圆补充定理(圆幂,割线,公共弦)及习题
- 格式:pdf
- 大小:626.03 KB
- 文档页数:9
切割线定理割线定理相交弦定理等及几何题解南江石 2018年4月7日星期六圆的切线,与圆(圆弧)只有一个公共交点的直线叫做圆的切线。
圆的割线,与圆(圆弧)有两个公共点的直线叫做圆的割线。
圆的弦,圆(圆弧)上两点的连接线段叫做圆(圆弧)的弦。
弦是割线的部分线段。
公共弦线:两圆相交,两交点的连线为公共弦线——共弦线,共割线。
公共切线:两圆相切,过两圆切点的公切线为公共切线——共切线。
几何原理 几何原理共弦线垂直于连心线共切线垂直于连心线共割线平分公切线 共切线平分公切线4切线长度相等—— 4切点共圆,圆心在两线交点3切线长度相等——3切点共圆,圆心在两线交点共割线上任意一点到圆的4个切线的长度相等,4切点共圆共切线上任意一点到圆的3个切线的长度相等,3切点共圆圆幂定理是平面几何中的一个定理,是相交弦定理、切割线定理及割线定理(切割线定理推论)的统一。
圆幂定理及相交弦定理、切割线定理和割线定理的实质是相似三角形。
点对圆的幂P 点对圆O 的幂定义为22R OP FB性质点P 对圆O 的幂的值,和点P 与圆O 的位置关系有下述关系: 点P 在圆O 内→P 对圆O 的幂为负数; 点P 在圆O 外→P 对圆O 的幂为正数; 点P 在圆O 上→P 对圆O 的幂为0。
切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
PBPTPT PA =PB PA PT ∙=2 222Am Pm PT -=割线定理(切割线定理的推论)从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
PD PC PB PA ∙=∙2222Cn Pn Am Pm -=-相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等,或经过圆内一点引两条弦,各弦被这点所分成的两线段的积相等。
PD PC PB PA ∙=∙2222A Pn Cn Pm m -=-垂径定理(相交弦定理推论)如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。
圆幂定理【知识点学习】圆幂定理:(1)相交弦定理:圆的两条相交弦中,每条弦被交点所分的两条线段的乘积相等。
(2)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段的积相等。
(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段的比例中项。
三个定理统称为圆幂定理。
PPDPCPBPA⋅=⋅PDPCPBPA⋅=⋅PCPBPA⋅=2【例题与练习】1.已知:如图,⊙O的弦AD、BC互相垂直,垂足为E,53sin=∠BAD,31cos=∠CAD,2=AC,求EC和AD。
ADOCBE2. 如图,已知⊙O 的割线PAB 交⊙O 于A 、B 两点,PO 与⊙O 交于点C ,cm AB PA 6==,cm PO 12=,求⊙O 的半径。
P3. 如图,已知⊙O 与⊙'O 相交于A 、B 两点,点P 在BA 的延长线上,⊙O 的割线PCD 交⊙O于点D C 、,PE 与⊙'O 相切于点E ,4=PC ,8=CD ,求线段PE 的长。
BAC P DO O'E4. 如图,已知⊙1O 与⊙2O 相交于D C 、两点,AB 为外公切线,B A 、为切点,CD 的延长线与AB 相交于点M ,12=AB ,9=CD ,求线段MD 的长。
5. 如图,P 为⊙O 外的一点,过点P 作⊙O 的两条割线,分别交⊙O 于A 、B 和C 、D ,且AB是⊙O 的直径,已知4==OA PA ,CD AC =. (1)求CD 的长; (2)求B ∠cos 的值.CAO B PD6. 已知:如图,在ABC ∆中,︒=∠90C ,BE 是角平分线,BE DE ⊥交AB 于D ,⊙O 是BDE ∆的外接圆,若6=AD ,26=AE ,求DE 的长.EOAD BC7. 已知,△ABC 外接于⊙O ,且BC AB =,BC AO ⊥,垂足为点D , (1) 求证:△ABC 为等边三角形;(2) 点E 为BC 上的一动点(不于C B 、重合),连结AE 并延长交⊙O 于点P ,已知1=AB ,x AE =,y PE =,求y 关于x 的解析式并求其定义域;(3) 在(2)的条件下,设α=∠PAC ,β=∠EPC ,当y 取何值时,1sin sin 22=+βα.【练习】:1、 如图,BC 是半圆⊙O 的直径,BC EF ⊥于点F ,5=FCBF.已知点A 在CE 的延长线上,AB 与半圆交于D ,且8=AB ,2=AE ,求AD 的长。
初三数学圆相关知识点及试题七.切线长定理考点速览: 考点1切线长概念:经过圆外一点做圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 切线长和切线的区别切线是直线,不可度量;而切线长是切线上一条线段的长,而圆外一已知点到切点之间的距离,可以度量. 考点2 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.要注意:此定理包含两个结论,如图,PA 、PB 切⊙O 于A 、B 两点,①PA=PB ②PO 平分APB ∠. 考点3 两个结论:圆的外切四边形对边和相等;圆的外切等腰梯形的中位线等于腰长. 经典例题:例1 已知PA 、PB 、DE 分别切⊙O 于A 、B 、C 三点,若PO=13㎝,PED ∆的周长为24㎝, 求:①⊙O 的半径;②若40APB ∠=︒,EOD ∠的度数.例2 如图,⊙O 分别切ABC ∆的三边AB 、BC 、CA 于点D 、E 、F ,若,,BC a AC b AB c ===. (1)求AD 、BE 、CF 的长;(2)当90C ∠=︒,求内切圆半径r .例3.如图,一圆内切四边形ABCD ,且AB=16,CD=10,则四边形的周长为?例4 如图甲,直线343+-=x y 与x 轴相交于点A ,与y 轴相交于点B ,点C ()n m ,是第二象限内任意一点,以点C 为圆心与圆与x 轴相切于点E ,与直线AB 相切于点F.(1)当四边形OBCE 是矩形时,求点C 的坐标;(2)如图乙,若⊙C 与y 轴相切于点D ,求⊙C 的半径r ; (3)求m 与n 之间的函数关系式;(4)在⊙C 的移动过程中,能否使OEF ∆是等边三角形(只回答“能”或“不能”)?· FDOAB· EFDCOAB考点速练1:1.如图,⊙O 是ABC ∆的内切圆,D 、E 、F 为切点,::4:3:2A B C ∠∠∠=,则DEF ∠= . FEC ∠= .2.