变频器的电磁调速电动机调速方法
- 格式:doc
- 大小:65.50 KB
- 文档页数:1
三相电机七种调速方式一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。
本方法适用于要求精度高、调速性能较好场合。
三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。
大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。
根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70-90的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。
本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。
四、绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。
串入的电阻越大,电动机的转速越低。
此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。
三相电机七种调速方式一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。
本方法适用于要求精度高、调速性能较好场合。
三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。
大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。
根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70-90的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。
本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。
四、绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。
串入的电阻越大,电动机的转速越低。
此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。
电动机知识变频器的六大调速方法1.变极对数调速方法这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、[1]方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。
本方法适用于要求精度高、调速性能较好场合。
变频调速分为基频以下调速和基频以上调速,基频以下调速属于恒转矩调速方式,基频以上调速属于恒功率调速方式。
2.串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。
大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。
根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。
本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。
变频器调速原理及调速方法3.绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。
交流电动机调速方法
交流电动机调速方法有多种,以下是常见的几种方法:
1. 变频调速:通过调节电动机供电频率,改变电动机转速来实现调速。
变频器可以根据负载情况和工艺要求,自动调整输出频率,从而控制电动机的转速。
2. 阻抗调速:通过改变电动机回路的阻抗,来改变电动机的转速。
常用的方法有电阻调速、自耦变压器调速和感性电压调速等。
3. 矢量控制:利用矢量控制技术,通过改变电动机的电流和电压矢量,来实现对电动机转速的控制。
矢量控制可以实现高精度、高动态性能的调速效果。
4. 直接转矩控制:通过测量电动机的转子位置和转子电流,直接计算出电机的转矩,从而实现对电机转速的控制。
直接转矩控制具有响应速度快、控制精度高的特点。
5. 恒定电压调速:在给电动机供电时保持恒定的电压,通过改变电动机的绕组电阻或连接不同的绕组,来改变电动机的转速。
