液体的燃烧过程及燃烧形式
- 格式:pptx
- 大小:2.14 MB
- 文档页数:16
液体燃烧类型及特点
易燃、可燃液体在燃烧过程中,并不是液体本身在燃烧,而是液体受热时蒸发出来的液体蒸气被分解、氧化达到燃点而燃烧,即蒸发燃烧。
因此,液体能否发生燃烧、燃烧速率高低,与液体的蒸气压、闪点、沸点和蒸发速率等性质密切相关。
常见的可燃液体中,液态烃类燃烧时,通常具有橘色火焰并散发浓密的黑色烟云。
醇类燃烧时,通常具有透明的蓝色火焰,几乎不产生烟雾。
某些醚类燃烧时,液体表面伴有明显的沸腾状,这类物质的火灾较难扑灭。
在含有水分、粘度较大的重质石油产品,如原油、重油、沥青油等发生燃烧时,有可能产生沸溢现象和喷溅现象。
(一)沸溢
从沸溢过程说明,沸溢形成必须具备三个条件:
①原油具有形成热波的特性,即沸程宽,比重相差较大;
②原油中含有乳化水,水遇热波变成蒸气;
③原油粘度较大,使水蒸汽不容易从下向上穿过油层。
(二)喷溅
在重质油品燃烧进行过程中,随着热波温度的逐渐升高,热波向下传播的距离也加大,当热波达到水垫时,水垫的水大量蒸发,蒸气体积迅速膨胀,以至把水垫上面的液体层抛向空中,向罐外喷射,这种现象叫喷溅。
6液体燃料的燃烧6.1液体燃料的燃烧原理✧液体燃料的燃烧方式:主要为扩散燃烧✧液体燃料的燃烧过程:先蒸发气化为油蒸汽,进而进行均相燃烧。
(1、雾化2、蒸发3、掺混4、燃烧)✧液体燃料燃烧特点:1、扩散燃烧2、非均相燃烧✧液体燃料与气体燃料的不同点:液体燃料在与空气混合之前存在着蒸发气化过程✧液体燃料在在着火燃烧前发生蒸发与气化的特点,可将其燃烧分为,液面燃烧、灯芯燃烧、蒸发燃烧、雾化燃烧。
✧燃油雾化燃烧:油的雾化油滴的蒸发油滴的燃烧过程✧雾化燃烧:用雾化器将燃油分裂成许多微小而分散的油滴,以增加燃油单位质量的表面积,使其能和周围空间的氧化剂更好地进行混合,在空间达到迅速和完全的燃烧。
✧雾化的方法可分为机械式雾化和介质式雾化。
✧液体燃料雾化的目的(为什么用雾化、为什么说雾化过程是液体燃料燃烧的关键):(P185)✧雾化性能及质量的评定主要指标:(P185)✧雾化过程的几个阶段:(P185)✧雾化角等概念(P186-P191好好看看)✧常用雾化方式及装置:①机械雾化、介质雾化、混合式雾化、组合式雾化。
②✧配风器的作用(任务):P195✧配风原理及配风器应该满足的要求:P196-P197✧合理的稳焰技术:P203✧对于重油燃料,燃烧器应?P204✧加强液体燃料的燃烧方法:P201(1)加强雾化,减小油滴直径,选用合适的雾化器;(2)增加空气与油滴的相对速度。
相对速度越大,越有利于燃料和空气之间的扩散、混合,加强燃烧;(3)及时、适量供风及时供风,避免高温、缺氧造成燃料热分解;适量供风,提高燃烧效率。
(4)供风原则少量一次风送入火焰根部,在着火前与燃料混合,防止油在高温下热分解;保证后期混合,提高风速,使射流衰减变慢;在着火区制造适当的回流区,保证着火;燃烧中保证油雾与空气强烈混合,气流雾化角与油雾扩散角相适应。
液体焚烧炉的工作原理
液体焚烧炉(Liquid Incinerator)属于一种特殊的燃烧设备,用于处理生活垃圾、工业废料、危险废料等含高浓度有机物质的废物。
液体焚烧炉采用高温燃烧的方式将液体废料转化为水和二氧化碳等无害物质,达到减少储存和处理负担、减少环境污染等目的。
液体焚烧炉的工作原理可以简述如下:
1.废料加入:将液体废料装入焚烧炉内,同时在废料入口处加入空气或氧气,使废料获得足够的氧气,以满足后续燃烧反应。
2.初次加热:废料进入焚烧炉后,经过初次加热,使其达到燃点。
3. 主要燃烧:当废料达到燃点后,与进入的空气或氧气在高温下发生燃烧反应,释放出大量的热能。
4.二次燃烧:由于液体废料中含有的有机物质种类复杂,并不是所有有机物质都能够在主要燃烧过程中完全分解,此时可能会产生一些有毒有害的副产物。