直角三角形的两条直角边为5㎝、12㎝,则此直角三角形的外接圆半径为 ㎝,内切圆半径为 ㎝.3.如图,直线AB 、BC 、CD 分别与⊙O 相切于点E 、F 、G ,且AB ∥CD ,若OB=6㎝,OC=8㎝,则BOC ∠= ,⊙O 的半径= ㎝,BE+CG= ㎝.4.如图,PA 、PB 是⊙O 的切线,AB 交OP 于点M ,若2,OM cm AB PB ==,则⊙O 的半径是 ㎝.·A O CDBEF· AO C D B E FG· AOPBM考点速练(2)1.如图,在Rt ABC ∆中,90,3,4C AC BC ∠=︒==,以BC 边上一点O 为圆心作⊙O 与AB 相切于E ,与AC 相切于C ,又⊙O 与BC 的另一个交点D ,则线段BD 的长 . 2.如图,ABC ∆内接于⊙O ,AB 为⊙O 直径,过C 点的切线交直径AB 的延长线于P ,25BAC ∠=︒,则P ∠= .4、(广西)PA 、PB 是⊙O 切线,A 、B 切点,∠APB =780,点C 是⊙O 上异于A 、B 任一点,那么∠ACB =_____。
九年级数学圆弧、弦、圆心角间的关系圆周角定理及其推论精选例题和练习2011-2012学年九年级数学第5课时圆2 弧、弦、圆心角间的关系圆周角定理及其推论一、知识点总结1.圆心角:顶点在圆心的角.注意:圆心角的底数等于它所对弧的度数.2.在同圆或等圆中,圆心角、弧、弦、弦心距中,只要有一组量相等,那么另外三组量也分别相等.3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.4.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.注:有直径时,常添加辅助线,构造直径所对的圆周角,由此转化为直角三角形的问题.思维导图如下:二、弧、弦、圆心角、弦心距间的关系举例例1 如图,AB为⊙O的弦,点C、D为弦AB上两点,且OC=OD,延长OC、OD分别交⊙O于点E、F,试证明弧AE=弧BF.分析:“弧AE=弧BF”←“∠______=∠______”Array把证弧相等转化为证________________.证明:例2 如图,点O 是∠EPF 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B 和C 、D .求证:AB=CD .分析:把证明弦相等转化为证明________相等.证明:例3(2008广东湛江)如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E ,连接AC 、OC 、BC .(1)求证:∠ACO=∠BCD .(2)若EB=8cm ,CD=24cm ,求⊙O 的直径.分析:(1)∠ACO=∠______,而∠______=∠______.(2)在Rt ⊿______中,利用勾股定理列方程求解.解:P例4 已知,如图,在⊿ABC中,AD,BD分别平分∠BAC和∠ABC,延长AD交⊿ABC的外接圆于E,连接BE.求证:BE=DE.分析:把证BE=DE转化为证∠____=∠____.证明:二、圆周角定理及推论举例例1 如图所示,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=______°.A例2 (2009江苏泰安)如图,⊙O的半径为1,AB是⊙O的一条弦,且AB 所对的圆周角为______.注意:如下图所示,同一条弦所对的弧有两种情况,两弧所对的圆周角之和为______.例3 已知:如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,且C 为弧AD 的中点,若∠BAD=20°,求∠ACO 的度数.分析:∠BAD 是圆周角,它所对应的圆心角是∠______.例4 已知,如图,在⊿ABC 中,AB=AC ,以AB 为直径的圆交BC 于D .求证:D 为BC 的中点.分析:注意AB 是直径,添加辅助线,构造直径所对的圆周角.证明:CA。
圆幂定理试题及答案一、选择题1. 圆幂定理指的是()A. 圆上任意两点的距离等于它们到圆心的距离之和B. 圆上任意两点的距离等于它们到圆心的距离之差C. 圆上任意一点到圆心的距离等于该点到圆上其他点的距离之和D. 圆上任意一点到圆心的距离等于该点到圆上其他点的距离之差2. 在圆幂定理中,如果圆上一点P到圆心O的距离为OP,点P到圆上另一点A的距离为PA,则以下哪个表达式是正确的?()A. OP = PAB. OP + PA = 2RC. OP - PA = RD. OP × PA = R^2二、填空题3. 若圆的半径为5cm,圆上一点到圆心的距离为3cm,则该点到圆上任意一点的距离之和为_________。
4. 已知圆幂定理中的OP = 8cm,PA = 6cm,且点A在圆上,则圆的半径R为_________。
三、解答题5. 如图所示,圆O的半径为10cm,点P在圆上,OP(点P到圆心O的距离)为12cm。
求点P到圆上另一点B的距离PB。
6. 在一个半径为7cm的圆中,有两点A和B,已知OA(点A到圆心O 的距离)为5cm,求AB的长度。
四、证明题7. 证明圆幂定理:在一个给定的圆中,圆上任意一点到圆心的距离与该点到圆上其他点的距离之和等于圆的直径。
答案一、选择题1. 正确答案:D2. 正确答案:B二、填空题3. 该点到圆上任意一点的距离之和为10cm + 10cm = 20cm。
4. 圆的半径R可以通过勾股定理计算得出:R^2 = OP^2 - OA^2,所以R^2 = 8^2 - 6^2 = 64 - 36 = 28,因此R = √28 ≈ 5.29cm。
三、解答题5. 由于OP > OA,根据圆幂定理,PB = 2R - OP = 2 * 10 - 12 = 20 - 12 = 8cm。
6. 同样使用圆幂定理,AB = 2R - OA - OB,但是OB = OA = 5cm,所以AB = 2 * 7 - 5 - 5 = 14 - 10 = 4cm。
圆和相似综合题有关定理1、圆幂定理(在证明比例式、求线段长度时将发挥重要作用。
)2、托勒密定理:圆内接四边形两组对边乘积之和,等于两条对角线的乘积。
已知:四边形ABCD 内接于圆,如图,求证:AB·CD + BC·AD = AC·BD证明:在∠BAD 内作∠BAE=∠CAD ,交BD 于E 。
因∠ABE=∠ACD ,所以△ABE ∽△ACD ,从而AB BE ACCD =得 AB·CD = AC·BE ①; … 易证△ADE ∽△ACB ,从而BC AC DE AD = 得BC·AD = AC·DE ②; ①+② 得AB·CD + BC·AD = AC (BE+DE )= AC·BD定理 图形已知 结论 证法 相交*弦定理⊙O 中,AB 、CD 为弦,交于点P 。