选择适合的调速方法需要考虑到具体的应用场景、负载要求和经济效益等因素。
在实际应用中,可以根据需要采用单一的调速方法,也可以结合多种调速方法进行组合使用,以达到更好的调速效果。
电磁调速电机和变频调速电机的区别一、技术特点不同1、电磁调速电机:具有调速范围广、速度调节开环、起动转矩大、控制功率小、有速度负反馈、自动调节系统时机械特性硬度高等一系列优点。
2、变频调速电机:噪声低,通过优化电磁设计、通风状况、结构尺寸等技术,电动机的噪声较低。
,轴承负载能力高,电动机选用深沟球轴承,寿命长。
二、原理不同1、电磁调速电机:由普通鼠笼式异步电动机、电磁滑差离合器和电气控制装置三部分组成。
异步电机作为原动机使用,当它旋转时带动离合器的电枢一起旋转,电气控制装置是提供滑差离合器励磁线圈励磁电流的装置。
2、变频调速电机:利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
三、应用不同1、电磁调速电机:在印刷机及骑马订书机、无线装订、高频烘干联动机、链条锅炉炉排控制中都得到广泛应用。
2、变频调速电机:特别是随着变频器在工业控制领域内日益广泛的应用,变频电机的使用也日益广泛起来,可以这样说由于变频电机在变频控制方面较普通电机的优越性,凡是用到变频器的地方我们都不难看到变频电机的身影。
电磁调速电机电磁调速异步电动机又称滑差电机,它是一种利用直流电磁滑差恒转矩控制的交流无级变速电动机。
由于它具有调速范围广、速度调节开环、起动转矩大、控制功率小、有速度负反馈、自动调节系统时机械特性硬度高等一系列优点,因此在印刷机及骑马订书机、无线装订、高频烘干联动机、链条锅炉炉排控制中都得到广泛应用。
变频调速电机变频调速电机简称变频电机,是变频器驱动的电动机的统称。
实际上为变频器设计的电机为变频专用电机,电机可以在变频器的驱动下实现不同的转速与扭矩,以适应负载的需求变化。
变频电动机由传统的鼠笼式电动机发展而来,把传统的电机风机改为独立出来的风机,并且提高了电机绕组的绝缘性能。
在要求不高的场合如小功率和频率在额定工作频率工作情况下,可以用普通鼠笼电动机代替。
变频调速的基本原理变频调速是一种电机调速的方法,通过改变电机的输入频率来实现电机的转速调节。
基本原理是通过变频器将来自电源的固定频率交流电转换成可调频率的交流电供给电机,从而改变电机的转速。
变频调速的基本原理可以简单理解为:变频器将交流电转换为直流电,然后再将直流电通过逆变器转换为可调频率的交流电。
在这个过程中,变频器通过控制逆变器的输出频率,实现对电机转速的调节。
具体来说,变频器首先对输入的交流电进行整流,将其转换为直流电。
然后,通过一个中间电路,将直流电转换为可调频率的交流电。
最后,通过控制逆变器的开关管的开关状态和频率,调节输出的交流电频率和电压,从而实现对电机转速的控制。
变频调速的优点在于它能够实现电机的平稳启动和停止,提高电机的运行效率,减少电机的能耗。
同时,变频调速还具有较大的转矩范围,适应性强,可以满足不同负载条件下的转速要求。
变频调速技术在工业生产中得到了广泛应用。
在风机、水泵、压缩机等设备中,通过变频调速可以实现对风量、流量、压力等参数的精确控制,提高设备的运行效率,降低能耗。
在电梯、升降机等设备中,变频调速可以实现平稳起停,提高运行的舒适性和安全性。
在机床、纺织机械等设备中,变频调速可以实现对工件的精确加工,提高生产效率和产品质量。
除了工业应用外,变频调速技术在家电领域也得到了广泛应用。
如空调、洗衣机、电冰箱等家电产品,通过变频调速可以实现对制冷、洗涤、运转等功能的精确控制,提高产品的性能和使用体验。
需要注意的是,变频调速技术在应用过程中也存在一些问题。
例如,变频器本身会产生一定的电磁干扰,对其他设备的正常运行造成影响。
此外,变频器的选型和安装也需要考虑电机的负载特性和工作环境等因素,以确保系统的稳定和可靠运行。
变频调速技术通过改变电机的输入频率来实现电机的转速调节,具有广泛的应用前景和重要的实际意义。
随着科技的发展和创新的推动,相信变频调速技术将会在更多领域得到应用,并为工业生产和生活带来更多的便利和效益。
变频调速的基本方式在电机调速时,一个重要的因素就是希望保持磁通不变量m Φ为额定值不变。
如果磁通太弱没有充分利用铁心,是一种浪费;若要增大磁通,从而导致过大的励磁电流,严重时会因绕组果然热而损坏电机。
对于直流电机,励磁系统是独立的,只要对电枢反应的补偿合适,保持m Φ不变时很容易做到的。
在交流异步电机中,磁通是定子和转子磁势合成产生的。
