智能控制 第2章 模糊控制仿真简介(2)
- 格式:ppt
- 大小:2.08 MB
- 文档页数:16
模糊控制理论模糊控制理论是以模糊数学为基础,用语言规则表示方法与先进的计算机技术,由模糊推理进行决策的一种高级控制策。
模糊控制作为以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制,它已成为目前实现智能控制的一种重要而又有效的形式尤其是模糊控制与神经网络、遗传算法及混沌理论等新学科的融合,正在显示出其巨大的应用潜力。
实质上模糊控制是一种非线性控制,从属于智能控制的范畴。
模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。
本文简单介绍了模糊控制的概念及应用,详细介绍了模糊控制器的设计,其中包含模糊控制系统的原理、模糊控制器的分类及其设计元素。
“模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。
“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。
模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量与模糊逻辑推理为基础的一种计算机数字控制技术。
模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它是以模糊数学为基础,用语言规则表示方法与先进的计算机技术,由模糊推理进行决策的一种高级控制策。
在1968~1973年期间Zadeh·L·A先后提出语言变量、模糊条件语句与模糊算法等概念与方法,使得某些以往只能用自然语言的条件语句形式描述的手动控制规则可采用模糊条件语句形式来描述,从而使这些规则成为在计算机上可以实现的算法。
1974年,英国伦敦大学教授Mamdani·E·H研制成功第一个模糊控制器, 并把它应用于锅炉与蒸汽机的控制,在实验室获得成功。
这一开拓性的工作标志着模糊控制论的诞生并充分展示了模糊技术的应用前景。
模糊控制实质上是一种非线性控制,从属于智能控制的范畴。
模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。
1.模糊控制的相关理论和概念1.1 模糊控制的发展模糊控制理论是在美国加州伯克利大学的L. A.Zadeh教授于1965年建立的模糊集合论的数学基础上发展起来的。
之后的几年间Zadeh又提出了模糊算法、模糊决策、模糊排序、语言变量和模糊IF-THEN规则等理论,为模糊理论的发展奠定了基础。
1975年, Mamdan和Assilian创立了模糊控制器的基本框架,并用于控制蒸汽机。
1978年,Holmblad和Ostergaard为整个工业过程开发出了第一个模糊控制器——模糊水泥窑控制器。
20世纪80年代,模糊控制开始在工业中得到比较广泛的应用,日本仙台地铁模糊控制系统的成功应用引起了模糊领域的一场巨变。
到20世纪90年代初,市场上已经出现了大量的模糊消费产品。
近30 年来, 因其不依赖于控制对象的数学模型、鲁棒性好、简单实用等优点, 模糊控制已广泛地应用到图像识别、语言处理、自动控制、故障诊断、信息检索、地震研究、环境预测、楼宇自动化等学科和领域, 并且渗透到社会科学和自然科学许多分支中去, 在理论和实际运用上都取得了引人注目的成果。
1.2 模糊控制的一些相关概念用隶属度法来定义论域U中的集合A,引入了集合A的0-1隶属度函数,用A(x) 表示,它满足:A(x)用0-1之间的数来表示x属于集合A的程度,集合A等价与它的隶属度函数A(x)模糊系统是一种基于知识或基于规则的系统。
它的核心就是由所谓的IF-THEN规则所组成的知识库。
一个模糊的IF-THEN规则就是一个用连续隶属度函数对所描述的某些句子所做的IF-THEN形式的陈述。
例如:如果一辆汽车的速度快,则施加给油门的力较小。
这里的“快”和“较小”分别用隶属度函数加以描述。
模糊系统就是通过组合IF-THEN规则构成的。
构造一个模糊系统的出发点就是要得到一组来自于专家或基于该领域知识的模糊IF-THEN规则,然后将这些规则组合到单一系统中。
不同的模糊系统可采用不用的组合原则。
第一章绪论1 •什么是智能、智能系统、智能控制答:“智能”在美国Heritage词典定义为“获取和应用知识的能力”。
“智能系统”指具有一定智能行为的系统,是模拟和执行人类、动物或生物的某些功能的系统。
“智能控制”指在传统的控制理论中引入诸如逻辑、推理和启发式规则等因素,使之具有某种智能性;也是基于认知工程系统和现代计算机的强大功能,对不确定环境中的复杂对象进行的拟人化管理。
2 •智能控制系统有哪几种类型,各自的特点是什么答:智能控制系统的类型:集散控制系统、模糊控制系统、多级递阶控制系统、专家控制系统、人工神经网络控制系统、学习控制系统等。