PA·PB =PC·PD 连结AC 、BD , 证:△APC ∽△DPB 切 、割线定理 ⊙O 中,PT 切⊙O 于点T ,割线PB 交⊙O 于点A 。
PT 2=PA·PB连结TA 、TB , 证:△PTB ∽△PAT }割线定理PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C 两点。
PA·PB =PC·PD ~ 过P 作PT 切⊙O 于T ,用两次切割线定理 C E3、弦切角定理:顶点在圆上,一边和圆相交,另一边和圆相切的角称为弦切角。
弦切角等于弦与切线所夹弧所对的圆周角。
}弦切角定理的证明:已知:AP切⊙O于P,PQ是弦,则∠APQ是弦切角,∠APQ夹的弧是弧PQ,弧PQ所对的圆周角记为∠PCQ证明:∠APQ=∠PCQ (弦切角的位置分以下三种情况)】1°圆心O在∠APQ外部过P作直径BP,联结BC则BP⊥AP,∠APB=90°,且∠BCP是直径BP所对的圆周角,∠BCP=90°#则有∠APB=∠BCP,即∠APQ+∠BPQ=∠BCQ+∠PCQ由于∠BPQ,∠BCQ都是弧BQ所对的圆周角,所以∠BPQ=∠BCQ所以∠APQ=∠PCQ2°圆心O在∠APQ的一边,PQ上此时PQ是直径,则PQ⊥AP,∠APQ=90°而且∠PCQ是直径PQ所对的圆周角,∠PCQ=90°所以∠APQ=∠PCQ3°圆心O在∠APQ内部过P作直径BP,联结BC则BP⊥AP,∠APB=90°,且∠BCP是直径BP所对的圆周角,∠BCP=90°则有∠APB=∠BCP由于∠BPQ,∠BCQ都是弧BQ所对的圆周角,所以∠BPQ=∠BCQ所以∠APB+∠BPQ=∠BCP+∠BCQ即∠APQ=∠PCQ。
圆补充定理及习题(20151218)板块一:圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅(2)相交弦定理推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.即:在⊙O 中,∵直径AB CD ⊥,∴2CE AE BE =⋅(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙O 中,∵PA 是切线,PB 是割线∴ 2PA PC PB =⋅(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如图). 即:在⊙O 中,∵PB 、PE 是割线∴PC PB PD PE ⋅=⋅AD B1:如图,圆中两条弦AB,CD 相交于圆内一点P ,已知PA=PB=4,PC=14PD,求CD 的长2:E 是圆内两弦AB 和CD 的交点,直线EF//CB,交AD 的延长线于F ,切圆于G 。
求证(1) EFA DFE ∆∆ (2)EF=FG3:两圆相交于A,B 两点,P 为两圆公共弦AB 上任一点,从P 引两圆的切线PC,PD ,求证PC=PD4.如图,在半径为4的⊙O 中,AB 、CD 是两条直径,M 为OB 的中点,CM 的延长线交⊙O 于点E ,且EM>MC.连接DE ,DE 求EM 的长.板块二:两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦.如图:12O O 垂直平分AB .即:∵⊙1O 、⊙2O 相交于A 、B 两点,∴12O O 垂直平分AB练习1:如图1,半径为5的两个等圆⊙O 1与⊙O 2相交于A 、B ,公共弦AB=8.由点O 1向⊙O 2作切线O 1C ,切点为C,则O 1C 的长为图1 图2练习2:如图2,⊙O 1与⊙O 2相交于A 、B .已知两圆的半径r 1=10,r 2=17,圆心距O 1O 2=21,公共弦AB 等于( )A .2B .16C .6D .17练习3:已知相交两圆的半径分别为5cm 和4cm,公共弦长为6cm ,则这两个圆的圆心距是 cm .分析:此题综合运用了相交两圆的性质以及勾股定理.注意此题应考虑两种情况.注意此题应考虑两种情况(图3和图4).练习4:如图5,⊙O 1和⊙O 2相交于点A ,B ,它们的半径分别为2和 ,公共弦AB 长为2,若圆心O 1、O 2在AB 的同侧,则∠O 1AO 2= 度.B A O1O2. C A B . . 1o 2o 图4图5 图3 2板块三:圆的公切线两圆公切线长的计算公式:(1)公切线长:12Rt O O C ∆中,221AB CO =(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 。
《弦切角定理》定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
弦切角定理:弦切角的度数等于它所夹的弧的圆心角度数的一半,等于它所夹的弧的圆周角度数。
那怎么证明呢?《圆幂定理》(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙O 中,∵弦AB 、CD 相交于点P ,∴PA PB PC PD ⋅=⋅(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙O 中,∵PA 是切线,PB 是割线∴ 2PA PC PB =⋅(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅【精典例题】1、如图,PA 、PB 是⊙O 的切线,AC 是⊙O 的直径,∠P=50°,则∠BOC 的度数为( ) A .50°B .25°C .40°D .60°2、如图,BD 为圆O 的直径,直线ED 为圆O 的切线,A .C 两点在圆上,AC 平分∠BAD 且交BD 于F 点.若∠ADE =19°,则∠AFB 的度数为何?( ) A .97°B .104°C .116°D .142°解答:解:∵PA 、PB 是⊙O 的切线, ∴∠OAP =∠OBP =90°, 而∠P =50°,∴∠AOB =360°﹣90°﹣90°﹣50°= 130°, 又∵AC 是⊙O 的直径,∴∠BOC =180°﹣130°=50°. 故选A .BADB3、如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( )A 、30°B 、45°C 、60°D 、67.5°4、已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则 线段AB 长度的最小值为( )A 、1B 、2C 、3D 、2解答:如右图所示,OA ⊥l ,AB 是切线,连接OB , ∵OA ⊥l ,∴OA=2, 又∵AB 是切线, ∴OB ⊥AB ,在Rt △AOB 中,AB =22OB OA -=2212-=3.