三相异步电机每相电动势的有效值:·m N g k N f E Φ=11144.4 (1—1)式中:g E ——气隙磁通在定子每相中感应电动势有效值,单位为V ;1f ——定子频率,单位为Hz ; 1N ——定子每相绕组串联匝数; 1N k ——基波绕组系数; m Φ——每极气隙磁通,单位Wb由(1—1)式可知,只要控制好感应电动势和定子频率,便可以达到控制磁通的目的,因此需要考虑基频以下和基频以上两种情况。
基频以下调速由式(1—1)可知,要保持m Φ不变,当频率从额定值n f 1向下调节时,必须同时降低g E 使常值=1f E g(1—2) 即采用固定的电动势频比的控制方式。
然而,绕组中感应电动势是难以控制的,当电动势值较高时,可以忽略定子绕组的漏磁阻抗压降,而认为定子相电压g U U ≈1,则得到:常值=11f U (1—3) 这是恒压频比的控制方式。
低频时,1U 和g E 都较小,定子阻抗压降所占的分量就比较显著,不能再忽略。
这时,可以认为的把电压1U 抬高一些,以便近似的补偿定子压降。
带定子压降补偿的恒压频比控制特性曲线有补偿的如图中的b 线,物补偿的如图中的a 线。
O Us f 1图6-1 恒压频比控制特性a b基频以上调速在基频以上调速,频率可以从n f 1往上增高,但电压1U 却不能增加得比额定电压n U 1还要大,最多只能保持n U U 11 。
由式(1-1)可知,这将迫使磁通与频率成反比的降低,相当于直流电机弱磁升速的情况。
把基频以下和基频以上两种情况合起来,可得到如图所示的异步电动机变频调速的控制特性。
第一章变频调速技术基本理论及实用性第一节概述实际的生产过程中离不开电力传动。
生产机械通过电动机的拖动来进行预定的生产方式。
20世纪50年代前,电动机运行的基本方式是转速不变的定速拖动。
对于控制精度要求不高以及无调速要求的许多场合,定速拖动基本能够满足生产要求。
随着工业化进程的发展,对传动方式提出了可调速拖动的更高要求。
用直流电动机可方便地进行调速,但直流电机体积大,造价高,并且无节能效果。
而交流电动机体积小、价柏低廉、运行性能优良、重量轻,因此对交流电动机的调速具有重大的实用性。
使用调速技术后,生产机械的控制精度可大为提高,并能够较大幅度地捉高劳动生产率和产品质量,且对诸多生产过程实施自动控制。
通过大量的理论研究和实验,人们认识到:对交流电动机进行调速控制,不仅能使电力拖动系统具有非常优秀的控制性能,而且在许多生产场合中,还具有非常显著的节能效果。
鉴于此,交流变频调速技术获得了迅这发展和广泛应用。
自从20世纪80年代以来,交流电动机变频调速技术在工业化国家已开始了规模化的应用。
目前,国外许多优秀的变频调速系统和成套设备已大举进人中国市场,如欧洲的ABB,德国的西门子,丹麦的丹佛思,日本的三肯、三菱、松下、富士、春日,法国的施耐德,韩国的三星、LG、九德松益,美国的罗宾康,英国的欧陆等变频器系列;这些国家的厂商除直接提供成套设备外,还有良好的售后服务。
国内目前也生产了几种变频调速设备,其质量可与国外的变频器产品相抗衡,如佳灵公司的佳灵变颁器、深圳华为公司的ENYDRIVE变频器等。
变频调速技术在我国的发展及应用经历了一个曲折的过程。
虽然直流电动机具有优秀的调速性能,但同时也存在着一些难以克服的问题,如:直流电动机故障率较高,在各种应用场合不节能。
噪声大等。
工业及民用建筑中大批量交流电动机在定谏拖动机械运转的情况下,由于无法与实际的运行工况相匹配,处于低效率运行,造成电能的浪费较大。
这些传动系统由于交流电动机的定速拖动,不能使传动与拖动系统具有良好的控制性能。
变频调速电机的设计摘要在这个经济快速发展的社会,随着电力电子技术、计算机技术和自动控制技术的发展,交流调速代替DC调速已经成为现代电气传动的主要发展方向,这使得交流变频调速系统广泛应用于工业电机传动领域。
许多国外企业会在生产中应用变频技术。
此外,由于PLC功能强大、使用方便、可靠性高,常被用作数据采集和设备控制。
工作中发现身边很多设备都应用了变频技术,在接触中感受到了变频技术的重要性。
通过调节电机的速度来达到节能增产的效果,在未来必然更加重要。
变频器和可编程控制器以其优越的调速、启停性能、高效率、高功率因数和显著的节电效果,广泛应用于大中型交流电动机,被公认为最有前途的调速控制。