为了彻底降解这些物质,焚烧炉会通过进一步加热、保温、控制氧气浓度等方式,使这些副产物在高温下得到二次燃烧,同时不断增加的温度有助于保证燃烧效率。
5.排放净化:经过上述燃烧过程后,废料中的有机物质已经得到完全分解,只留下了其它无害物质如水蒸气、二氧化碳等。
该部分同志们还需要经过智能化的净化和过滤处理,以确保最终排放的气体流出水平符合环保标准。
总之,液体焚烧炉通过高温燃烧的方式,将废弃液体物质转化为无害物质,从而实现了废物无害化处理的目的。
水烧开的变化过程
当我们将水放置在燃烧设备上时,水开始受热并经历一系列变化,直到最终烧开。
以下是水烧开的变化过程:
1. 初始状态:在水还没有受热之前,它处于液态状态。
其分子按照高速运动,
相互之间存在一定的距离,并保持着水的形状。
2. 加热过程:一旦火焰或加热设备接触到水,热量开始传递到水分子中。
在加
热的过程中,水分子吸收热量,其内部能量不断增加,分子之间的距离开始增大。
3. 沸腾:随着水分子不断吸收热量,当温度达到水的沸点时,水开始产生气泡,从液体状态转变为气体状态。
这个过程称为沸腾。
沸腾时,水的分子变得更加活跃,距离也更远。
气泡形成并逐渐上升到液面。
4. 水的显著变化:在沸腾过程中,水温不再上升,保持在沸点附近。
当所有液
体转变为气体时,水完全烧开。
此时,水的温度与环境温度相同。
总结起来,水烧开的变化过程可以概括为:初始状态的液态水加热,水分子吸
收热量并增大运动能量,沸腾开始,水分子距离增大,形成气泡并逐渐转变为气体,水最终完全烧开。
这个过程在日常生活中非常常见,无论是煮茶还是煮饭,水的烧开都是必要的步骤。
液体燃料的燃烧方法液体燃料燃烧时,一般不发生液相反应,它通常是蒸发成为燃料的蒸气,然后蒸气和氧气发生反应而实现燃烧。
因此,根据蒸发方法不同而有如下的燃烧方式:(1)液面燃烧液面燃烧是一种依靠热辐射和热对流原理从附近火焰传热到液面,使液体燃料蒸发,然后在液面的上部进行扩散式燃烧,如煤油的釜式燃烧图5-28就属此种方式。
图5-28 釜式燃烧图5-29 灯芯燃烧(2)灯芯燃烧灯芯燃烧是一种依靠灯芯将燃料从下面的液体燃料贮藏器中吸到灯芯的顶部,并在灯芯的表面蒸发,然后进行扩散式燃烧,如常用的煤油灯燃烧和煤油炉燃烧就属此种燃烧方式(图5-29)。
(3)蒸发燃烧蒸发燃烧是—种利用一部分燃烧热量使液体燃料在蒸发管中受热而蒸发,然后象燃气一样和空气混合进行燃烧的方式。
如燃气轮机的蒸发式燃烧器及加压式燃烧器的燃烧方式就属此类。
图5-30为液体燃料的蒸发燃烧机理示意图。
图5-30 蒸发燃烧(4)喷雾燃烧喷雾燃烧是用喷雾器把液体燃料雾化成无数的直径为几微米至几百微米的微小油滴,然后和空气或氧气混合进行燃烧。
在燃烧过程中,它包含着液体燃料的雾化、喷雾和空气 (或氧气)的混合、油滴的蒸发和燃烧等单元过程所组成。
如柴油发动机和燃油锅炉的燃烧方式就属此类。
图5-31为喷雾燃烧机理示意图。
喷雾燃烧的燃烧工况与燃烧装置大小、所用燃料种类、雾化和混合的方法等有关,通常有以下四种燃烧工况:1)雾化好、油滴小、燃烧用的一次空气量多由于油滴小、蒸发快,而且一开始就有充足的空气量混合进去,故有着和气体燃料预混合燃烧器相类似的燃烧过程。
2)雾化好、一次空气量少仅管油滴的蒸发是快的,但因一次空气量不足,故有着和气体燃料扩散式燃烧相类似的燃烧过程。
3)雾化差、油滴大,一次空气量多由于有充足的空气,整个燃烧过程主要取决于油滴的蒸发速度,而油滴的蒸发快慢除与油滴大小有关外,还取决于液体燃料的种类和特性。
4)雾化差、一次空气量又少此种情况中,油滴的蒸发速度以及从周围的空气的扩散这两个因素同时对燃烧过程起着支配作用。
第5章可燃液体的燃烧5.1液体燃料的燃烧特点目前,液体燃料的主体是石油制品,因此讨论液体燃料的燃烧主要涉及燃油的燃烧。