故选C .5、如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形, 两直角边分别为6m 和8m.按照输油中心O 到三条支路的距离相等来连接管 道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点) 是( )A.2mB.3mC.6mD.9m解答:在Rt △ABC 中,BC =8m,AC =6m,AB =22BC AC +=2286+=10. ∵中心O 到三条支路的距离相等,设距离是r .△ABC 的面积=△AOB 的面积+△BOC 的面积+△AOC 的面积 即:12AC •BC =12AB •r+12BC •r+12AC •r 即:6×8=10r+8r+6r ∴r=4824=2. 故O 到三条支路的管道总长是2×3=6m .故选C .解答:解:∵BD 是圆O 的直径, ∴∠BAD =90°, 又∵AC 平分∠BAD ,∴∠BAF =∠DAF =45°, ∵直线ED 为圆O 的切线, ∴∠ADE =∠ABD =19°,∴∠AFB =180°-∠BAF -∠ABD =180°-45°-19°=116°. 故选C .解答:解:如图:∵PD 切⊙O 于点C , ∴OC ⊥PD , 又∵OC=CD , ∴∠COD=45°, 连接AC ,∵AO=CO , ∴∠ACO=22.5°,∴∠PCA=90°-22.5°=67.5°. 故选D .O(第5题图)6、如图,AB 是⊙O 的直径,BC 交⊙O 于点D ,DE ⊥AC 于点E ,要使DE 是⊙O 的切线,还需补充一个条件,则补充的条件不正确...的是( ) A. DE =DO B. AB =AC C. CD =DB D. AC ∥OD7、已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点,过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于( )A 、30°B 、60°C 、45°D 、50°解答:连接OC ,∵OC=OA ,,PD 平分∠APC ,∴∠CPD=∠DPA ,∠A=∠ACO , ∵PC 为⊙O 的切线,∴OC ⊥PC ,∵∠CPD+∠DPA+∠A+∠ACO=90°,∴∠DPA+∠A=45°,即∠CDP=45°. 故选C .8、如图,CB 切⊙O 于点B ,CA 交⊙O 于点D 且AB 为⊙O 的直径,点E 是ABD 上异于点A 、D 的一点.若∠C =40°,则∠E 的度数为 .9、已知:如图,三个半圆以此相外切,它们的圆心都在x 轴的正半轴上并与直线y =x 相切,设半圆C 1、半圆C 2、半圆C 3的半径分别是r 1、r 2、r 3,则当r 1=1时,r 3=解答:由三个半圆依次与直线y =x 相切并且圆心都在x 轴上,∴y =x 倾斜角是30°,∴得,OO 1=2r 1,OO 1=2r 2,001=2r 3,r 1=1,∴r3=9.故答案为9.333333解答:当AB=AC 时,连接AD ,∵AB 是⊙O 的直径,∴AD ⊥BC ,∴CD=BD , ∵AO=BO ,∴OD 是△ABC 的中位线,∴OD ∥AC ,∵DE ⊥AC ,∴DE ⊥OD ,∴DE 是⊙O 的切线.所以B 正确. 当CD=BD 时,AO=BO ,∴OD 是△ABC 的中位线,∴OD ∥AC ∵DE ⊥AC ∴DE ⊥OD ∴DE 是⊙O 的切线.所以C 正确.当AC ∥OD 时,∵DE ⊥AC ,∴DE ⊥OD .∴DE 是⊙O 的切线.所以D 正确. 故选A .ABCD P· OE解答:如图:连接BD ,∵AB 是直径,∴∠ADB =90°,∵BC 切⊙O 于点B ,∴∠ABC =90°, ∵∠C =40°,∴∠BAC =50°,∴∠ABD =40°,∴∠E =∠ABD =40°. 故答案为:40°.10、如图,在Rt △ABC 中,∠ABC 是直角,AB=3,BC=4,P 是BC 边上的动点,设BP=x ,若能在AC 边上找到一点Q ,使∠BQP=90°,则x 的取值范围是 .解答:解:过BP 中点以BP 为直径作圆,连接QO ,当QO ⊥AC 时,QO 最短,即BP 最短, ∵∠OQC=∠ABC=90°,∠C=∠C ,∴△ABC ∽△OQC ,∴=,∵AB=3,BC=4,∴AC=5, ∵BP=x ,∴QO=x ,CO=4﹣x ,∴=,解得:x=3,当P 与C 重合时,BP=4,∴BP=x 的取值范围是:3≤x ≤4, 故答案为:3≤x ≤4.11、如图,AD 是⊙O 的弦,AB 经过圆心O ,交⊙O 于点C ,∠DAB=∠B=30°. (1)直线BD 是否与⊙O 相切?为什么? (2)连接CD ,若CD=5,求AB 的长.解答:(1)直线BD 与⊙O 相切.如图连接OD ,CD , ∵∠DAB=∠B=30°,∴∠ADB=120°, ∵OA=OD ,∴∠ODA=∠OAD=30°,∴∠ODB=∠ADB ﹣∠ODA=120°﹣30°=90°. 所以直线BD 与⊙O 相切.(2)连接CD ,∠COD=∠OAD+∠ODA=30°+30°=60°, 又OC=OD ,∴△OCD 是等边三角形,即:OC=OD=CD=5=OA ,∵∠ODB=90°,∠B=30°,∴OB=10,∴AB=AO+OB=5+10=15.12、已知:如图,AB 为⊙O 的直径,⊙O 过AC 的中点D ,DE ⊥BC 于点E . (1)求证:DE 为⊙O 的切线;(2)若DE =2,tan C =12,求⊙O 的直径.【解析】(1)证明:联结OD . ∵ D 为AC 中点, O 为AB 中点,∴ OD 为△ABC 的中位线. ∴OD ∥BC . ∵ DE ⊥BC , ∴∠DEC=90°.∴∠ODE=∠DEC=90°. ∴OD ⊥DE 于点D. ∴ DE 为⊙O 的切线.(2)解:联结DB . ∵AB 为⊙O 的直径, ∴∠ADB=90°. ∴DB ⊥AC . ∴∠CDB=90°. ∵ D 为AC 中点, ∴AB=AC .在Rt △DEC 中,∵DE=2 ,tanC=12, ∴EC=4tan DEC=. 由勾股定理得:DC=在Rt △DCB 中, BD=tan DC C ⋅ BC=5. ∴AB=BC=5. ∴⊙O 的直径为5.【巩固练习】1.已知⊙O 的半径为10cm ,如果一条直线和圆心O 的距离为10cm ,那么这条直线和这个圆的位置关系为( )A. 相离B. 相切C. 相交D. 相交或相离2.如右图,A 、B 是⊙O 上的两点,AC 是⊙O 的切线,∠B=70°,则∠BAC 等于( )A. 70°B. 35°C. 20°D. 10°(第2题) (第3题) (第4题) (第5题)3.如图,PA 切⊙O 于A ,PB 切⊙O 于B ,OP 交⊙O 于C ,下列结论中,错误的是( )A. ∠1=∠2B. PA=PBC. AB ⊥OPD. 2PA PC ·PO4.