关键词:电气传动,变频技术,调速目录第一章导言..........................................................一1.1交流变频调速发展历史综述........................................一1.2逆变器的结构和功能........................................一1.3....................................二、逆变器的关键技术。
第二章变频器调速...................................................四2.1变频调速原理.................................................四2.2逆变器的控制模式 (5)2.3变频器调速模式 (6)第三章变频调试技术 (8)3.1变频器的结构和功能预设有.........................................8.3.2操作...................................................变频器9的第四章变频调速电机的设计 (11)4.1硬件设计 (11)4.2软件设计 (14)摘要 (20)致谢 (21)参考 (22)第一章导言1.1交流变频调速发展历史概述自1965年变频器问世以来,已经经历了40多年的发展。
变频器调速原理
变频器调速原理是通过改变电机供电频率的方式来实现调速的。
变频器将输入电源的交流电转换成直流电,然后再将直流电转换成可调频率的交流电。
这可调频率的交流电被送给电机,由电机根据频率的变化来调整转速。
变频器内部有一个电路,称为频率发生器。
频率发生器接收来自控制器的指令,根据指令的要求产生相应的输出频率。
控制器可以根据需要调整输出频率,从而实现电机的调速。
通常情况下,控制器接收来自操作员的输入信号,根据操作员的调节来改变输出频率。
在变频器中,电机的转矩与电机供电频率之间有着直接的关系。
当频率增加时,电机的转速也会增加,从而产生更大的转矩。
反之,当频率减小时,电机的转速会减小,并相应减小转矩。
因此,通过改变供电频率,可以控制电机的转速和转矩。
此外,变频器还可以提供其他功能,如启动和停止电机、保护电机和变频器等。
通过合理运用这些功能,可实现电机的高效、稳定和可靠运行。
变频调速永磁同步电动机的设计随着科技的不断发展,变频调速技术日益成为工业领域中重要的节能技术之一。
变频调速技术通过改变电源频率,实现对电动机的速度控制。
在众多类型的电动机中,永磁同步电动机因其高效、节能、高精度控制等优点,逐渐得到广泛应用。
本文将探讨变频调速永磁同步电动机的设计方法。
变频调速技术主要通过改变电源频率来改变电动机的转速。
根据异步电动机的转速公式 n=f(1-s)/p,其中n为转速,f为电源频率,s为转差率,p为极对数,可知当f改变时,n也会相应改变。
变频调速技术具有调速范围广、精度高、节能等优点,被广泛应用于各种工业领域。
永磁同步电动机是一种利用永磁体产生磁场的高效电动机。
其特点如下:效率高:永磁同步电动机的磁场由永磁体产生,可降低铁损和额定负载下的铜损,从而提高效率。
节能:由于其高效率,永磁同步电动机在长期运行中可节省大量能源。
调速性能好:永磁同步电动机的转速与电源频率成正比,因此可通过变频调速技术实现对电动机的速度精确控制。
维护成本低:永磁同步电动机结构简单,故障率低,维护成本相对较低。
变频调速永磁同步电动机的设计原则是在满足额定负载要求的前提下,尽可能提高电动机效率,同时确保调速性能优越。
为此,设计时需考虑以下几个方面:(1)优化电磁设计:通过合理选择永磁体的尺寸和位置,以及优化定子绕组的设计,降低铁损和铜损。
(2)转子结构设计:保证转子的强度和稳定性,同时考虑散热问题,防止因转子故障导致电动机损坏。
(3)控制系统设计:选择合适的控制算法和硬件设施,实现对电动机速度的精确控制。
(1)明确设计需求:根据应用场景和负载要求,确定电动机的功率、转速、电压、电流等参数。
(2)选择合适的永磁材料:根据需求和市场供应情况,选择合适的永磁材料,如钕铁硼等。
(3)设计定子结构:根据电磁负荷要求,设计定子的槽数、绕组形式等结构参数。
(4)优化转子设计:根据强度和稳定性要求,设计转子的结构形式,选择合适的材料和加工工艺。
电动机的调速方法主要有以下几种:
1. 变压器电压调节法:通过调节变压器的输入或输出电压来控制电动机的电压和输出功率,从而实现控制电机的转速。
2. 电阻调节法:在电机电路中串联电阻,通过改变电阻值来改变电动机的电压和输出功率,从而达到调节电机的转速的目的。