各自的特点有:集散控制系统:以微处理器为基础,对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统。
该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。
人工神经网络:它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的尖系,从而达到处理信息的目的。
专家控制系统:是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题。
可以说是一种模拟人类专家解决领域问题的计算机程序系统。
多级递阶控制系统是将组成大系统的各子系统及其控制器按递阶的方式分级排列而形成的层次结构系统。
这种结构的特点是:1 •上、下级是隶属矢系,上级对下级有协调权,它的决策直接影响下级控制器的动作。
2- 信息在上下级间垂直方向传递,向下的信息有优先权。
同级控制器并行工作,也可以有信息交换,但不是命令。
第2章模糊控制2.1 模糊控制自从1965年美国加利福尼亚大学控制论专家L .A .zadeh教授提出模糊数学以来”,吸引了众多的学者对其进行研究,使其理论与方法日臻完善,并且广泛地应用于自然科学和社会科学的各个领域,尤其是在第5代计算机研制和知识工程开发等领域占有特殊重要的地位。
把模糊逻辑应用于控制领域则始于1973年”。
1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机控制。
此后20多年来,模糊控制不断发展并在许多领域中得到成功应用。
由于模糊逻辑本身提供了由专家构造语言信息并将其转化为控制策略的一种系统的推理方法,因而能够解决许多复杂而无法建立精确数学模型系统的控制问题,所以它是处理推理系统和控制系统中不精确和不确定性的一种有效方法。
从广义上讲,模糊控制是适于模糊推理,模仿人的思维方式,对难以建立精确数学模型的对象实施的一种控制策略。
它是模糊数学同控制理论相结合的产物,同时也是智能控制的重要组成部分。
模糊控制的突出特点在于:①控制系统的设计不要求知道被控对象的精确数学模型,只需要提供现场操作人员的经验知识及操作数据。
⑦控制系统的鲁棒性强,适应于解决常规控制难以解决的非线性、时变及大纯滞后等问题。
③以语言变量代替常规的数学变量,易于形成专家的“知识”。
④控制推理采用“不精确推理”(Approximatc Reasoning)。
推理过程模仿人的思维过程。
由于介入了人类的经验.因而能够处理复杂甚至“病态”系统。
2.1.1模糊数学模糊数学是基于模糊集理论。
模糊集的概念与古典集非此即彼的概念相对应,描述没有明确、清楚地定义界限的集合。
模糊集的理论叙述为:模糊集A是定义在一个输入ξ之上并由其隶属函数µA(·):ξ→[0,1]表征的集合。
假设ξ是一个普通集合,称为论域。
从ξ到区间[0,1]的映射A称为ξ上的一个模糊集合。
µA(·)表示ξ隶属于模糊集合A的程度,称为隶属度。
第二章:模糊控制的理论基础第一节:引言模糊控制的发展传统控制方法:数学模型。
模糊控制逻辑:使计算机具有智能和活性的一种新颖的智能控制方法。
模糊控制以模糊集合论为数学基础。
模糊控制系统的应用对于那些测量数据不准确,要处理的数据量过大以致无法判断它们的兼容性以及一些复杂可变的被控对象等场合是有益的。
模糊控制器的设计依赖于操作者的经验。
模糊控制器参数或控制输出的调整是从过程函数的逻辑模型产生的规则来进行的。
改善模糊控制器性能的有效方法是优化模糊控制规则。
模糊控制的特点:一、无需知道被控对象的数学模型二、是一种反应人类智慧思维的智能控制三、易被人们所接受四、推理过程采用“不精确推理”五、构造容易六、存在的问题:1、要揭示模糊控制器的实质和工作原理,解决稳定性和鲁棒性理论问题,从理论分析和数学推导的角度揭示和证明模糊控制系统的鲁棒性优于传统控制策略;2、信息简单的模糊处理将导致系统的控制精度降低和动态品质变差;3、模糊控制的设计尚缺乏系统性,无法定义控制目标。
“模糊控制的定义”定义:模糊控制器的输出是通过观察过程的状态和一些如何控制过程的规则的推理得到的。
基于三个概念:测量信息的模糊化,推理机制,输出模糊集的精确化;测量信息的模糊化:实测物理量转换为在该语言变量相应论域内的不同语言值的模糊子集;推理机制:使用数据库和规则库,根据当前的系统状态信息决定模糊控制的输出子集;模糊集的精确化:将推理过程得到的模糊控制量转化为一个清晰,确定的输出控制量的过程。
“模糊控制技术的相关技术”模糊控制器的核心处理单元:1.传统单片机;2.模糊单片机处理芯片;3.可编程门阵列芯片。
模糊信息与精确转换技术:AD,DA,转换技术。
模糊控制的软技术:系统的仿真软件。
综述:模糊控制是一种更人性化的方法,用模糊逻辑处理和分析现实世界的问题,其结果往往更符合人的要求。