如图,已知⊙O 的直径AB 与弦AC 的夹角为30°,过C 点的切线PC 与AB 的延长线交于P ,PC=5,则⊙O 的半径为( )A.335 B. 635 C. 10 D. 55.如图已知AB 是⊙O 的直径,弦AD 、BC 相交于点P ,那么AB ︰CD 等于∠BPD 的( )A. 正弦B. 余弦C. 正切D. 余切6.如图A 、B 、C 是⊙O 上三点,AB ⌒的度数是50°,∠OBC=40°,则∠OAC 等于( )A. 15°B. 25°C. 30°D. 40°(第6题) (第7题) (第8题) (第9题)7.如图AB 为⊙O 的一条固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C ,作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当C 点在半圆(不包括A 、B 两点)上移动时,点P ( )A. 到CD 的距离不变B. 位置不变C. 等分DB ⌒D. 随C 点的移动而移动8.如图AD 、AE 和BC 分别切⊙O 于D 、E 、F ,如果AD=20,则△ABC 的周长为( ) A. 20 B. 30 C. 40 D. 21359.如图在⊙O 中,直径AB 、CD 互相垂直,BE 切⊙O 于B ,且BE=BC ,CE 交AB 于F ,交⊙O 于M ,连结MO 并延长,交⊙O 于N ,则下列结论中,正确的是( )A. CF=FMB. OF=FBC. BM⌒的度数是22.5° D. BC ∥MN 10.如图⊙O 的两条弦AB 、CD 相交于点P ,已知AP=2cm ,BP=6cm ,CP ︰PD =1︰3,则DP=_________.(第10题) (第11题) (第12题) (第13题)11.如图AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,P 是BA 的延长线上的点,连结PC ,交⊙O 于F ,如果PF=7,FC=13,且PA ︰AE ︰EB = 2︰4︰1,则CD =_________.12.从圆外一点P 引圆的切线PA ,点A 为切点,割线PDB 交⊙O 于点D 、B ,已知PA=12,PD=8,则=∆∆DAP ABP S S :__________.13.⊙O 的直径AB=10cm ,C 是⊙O 上的一点,点D 平分BC ⌒,DE=2cm ,则AC=_____. 14.如图,AB 是⊙O 的直径,∠E=25°,∠DBC=50°,则∠CBE=________.(第14题) (第15题) (第17题) (第18题)15.点A 、B 、C 、D 在同一圆上,AD 、BC 延长线相交于点Q ,AB 、DC 延长线相交于点P ,若∠A=50°,∠P=35°,则∠Q=________.16.在Rt △ABC 中,∠C=90°,AC=12cm ,BC=5cm ,以点C 为圆心,6cm 的长为半径的圆与直线AB 的位置关系是________.17.如图,在△ABC 中,AB=AC,∠BAC=120°,⊙A 与BC 相切于点D,与AB 相交于点E,则∠ADE 等于___度. 18.如图,PA 、PB 是⊙O 的两条切线,A 、B 为切点,直线OP 交⊙A 于点D 、E,交AB 于C.图中互相垂直的线段有_________(只要写出一对线段即可).19.已知⊙O 的半径为4cm,直线L 与⊙O 相交,则圆心O 到直线L 的距离d 的取值范围是____.E A PO EC D BA20.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B,且∠APB=50°,点C 是优弧AB 上的一点,则∠ACB 的度数为________.(第20题) (第21题) (第22题) (第23题)21.如图,⊙O 为△ABC 的内切圆,D 、E 、F 为切点,∠DOB=73°,∠DOE=120°, 则∠DOF=_______度,∠C=______度,∠A=_______度.22.如图,AB 、AC 为⊙O 的切线,B 、C 是切点,延长OB 到D,使BD=OB,连接AD,如果∠DAC=78°,那么∠ ADO 等于_______23.如图AB 是⊙O 的直径,AC 是⊙O 的切线,,A 为切点,连结BC 交圆0于点D,连结AD,若∠ABC =45°,则下列结论正确的是( )A.AD =BCB.AD =ACC.AC >ABD.AD >DC24.如图,在平面直角坐标系中,⊙P 与x 轴相切于原点O ,平行于y 轴的直线交⊙P 于M,N 两点.若点M 的坐标是(2,-1),则点N 的坐标是( )A .(2,-4) B. (2,-4.5) C.(2,-5) D.(2,-5.5)(第24题) (第25题) (第26题) (第27题)25、如图,AB 是⊙O 的直径,AD 是⊙O 的切线,点C 在⊙O 上,BC ∥OD ,AB =2,OD =3,则BC 的长为( )A .B . CD26、已知圆O 的半径为R ,AB是圆O 的直径,D 是AB 延长线上一点,DC是圆O 的切线,C 是切点,连结AC ,若∠CAB =30°,则BD 的长为( )A .BC .D 27、如图,在平面直角坐标系中,⊙A 与y 轴相切于原点O ,平行于x 轴的直线交⊙A 于M 、M 两点,若点M 的坐标是(-4,-2),则点N 的坐标为( )A .(-1,-2)B .(1,2)C .(-1.5,-2)D .(1.5,-2)PO C BA212123322R R R28、如图,AB 是圆O 的直径,AC 是圆O 的切线,A 为切点,连结BC 交圆于点D ,连结AD ,若∠ABC =45°,则下列结论正确的是( )A .B .C .D .(第28题) (第29题) (第30题) (第31题)29、如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D,DE ⊥AC 于E,连接AD,则下列结论正确的个数是( )①AD ⊥BC ②∠EDA =∠B ③OA =AC ④DE 是⊙O 的切线A .1 个B .2个C .3 个D .4个30、一个钢管放在V 形架内,右图是其截面图,O 为钢管的圆心.如果钢管的半径为25 cm ,∠MPN =60︒,则OP =( )A .50 cmB .25cm C .cm D .50cm 31、如图,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点 F .已知BD =2,设AD =x ,CF =y ,则y 关于x 的函数解析式是 .32、如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,BC =4cm ,则切线AB = cm.