例1】.求下列函数的定义域和值域 (1) xy 31-= (2)412-=x y(3)xy -=)32( (4)32221--⎪⎭⎫ ⎝⎛=x x y【例2】.求函数[]2,2,221341-∈+⎪⎭⎫⎝⎛⨯-⎪⎭⎫ ⎝⎛=x y xx 的值域.【例3】.如果函数[]1,1-)1,0(122在且≠>-+=a a a a y x x上有最大值14,试求a 的值.【过关练习】1.求函数xy ⎪⎭⎫⎝⎛-=211的定义域和值域.2.已知集合⎭⎬⎫⎩⎨⎧∈==+R x y y A x,)21(12,则满足B B A =⋂的集合B 可以是( )A. ⎭⎬⎫⎩⎨⎧21,0 B. ⎭⎬⎫⎩⎨⎧<<210x x C.{}11≤≤-x x D.{}0>x x 3.函数22212+-=+x xy 的定义域为M ,值域[]2,1P ,则下列结论一定正确的个数是( )。
指 数 运 算1.整数指数幂的概念*)(N n a a a a a an n ∈⋅⋅=个 )0(10≠=a a ,0(1N n a aa n n∈≠=-2.运算性质: )()(),()(),(Z n b a ab Z n m aa Z n m a a a n n n mnnm n m n m ∈⋅=∈=∈=⋅+3.注意① nma a ÷可看作nmaa -⋅ ∴n m a a ÷=nm aa -⋅=nm a-② n b a )(可看作nn b a -⋅ ∴n ba )(=n nb a -⋅=n n b a根式:⑴计算①23= 9 ,则3是9的平方根 ;②3)5(-=-125 ,则-5是-125的立方根 ;③若46=1296 ,则6是1296 的 4次方根 ;④57.3= ,则是的5次方根 .⑵定义:一般地,若*),1(N n n a x n∈>= 则x 叫做a 的n 次方根。
n a 叫做根式,n叫做根指数,a 叫做被开方数⑶性质:①当n 为奇数时:正数的n 次方根为正数,负数的n 次方根为负数记作: na x =②当n 为偶数时,正数的n 次方根有两个(互为相反数)记作:na x ±= 算数平方根为非负数,na x =③负数没有偶次方根, ④ 0的任何次方根为0⑷常用公式根据n 次方根的定义,易得到以下三组常用公式:①当n 为任意正整数时,(n a )n =a.例如,(327)3=27,(532-)5=-32. ②当n 为奇数时,n n a =a ;当n 为偶数时,n n a =|a|=⎩⎨⎧<-≥)0()0(a a a a .例如,33)2(-=-2,552=2;443=3,2)3(-=|-3|=3.⑶根式的基本性质:n m npmp a a =,(a ≥0). 注意,⑶中的a ≥0十分重要,无此条件则公式不成立. 例如3628)8(-≠-. 用语言叙述上面三个公式:⑴非负实数a 的n 次方根的n 次幂是它本身.⑵n 为奇数时,实数a 的n 次幂的n 次方根是a 本身;n 为偶数时,实数a 的n 次幂的n 次方根是a 的绝对值.⑶若一个根式(算术根)的被开方数是一个非负实数的幂,那么这个根式的根指数和被开方数的指数都乘以或者除以同一个正整数,根式的值不变. 讲解例题: 例1求值①33)8(-;②2)10(- ;③44)3(π- ;④)()(2b a b a >-. 例2求值:63125.132)2(;246347625)1(⨯⨯---++整数指数幂的运算性质: )()(),()(),(Z n b a ab Z n m aa Z n m a a a n n n mnnm n m n m ∈⋅=∈=∈=⋅+正数的正分数指数幂的意义n m nm a a= (a >0,m ,n ∈N *,且n >1)要注意两点:一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互化.另外,我们还要对正数的负分数指数幂和0的分数指数幂作如下规定. 2.规定: (1)nm nmaa1=- (a >0,m ,n ∈N *,且n >1)(2)0的正分数指数幂等于0. (3)0的负分数指数幂无意义.规定了分数指数幂的意义以后,指数的概念就从整数推广到有理数指数.当a >0时,整数指数幂的运算性质,对于有理指数幂也同样适用.即对于任意有理数r,s,均有下面的运算性质.有理指数幂的运算性质: )()(),()(),(Q n b a ab Q n m aa Q n m a a a n n n mnnm n m n m ∈⋅=∈=∈=⋅+说明:若a >0,P 是一个无理数,则pa 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用,有关概念和证明从略. 例题:例1求值:4332132)8116(,)41(,100,8---.例2化简3234[(5)]-的结果是( )A .5B 5.5- D .无意义例3计算:215.13241.6449)91(270001.0⎪⎭⎫⎝⎛+-+--例4.用分数指数幂表示下列分式(其中各式字母均为正数)(1)43a a ⋅ (2)a a a (3)32)(b a -例5计算下列各式(式中字母都是正数).))(2();3()6)(2)(1(88341656131212132n m b a b a b a -÷-练习:计算下列各式1、)65)(41(561312112132-----y x y x yx2、63122332⨯⨯3、120.750311(0.064)(16()23---÷÷-=4、5、 212112m mm m +++--6、已知x+x -1=3,求下列各式的值:.)2(,)1(23232121--++x x x x7.比较大小:2,3,535。