第二节:模糊集合论基础“模糊集合的概念”经典集合论所表达概念的内涵和外延都必须是明确的。
模糊PID控制及其MATLAB实现姓名:专业班级:学号:授课教师:摘要PID(比例积分微分)控制具有结构简单、稳定性能好、可靠性高等优点,尤其适用于可建立精确数学模型的控制系统。
而对于一些多变量、非线性、时滞的系统,传统的PID控制器并不能达到预期的效果。
随着模糊数学的发展,模糊控制的思想逐渐得到控制工程师们的重视,各种模糊控制器也应运而生。
而单纯的模糊控制器有其自身的缺陷—控制效果很粗糙、控制精度无法达到预期标准。
但利用传统的PID控制器和模糊控制器结合形成的模糊自适应的PID控制器可以弥补其缺陷;它将系统对应的误差和误差变化率反馈给模糊控制器进而确定相关参数,保证系统工作在最佳状态,实现优良的控制效果。
论文介绍了参数自适应模糊PID控制器的设计方法和步骤。
并利用MATLAB 中的SIMULINK 和模糊逻辑推理系统工具箱进行了控制系统的仿真研究,并简要地分析了对应的仿真数据。
关键词: 经典PID控制; 模糊控制; 自适应模糊PID控制器; 参数整定; MATLAB仿真ABSTRACTPID(Proportion Integration Differentiation) control, with lots of advantages including simple structure, good stability and high reliability, is quite suitable to establish especially the control system which accurate mathematical model is available and needed. However, taken multivariable, nonlinear and time-lag into consideration, traditional PID controller can not reach the expected effect.Along with the development of Fuzzy Mathematics, control engineers gradually pay much attention to the idea of Fuzzy Control, thus promoting the invention of fuzzy controllers. However, simple fuzzy controller has its own defect, where control effect is quite coarse and the control precision can not reach the expected level. Therefore, the Fuzzy Adaptive PID Controller is created by taking advantage of the superiority of PID Controller and Fuzzy Controller. Taken this controller in use, the corresponding error and its differential error of the control system can be feed backed to the Fuzzy Logic Controller. Moreover, the three parameters of PID Controller is determined online through fuzzification, fuzzy reasoning and defuzzification of the fuzzy system to maintain better working condition than the traditional PID controller.Meanwhile,the design method and general steps are introduced of the Parameter self-setting Fuzzy PID Controller. Eventually, the Fuzzy Inference Systems Toolbox and SIMULINK toolbox are used to simulate Control System. The results of the simulation show that Self-organizing Fuzzy Control System can get a better effect than the Classical PID controlled