(第32题) (第33题) (第34题) (第35题)33、如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC =30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF =2,则HE 的长为_________.34、如图,点A 、B 、C 在⊙O 上,切线CD 与OB 的延长线交于点D ,若∠A =30°,CD =,则⊙O 的半径长为 .35、如图,在中,,与相切于点,且交于两点,则图中阴影部分的面积是 (保留).O 12AD BC =12AD AC =AC AB >AD DC >12333503第19题图ABC DO32ABC △120AB AC A BC =∠==,°,A ⊙BC D AB AC 、M N 、π36、如图,⊙O 内切于△ABC ,切点分别为D ,E ,F .∠B =50°,∠C =60°,连结OE ,OF ,DE ,DF ,则∠EDF 等于( )A .40°B .55°C .65°D .70°(第36题) (第73题) (第38题)37、如图,一个边长为4 cm 的等边三角形ABC 的高与⊙O 的直径相等.⊙O 与BC 相切于点C ,与AC 相交于点E ,则CE 的长为________cm.38、如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B ,连结PA .设PA =x ,PB =y ,则x -y 的最大值是________.39、如图,AB 是半圆O 的直径,C 为半圆上一点,过C 作半圆的切线,连接AC, 作直线AD ,使∠DAC=∠CAB ,AD 交半圆于E,交过C 点的切线于点D. (1)试判断AD 与CD 有何位置关系,并说明理由; (2)若AB=10,AD=8,求AC 的长.40、如图,点A ,B ,C 在半径为8的⊙O 上,过点B 作BD ∥AC ,交OA 延长线于点D ,连结BC ,且∠BCA =∠OAC =30°.(1)求证:BD 是⊙O 的切线; (2)求图中阴影部分的面积.答案:8、据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=AD+AE=2AD=40.故选C.9、解:A错,F显然不是弦的平分点;B错,F不是半径的中点;C错,M点平分应为45°;D对,∵BE为圆O的切线,∴BE⊥AB,∵CD⊥AB,∴BE∥CD,∴∠BEF=∠DCF,∵BC=BE,∴∠BCE=∠BEF,∴∠BCE=∠DCF,∵OC=OM,∴∠DCF=∠CMN,∴∠BCE=∠CMN,∴BC∥MN.故选D.10、解:如图利用相交弦定理可知:11、根据割线定理,PF*PC=PA*PB,设EB=X则PA=2X,AE=4X,PB=7X7*(7+13)=2X*7X,X2=10在三角形PCE中,CE2=PC2-PE2=400-360=40,CD=2CE=10412、由切割线定理可得PA2=PD×PB,∵PA=12,PD=8 ∴PB=18.由弦切角和公共角易知△PAD∽△PBA.∴S△PAD:S△PBA=PA2:PB2=4:9.⌒,∴OD平分BC,∴OE为△ABC的中位线,13、∵点D平分BC又∵⊙O的直径AB=10cm,∴OD=5cm,DE=2cm,∴0E=3cm,则弦AC=6cm.故答案为6cm.14、连接AC,∵∠DBA和∠DCA都为AD所对的圆周角,∴∠DBA=∠DCA,∵AB为⊙O的直径,∴∠BCA=90°,∴∠CBA+∠CAB=90°,∵∠CAB=∠E+∠DCA,∴∠CBD+∠DBA+∠E+∠DBA=90°,∵∠E=25°,∠DBC=50°,∴∠DBA=7.5°,∴∠CBE=∠DBA+∠DBC=57.5°15、∠A=50°,故∠BCD=130°(因为是圆,同弧的角互补),由P=35°计得∠CDQ=85°,故可以计出∠Q=45°.16.相交 17.60 18.如OA⊥PA,OB⊥PB,AB⊥OP等. 19.0≤d<4. 20.65°21. 146°,60°,86° 22.64°23、【答案】A 24、【答案】A 25、【答案】A 26、【答案】C27、【答案】C 28、【答案】A 29、【答案】D 30、【答案】A31、 32、【答案】433、【答案】34、【答案】2.3536、B 由∠B =50°,∠C =60°可求出∠A =70°,则易求得∠EOF =110°,∴∠EDF =12∠EOF =55°.37、过O 作OF ⊥AC 于F ,连结OC ,如图.则CE =2CF .根据△ABC 为等边三角形,且边长为4 cm ,易求得它的高为2 3 cm ,即OC = 3 cm.∵BC 与⊙O 相切,∴∠OCB =90°.又∠ACB =60°,∴∠OCF =30°.3π3在Rt△OFC中,可得CF=OC·cos 30°=3×32=32(cm),故CE=2CF=3 cm.38、如图,连结OA,过点O作OC⊥AP于点C,所以∠ACO=90°,AC=12AP.易证△OAC∽△APB,所以OA AP =ACPB,即4x=x2y,所以y=x28.所以x-y=x-x28=-18(x-4)2+2,所以x-y的最大值是2.39.(1)AD⊥CD.理由:连接OC,则OC⊥CD.∵OA=OC,∴∠OAC=∠OCA,又∠OAC= ∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∴AD⊥CD.(2)连接BC,则∠ACB=90°由(1)得∠ADC=∠ACB,又∠DAC=∠CAB.∴△ACD∽△ABC,∴AC ADAB AC=,即AC2=AD·AB=80,故40、22.(1)证明:如图,连结OB,交CA于点E.∵∠C=30°,∠C=12∠BOA,∴∠BOA=60°.∵∠OAC=30°,∴∠AEO=90°.∵BD∥AC,∴∠DBE=∠AEO=90°.∴OB⊥BD.∴BD是⊙O的切线.(2)解:∵AC∥BD,∴∠D=∠OAC=30°.∵∠OBD=90°,OB=8,∴BD=3OB=8 3.∴S阴影=S△BDO-S扇形AOB=12×8×83-60·π×82360=323-32π3.。
专题6 巧解与圆有关的比例线段知识解读圆中的比例线段问题,一般是指圆幂定理以及与圆有关的相似形推证比例线段问题.下面先介绍一下圆幂定理:(1)相交弦定理:圆内两条相交弦被交点分成的两条线段的乘积相等。
如图1-6-1①,⊙O 中,弦AB ,CD 相交于点P ,则P A ·PB =PC ·PD . 连接AC ,BD ,证明△P AC ∽△PDB ,即可获证.特别的,如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
如图1-6-1②,AB 是⊙O 的直径,点C 是⊙O 上一点,CP ⊥AB ,垂足为P ,则PC 2=P A ·PB .()切割线定理:从圆外一点引圆的切线和割线,这点到圆的切线长是这点到割线与圆两交点的两条线段的比例中项。
