空间平面方程
- 格式:ppt
- 大小:605.00 KB
- 文档页数:2
空间平面方程的求法1、 用参数方程题目的已知条件是给出平面所经过的一个定点以及平面的两个方位矢量,有的题型是要求把所给的方程形式化为参数方程或者把已知的参数方程化为一般方程.①矢量式参数方程 错误!=错误! + t 1错误!+t 2错误!其中错误!={X 1,Y 1,Z 1}, 错误!={X 2,Y 2,Z 2}②坐标式参数方程⎪⎩⎪⎨⎧++=++=++=221102*********Zt Z t z z Y t Y t y y X t X t x x例1、 写出下面的参数方程:通过点)1,3,2(A 并平行于)1,0,3(),3,1,2(21-=-=v v解:所求的参数方程为⎪⎩⎪⎨⎧vu z u y vu x -+=-=++=313322例2、证明矢量},,{Z Y X v =平行于平面0=+++D Cz By Ax 的充要条件为:0=++CZ BY AX证明:不妨设0=+++D Cz By Ax 中的0≠A ,把这平面的方程化为参数式:,,,v z u y v A C u A B A D x ==---=所以平面的两方位矢量是}0,1,{A B -与}1,0,{A C-,从而知},,{Z Y X v =与已知平面共面的充要条件为v与}0,1,{A B -,}1,0,{A C-共面,或 01001=--AC A BZYX ,即0=++CZ BY AX 。
如果在直角坐标系下,那么由于平面的法矢量为},,{C B A n =,所以v平行于平面的充要条件为0=⋅v n,即0=++CZ BY AX 。
2、 用点位式方程题目会给出平面的两个方位矢量的坐标以及平面上的一个已知点。
222111000Z Y X Z Y X z z y y x x ---=03、用三点式方程题目的条件是平面上的三个已知点。
131313121212111z z y y x x z z y y x x z z y y x x ---------=0 例3、已知三角形顶点为),2,2,2(),1,1,2(),0,7,0(C B A --求平行于三角形ABC 所在的平面且与它相距为2个单位的平面方程.解:由已知,得02921627=+z y x, 所以三角形ABC 所在的平面方程为014623=-+-z y x 。
空间直线与平面的方程空间中的任意一条直线和任意一个平面都可以通过方程来描述。
直线和平面的方程可以用于解决和分析几何问题,例如求直线与平面的交点、直线和平面的距离等。
本文将介绍空间直线与平面的方程的基本概念和求解方法。
一、空间直线的方程在空间中,直线可以由一个点和一个方向向量确定。
一个点可以用坐标表示,方向向量可以用直线上两点之间的向量表示。
假设已知直线上一点为P(x0, y0, z0),方向向量为v(a, b, c),则直线的参数方程可以表示为:x = x0 + aty = y0 + btz = z0 + ct其中t为参数,表示直线上的任意一点。
直线的对称方程可表示为:(x - x0)/a = (y - y0)/b = (z - z0)/c通过参数方程和对称方程,我们可以得到空间中直线的方程。
二、空间平面的方程在空间中,平面可以由一个点和一个法向量确定。
一个点可以用坐标表示,法向量可以用平面上两个不共线向量的向量积表示。
假设已知平面上一点为P(x0, y0, z0),法向量为n(a, b, c),则平面的方程可以表示为:ax + by + cz + d = 0其中d = -(ax0 + by0 + cz0)。
平面的点法向式方程可表示为:(n·r) + d = 0其中r为平面上的任意一点。
通过方程和点法向式方程,我们可以得到空间中平面的方程。
三、直线与平面的方程在空间中,直线和平面的方程可以用来描述直线和平面的位置关系。
我们可以通过求解直线和平面的交点来得到它们的方程。
假设直线的方程为:x = x0 + aty = y0 + btz = z0 + ct平面的方程为:ax + by + cz + d = 0将直线的方程代入平面的方程,可以得到直线与平面的交点。
解方程组即可求解交点的坐标。
四、实例应用现在我们通过一个实例来应用空间直线和平面的方程。
假设已知直线L上一点为A(1, 2, 3),方向向量为v(2, 1, -1);平面P 经过点B(2, -1, 4),法向量为n(1, -2, 3)。