evidently.Keywords: Classic PID control; Fuzzy Control; Parameters tuning; the Fuzzy Adaptive PID Controller; MATLAB simulation目录第一章绪论 (1)1.1 研究的背景及意义 (1)1.2 经典PID控制系统的分类与简介 (2)1.2.1 P控制 (2)1.2.2 PI控制 (2)1.2.3 PD控制 (2)1.2.4 比例积分微分(PID)控制 (2)1.3 模糊逻辑与模糊控制的概念 (3)1.3.1 模糊控制相关概念 (3)1.3.2 模糊控制的优点 (4)1.4 模糊控制技术的应用概况 (4)1.5 本文的研究目的和内容 (5)第二章PID控制 (6)2.1 PID的算法和参数 (6)2.1.1 位移式PID算法 (6)2.1.2 增量式PID算法 (7)2.1.3 积分分离PID算法 (7)2.1.4 不完全微分PID算法 (8)2.2 PID参数对系统控制性能的影响 (9)2.2.1 比例系数K P对系统性能的影响 (9)2.2.2 积分时间常数T i对系统性能的影响 (9)2.2.3 微分时间常数T d对系统性能的影响 (9)2.3 PID控制器的选择与PID参数整定 (10)2.3.1 PID控制器的选择 (10)2.3.2 PID控制器的参数整定 (10)第三章模糊控制器及其设计 (11)3.1 模糊控制器的基本结构与工作原理 (11)3.2 模糊控制器各部分组成 (11)3.2.1 模糊化接口 (11)3.2.2 知识库 (12)3.2.3 模糊推理机 (12)3.2.4 解模糊接口 (13)3.3模糊推理方式 (13)3.3.1 Mamdani模糊模型(迈达尼型) (13)3.3.2 Takagi-Sugeno模糊模型(高木-关野) (13)3.4模糊控制器的维数确定 (14)3.5 模糊控制器的隶属函数 (15)3.6模糊控制器的解模糊过程 (17)3.7 模糊PID控制器的工作原理 (18)第四章模糊PID控制器的设计 (19)4.1 模糊PID控制器组织结构和算法的确定 (19)4.2 模糊PID控制器模糊部分设计 (19)4.2.1 定义输入、输出模糊集并确定个数类别 (19)4.2.2 确定输入输出变量的实际论域 (20)4.2.3 定义输入、输出的隶属函数 (20)4.2.4 确定相关模糊规则并建立模糊控制规则表 (20)第五章模糊PID控制器的MATLAB仿真 (24)5.1 模糊PID控制的仿真 (24)5.1.1 FIS编辑器 (24)5.1.2 隶属函数 (25)5.1.3 模糊规则库 (25)5.2 对模糊控制器编程仿真 (27)第六章结语 (31)参考文献 (32)第一章绪论1.1 研究的背景及意义随着越来越多的新型自动控制应用于实践,其控制理论的发展也经历了经典控制理论、现代控制理论和智能控制理论三个阶段。
1模糊控制1.1 概述基于解析模型的控制方法有着较长的发展历史,经过许多学者的不懈努力已经建立了一套完善的理论体系,并且非常成功地解决了许多问题。
但是,当人们将这种控制方法应用于具有非线性动力学特征的复杂系统时,受到了严峻的挑战。
特别是,面对无法精确解析建模的物理对象和信息不足的病态过程,基于解析模型的控制理论更显得束手无策。
这就迫使人们去探索新的控制方法和途径去解决这类问题,在这样一个背景下诞生了基于模糊逻辑的控制方法,并且今天它已成为最活跃和最为有效的一种智能控制技术。
一些学者对人类处理复杂对象的行为进行了长期的观察,进而发现人们控制一个对象的过程与基于解析模型的控制机理完全不同,即不是首先建立被控对象的数学模型,然后根据这一模型去精确地计算出系统所需要的控制量,而是完全在模糊概念的基础上利用模糊的量完成对系统的合理控制。
让我们简单地回顾一下:一个优秀的杂技演员在表演走钢丝时事如何保持他身体的平衡呢?当他的身体向一个方向倾斜时,他是通过身体的重心去感觉其倾斜程度,然后根据倾斜程度产生一个相反的力去恢复平衡的过程,我们可以意识到一个重要的事实:杂技演员是无法准确地感知出身体的倾斜角为多大,并且也无法精确地计算出恢复平衡的力要多大,但是他确实能够有效地保持身体的平衡。
显然,杂技演员走钢丝的这种平衡能力是很难用解析的方式来描述的。
相反,这种能力是来源于杂技演员多年的训练经验和积累的专业知识。
为了有效地描述这种经验和知识,一些从事智能技术的专家一直在探索表达经验和知识的有效方法,在这其中,以查德(Zadeh)教授1965年提出基于模糊集合论的模糊逻辑(Fuzzy Logic),是一种表达具有不确定性经验和知识的有效工具。
1974年马达尼(Mamdani)教授在他的博士论文中首次论述了如何将模糊逻辑应用于过程控制,从而开创了模糊控制的先河。
1.2模糊逻辑的基本概念既然模糊控制的基础是模糊逻辑,那么什么是模糊逻辑呢?模糊逻辑可以说是一种逻辑的形式化。