如图1-6-1③,PC 切⊙O 于点C ,割线交OO 于点A ,B ,则PC 2=P A ·PB .()割线定理:从圆外一点引圆的两条割线,这点到每条割线与圆的交点的两条线段长的积相等。
如图1-6-1④,P AB ,PCD 是⊙O 的两条割线,则P A ·PB =PC ·PD .(读者可自行证明)①B DAPO②BCAPOOABCP③④PCDBA O上述结论统称圆幂定理.同时,由相似三角形得对应边成比例,也是研究比例线段的最重要的方法.而角在圆中转变灵活,为寻找构造相似三角形,得到比例线段提供了可能.培优学案典例示范例1 如图1-6-2,圆内两条弦AB ,CD 的延长线相交于圆外一点E ,过点E 作AD 的平行线与直线BC 交于F ,作切线FG ,G 为切点.求证:FE =FG .【提示】将问题转化为证明FE 2=FG 2,这由切割线定理和相似三角形的性质可获证. 【解答】图1-6-2O GAF EDCB【跟踪训练】图1-6-11.如图1-6-3,已知在Rt △ABC 中,∠C =90°,与∠BAC 相邻的外角平分线所在的直线交BC 的延长线于点D ,交△ABC 的外接圆O 于点E ,DF 切⊙O 于F . 求证:AB ·AC =DF 2-DA2.【提示】注意到DF 2=DA ·DE ,从而DF 2-DA 2可化为DA ·AE ,然后把四条线段放在两个三角形中,通过△ABE 与△ACD 相似可证得. 【解答】图1-6-3FO EACB2.如图1-6-4,AB 是⊙O 的直径,过A ,B 引两条弦AD 和BE ,相交于点C . 求证:AC ·AD +BC ·BE =AB 2. 【解答】图1-6-4E O D C A例2 如图1-6-5,在⊙O 的内接△ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是弧AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G . (1)求证:PFPCPD PA =(2)若AB =5, 弧AP 与弧BP 相等,求PD 的长; (3)在点P 运动过程中,设x BGAG=,tan ∠AFD =y ,求y 与x 之间的函数关系式. (不要求写出x 的取值范围) 【提示】(1)证明△P AC ∽△PDF ;(2)先根据勾股定理以及90°圆周角所对的弦是直径,求出AC 和BC 的长,然后再用面积法求出CE 的长,进而再利用勾股定理求出AE 的长,再根据两条弧相等以及勾股定理求出AP 的长,最后根据△P AC ∽△PDF 求出PD 的长;(3)作出GH //BP 的辅助线,从而得到相等的角和成比例的线段,然后再根据等角的正切值相等得到y 与x 之间的函数关系. 【解答】【跟踪训练】如图1-6-6,四边形ABCD 内接于⊙O ,AB 是⊙O 直径,AC 和BD 相交于点E ,且DC 2=CE ·CA .lAFG EDCB P图1-6-5O(1)求证:BC =CD ;(2)分别延长AB ,DC 交于点P ,过A 点作AF ⊥CD 交CD 的延长线于点F .若PB =OB ,CD =22,求DF 的长. 【提示】(1)证明△DCE ∽△ACD 可得∠CDE =∠CAD ,问题得证;(2)连接OC ,作OG ⊥CD 于点G ,可证得OG ∥AF ,OC ∥AD ,根据平行线分线段成比例定理来解决问题。
1.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,CD ⊥AB 于D ,AB =a ,则DB =( ) A .4a B .3a C .2a D .43a 2.如图,AD 是△ABC 高线,DE ⊥AB 于E ,DF ⊥AC 于F ,则(1)AD 2=BD ·CD (2)AD 2=AE ·AB (3)AD 2=AF ·AC (4)AD 2=AC 2-AC ·CF 中正确的有( )A .1个B .2个C .3个D .4个3.如图,AB 是⊙O 的直径,C ,D 是半圆的三等分点,则∠C +∠E +∠D =( )A .135°B .110°C .145°D .120° 4.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A .∠BAD +∠CAD =90°B .∠BAD >∠CADC .∠BAD =∠CAD D .∠BAD <∠CAD二、填空题5.在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,AB =2,DB =1,则DC =______,AD =______.6.在Rt △ABC 中,AD 为斜边上的高,S △ABC =4S △ABD ,则AB ∶BC =______.7.如图,AB 是半圆O 的直径,点C 在半圆上,CD ⊥AB 于点D ,且AD =3DB ,设∠COD = ,则tan 22______.8.如图,AB 是⊙O 的直径,CB 切⊙O 与B ,CD 切⊙O 与D ,交BA 的延长线于E .若AB =3,ED =2,则BC 的长为______.9.如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点,(Ⅰ)求∠AOD 的度数;(Ⅱ)若AO =8 cm ,DO =6 cm ,求OE 的长.10.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,O 是AB 上一点,以OA 为半径的⊙O 经过点D .(1)求证:BC 是⊙O 切线;(2)若BD =5,DC =3,求AC 的长.11.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD ⊥AB 于E ,连结AC 、OC 、BC .(1)求证:∠ACO =∠BCD ;(2)若BE =2,CD =8,求AB 和AC 的长.专题十三 相似三角形定理与圆幂定理参考答案习题13一、选择题:1.A 2.C 3.D 4.C 二、填空题5.3,3 6.1∶2 7.318.3 三、解答题9.(Ⅰ)∵AB ∥CD ,∴∠BAD +∠ADC =180°.∵⊙O 内切于梯形ABCD ,∴AO 平分∠BAD ,有∠DAO =21∠BAD , 又DO 平分∠ADC ,有∠ADO =21∠ADC .∴∠DAO +∠ADO =21(∠BAD +∠ADC )=90°,∴∠AOD =180°-(∠DAO +∠ADO )=90°.(Ⅱ)∵在Rt △AOD 中,AO =8cm ,DO =6cm , ∴由勾股定理,得.cm 1022=+DO AO∵E 为切点,∴OE ⊥AD .有∠AEO =90°,∴∠AEO =∠AOD . 又∠CAD 为公共角,∴△AEO ∽△AOD . ∴cm 8.4,==∴=⋅ADODAO OE AD AO OD OE .10.