液体燃料的沸点低于其燃点,因此液体燃料的燃烧是先蒸发,生成燃料蒸气,然后与空气相混合,进而发生燃烧。
与气体燃料不同的是,液体燃料在与空气混合前存在蒸发汽化过程。
对于重质液体燃料,还有一个热分解过程,即燃料由于受热而裂解成轻质碳氢化合物和碳黑。
轻质碳氢化合物以气态形态燃烧,而碳黑则以固相燃烧形式燃烧。
根据液体燃料蒸发与汽化的特点,可将其燃烧形式分为液面燃烧、灯芯燃烧、蒸发燃烧和雾化燃烧四种。
液面燃烧是直接在液体燃料表面上发生的燃烧。
若液体燃料容器附近有热源或火源,则在辐射和对流的影响下,液体表面被加热,导致蒸发加快,液面上方的燃料蒸汽增加。
当其与周围的空气形成一定浓度的可燃混合气、并达到着火温度时,便可以发生燃烧。
在液面燃烧过程中,若燃料蒸汽与空气的混合状况不好,将导致燃料严重热分解,其中的重质成分通常并发生燃烧反应,因而冒出大量黑烟,污染严重。
它往往是灾害燃烧的形式,例如油罐火灾、海面浮油火灾等。
在工程燃烧中不宜采用这种燃烧方式。
灯芯燃烧是利用的吸附作用将燃油从容器中吸上来在灯芯表面生成蒸汽然后发生的燃烧。
这种燃烧方式功率小,一般只用于家庭生活或其它小规模的燃烧器,例如煤油炉、煤油灯等。
蒸发燃烧是令液体燃料通过一定的蒸发管道,利用燃烧时所放出的一部分热量(如高温烟气)加热管中的燃料,使其蒸气,然后再像气体燃料那样进行燃烧。
蒸发燃烧适宜于粘度不太大、沸点不太高的轻质液体燃料,在工程燃烧中有一定的应用。
雾化燃烧是利用各种形式的雾化器把液体燃料破碎成许多直径从几微米到几百微米的小液滴,悬浮在空气中边蒸发边燃烧。
由于燃料的蒸发表面积增加了上千倍,因而有利于液体燃料迅速燃烧。
雾化燃烧是液体燃烧工程燃烧的主要方式。
对于不同的液体燃料,应依据其蒸发的难易程度不同的雾化方式。
易蒸发液体燃料的雾化(例如汽油)往往采用“汽化器”来实现。
液体火灾的机理液体火灾是一种常见而危险的火灾形式,其发生机理复杂且不容忽视。
液体火灾发生时,液体沸腾产生的蒸气会在空气中蔓延并形成可燃气体云,一旦遇到火源便可能引发爆炸或火灾。
在日常生活和工业生产中,液体火灾的发生频率较高,给人们的生命财产安全带来了严重威胁。
因此,深入研究液体火灾的机理对预防和控制液体火灾具有重要意义。
液体火灾的机理主要包括液体的蒸发、蒸气的扩散和点燃这三个过程。
首先,液体在受热的作用下会发生蒸发,液体的表面温度越高,蒸发速度越快。
蒸发的过程中,液体分子会从液态转变为气态,并且混有大量的可燃气体,如氢气、甲烷等。
随着液体蒸气的扩散,可燃气体云在空气中蔓延,形成了潜在的火灾危险。
在液体火灾中,可燃气体云遇到点燃源时就会发生燃烧,引发火灾。
点燃源可以是明火、高温表面、静电放电等,一旦起火,整个可燃气体云都会发生燃烧甚至爆炸。
液体火灾的机理虽然看似简单,但其中包含着复杂的物理、化学和热力学过程,需要系统地研究和分析才能更好地理解和控制液体火灾。
液体火灾的发生与液体的性质密切相关,不同种类的液体具有不同的燃烧特性和火灾危险性。
一般来说,易燃液体如汽油、酒精等在受热后很容易发生蒸发并产生可燃气体云,因此更容易引发火灾。
而难燃液体如水、矿泉水等则在受热后蒸发速度较慢,燃烧性质较差,火灾危险性相对较低。
此外,液体的密度、沸点、闪点、燃点等物理性质也会对液体火灾的机理产生影响,需要在实际应用中加以考虑。
液体火灾的机理除了受液体性质的影响外,还与环境条件有关。
温度、湿度、气流速度等环境因素会影响液体的蒸发速度和蒸气扩散范围,进而影响火灾的发生和发展。
较高的环境温度和湿度会促进液体的蒸发和蒸气的传播,增加火灾风险;而通风良好的环境则有利于燃烧产物的扩散和火势控制,减小火灾造成的损失。
针对液体火灾的机理研究,科学家们不断进行实验和模拟,以深入了解液体火灾的发生过程和控制方法。
在实验室中,科学家们通常通过模拟液体蒸发、蒸气扩散和燃烧等过程,探究不同液体在不同条件下的火灾特性。