这种方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上,属有级调速,机械特性较软。
3. 变频调速法:通过控制电源采用变频器进行调节电机的转速。
变频器能够将交流电源变为可调范围的频率,实现对电机的速度控制。
4. 直流电机的调速方法:直流电机的电压可以通过改变电源电压和电枢电阻来调节,这样就可以控制电动机的转速。
5. 比例积分调节法:通过对电机进行速度反馈控制,电机转速数据传递到调速器控制器内,将转速信号与设定值进行对比,对其误差进行运算,并输出对应的调定电压来实现对电机的调速。
6. 变极对数调速方法:改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速。
此方法操作简单、运行可靠,能够实现较大范围的平滑调速,但恒转矩负载时低速运行时电流较大,效率较低。
7. 电磁调速电动机调速方法:电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源组成。
通过调整电源的输出功率
从而改变笼型电动机的转矩,实现调速。
此方法能够在较大范围内调整转速,并且具有较好的节能效果,但需要增加一套控制系统,结构较为复杂。
这些方法的应用取决于电机类型、工作场合和工作要求等因素。
变频器的调速方法变频器是一种能够改变电机转速的设备,它可以通过调节电机的电压和频率来实现不同转速的控制。
在工业生产中,变频器的广泛应用使得电机的运行更加灵活和高效。
本文将介绍几种常见的变频器调速方法。
一、电压/频率控制调速方法电压/频率控制是最常见的变频器调速方法之一、根据电动机的特性,电机的转速与电压和频率成正比。
通过控制变频器的输出电压和频率,可以实现对电机转速的精确控制。
在调节电压/频率变化的过程中,需要考虑电机的负载、电磁兼容性等因素。
二、矢量控制调速方法矢量控制是一种高性能的变频器调速方法。
它采用了感应电机的电流/磁场定向控制原理,通过测量电机的转子位置和电流反馈信号,计算出电机的电磁矢量,进而控制电机的转速。
矢量控制具有较高的响应速度和较好的转矩控制能力,适用于对转速和转矩精度要求较高的应用场景。
三、闭环控制调速方法闭环控制调速是一种采用反馈控制方式的变频器调速方法。
它通过测量电机输出端的转速信号,与设定的转速进行比较,计算出误差信号,然后通过控制变频器的输出进行补偿,使得电机的转速能够稳定在设定值附近。
闭环控制调速方法能够更精确地控制电机的转速,适用于对转速精度要求较高的应用场景。
四、多点控制调速方法多点控制调速是一种能够实现多个转速设定的变频器调速方法。
通过对变频器进行编程设置,可以实现电机在不同工况下的转速切换。
这种调速方法适用于需要频繁改变转速的应用场景,能够优化电机的运行效率和能耗。
五、过热保护调速方法过热保护调速是一种通过监测电机的温度信号以保护电机的调速方法。
在电机运行过程中,如果温度超过设定的阈值,则会触发保护措施,如降低电机的转速或直接停机。
这种调速方法能够有效保护电机,延长其使用寿命,并防止因过热而导致的事故发生。
综上所述,变频器具有多种调速方法,可以根据不同的应用场景选取合适的调速方式。
通过合理配置和运用变频器的调速功能,可以提高电机的运行效率、降低能耗,实现对电机转速的精确控制,进而提高生产效率和质量。
电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。
直流励磁电源功率较小,通常由单相半波或全波晶闸管整流器组成,改变晶闸管的导通角,可以改变励磁电流的大小。
电磁转差离合器由电枢、磁极和励磁绕组三部分组成。
电枢和后者没有机械联系,都能自由转动。
电枢与电动机转子同轴联接称主动部分,由电动机带动;磁极用联轴节与负载轴对接称从动部分。
当电枢与磁极均为静止时,如励磁绕组通以直流,则沿气隙圆周表面将形成若干对N、S极性交替的磁极,其磁通经过电枢。
当电枢随拖动电动机旋转时,由于电枢与磁极间相对运动,因而使电枢感应产生涡流,此涡流与磁通相互作用产生转矩,带动有磁极的转子按同一方向旋转,但其转速恒低于电枢的转速N1,这是一种转差调速方式,变动转差离合器的直流励磁电流,便可改变离合器的输出转矩和转速。
电磁调速电动机的调速特点:装置结构及控制线路简单、运行可靠、维修方便; 调速平滑、无级调速; 对电网无谐影响; 速度失大、效率低。
本方法适用于中、小功率,要求平滑动、短时低速运行的生产机械。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城/。