(1)连接OD .∵OA =OD ,AD 平分∠BAC ,∴∠ODA =∠OAD ,∠OAD =∠CAD .∴∠ODA =∠CAD . ∴OD ∥AC .∴∠ODB =∠C =90°.∴BC 是⊙O 的切线. (2)过D 作DE ⊥AB 于E .∴∠AED =∠C =90°.又∵AD =AD ,∠EAD =∠CAD ,∴△AED ≌△ACD . ∴AE =AC ,DE =DC =3.在Rt △BED 中,∠BED =90°,由勾股定理,得422=-=DE BD BE ,设AC =x (x >0),则AE =x .在Rt △ABC 中,∠C =90°,BC =BD +DC =8,AB =x +4,由勾股定理,得 x 2+82=(x +4)2.解得x =6.即AC =6.11.(1)连结BD ,∵AB 是⊙O 的直径,CD ⊥AB ,∴=.∴∠1=∠2.又∵OA =OC ,∴∠1=∠A .∴∠1=∠2. 即:∠ACO =∠BCD .(2)由(1)问可知,∠A =∠2,∠AEC =∠CEB .∴△ACE ∽△CBE .∴CEAEBE CE =.∴CE 2=BE ·AE . 又CD =8,∴CE =DE =4. ∴AE =8.∴AB =10.∴AC =.548022==+CE AE模拟题集锦:1、 如图,已知⊙O 的直径5AB =,C 为圆周上一 点,4=BC ,过点C 作⊙O 的切线l ,过点A 作l 的垂线AD ,垂足为D ,则CD =___________.OADCB2、如图,已知PA 是圆O 的切线,切点为A ,PO 交圆O 于,B C两点,1PA PB =,则圆O 的半径为 ,C ∠3、如图,PAB 、PC 分别是圆O 的割线和切线(C 为切点),若3PA AB ==,则PC 的长为A .B .6C .D .34、如图,PC 切O 于点C ,割线PAB 经过圆心O ,弦CD AB ⊥于点E ,已知O 的半径为3,2PA =,则PC =_________,OE =_________.5、如图,圆O 和圆O '相交于A ,B 两点,AC 是圆O '的切线,AD 是圆O 的切线,若BC =2,AB =4,则=BD _.6、如右图:PA 切O 于点A ,4PA =,PBC 过圆心O ,且与圆相交于B 、C 两点,:1:2AB AC =,则O 的半径为 .7、如下图,在圆内接四边形ABCD 中, 对角线, AC BD 相交于点E .已知BC CD ==2AE EC =,30CBD ∠=,C. .'OCO BDA则CAB ∠= 30 ,AC 的长是 6 .8、如图所示,过⊙O 外一点A 作一条直线与⊙O 交于C ,D 两点,AB 切⊙O 于B ,弦MN 过CD 的中点P .已知AC =4,AB =6,则MP ·NP = 254.C D M OB AP。
第二十二讲 园幂定理相交弦定理、切割线定理、割线定理统称为圆幂定理.圆幂定理实质上是反映两条相交直线与圆的位置关系的性质定理,其本质是与比例线段有关.相交弦定理、切割线定理、割线定理有着密切的联系,主要体现在:1.用运动的观点看,切割线定理、割线定理是相交弦定理另一种情形,即移动圆内两条相交弦使其交点在圆外的情况;2.从定理的证明方法看,都是由一对相似三角形得到的等积式.熟悉以下基本图形、基本结论:【例题求解】【例1】 如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D ,CD=2,AD=3,BD=6,则PB= .思路点拨 综合运用圆幂定理、勾股定理求PB 长. 注:比例线段是几何之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段: (1)平行线分线段对应成比例; (2)相似三角形对应边成比例;(3)直角三角形中的比例线段可以用积的形式简捷地表示出来; (4)圆中的比例线段通过圆幂定理明快地反映出来.【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C .415 D .516思路点拨 连AC ,CE ,由条件可得许多等线段,为切割线定理的运用创设条件.注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键.【例3】如图,△ABC内接于⊙O,AB是∠O的直径,PA是过A点的直线,∠PAC=∠B.(1)求证:PA是⊙O的切线;(2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的长和∠ECB的正切值.思路点拨直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x与k的关系,建立x或k的方程.【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE思路点拨由切割线定理得EG2=EF·EP,要证明EG=DE,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明.注:圆中的许多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁.需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几何各种类型的问题中.【例5】如图,以正方形ABCD的AB边为直径,在正方形内部作半圆,圆心为O,DF切半圆于点E,交AB的延长线于点F,BF=4.求:(1)cos∠F的值;(2)BE的长.思路点拨解决本例的基础是:熟悉圆中常用辅助线的添法(连OE,AE);熟悉圆中重要性质定理及角与线段的转化方法.对于(1),先求出EF,FO值;对于(2),从△BE F∽△EAF,Rt△AEB入手.注:当直线形与圆结合时就产生错综复杂的图形,善于分析图形是解与圆相关综合题的关键,分析图形可从以下方面入手:(1)多视点观察图形.如本例从D点看可用切线长定理,从F点看可用切割线定理.(2)多元素分析图形.图中有没有特殊点、特殊线、特殊三角形、特殊四边形、全等三角形、相似三角形.(3)将以上分析组合,寻找联系.学历训练A组1.如图,PT是⊙O的切线,T为切点,PB是⊙O的割线,交⊙O于A、B两点,交弦CD 于点M,已知CM=10,MD=2,PA=MB=4,则PT的长为.2.如图,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,则AC:BD= .3.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点F,若AB=CD=2,则CE= .4.如图,在△ABC 中,∠C=90°,AB=10,AC=6,以AC 为直径作圆与斜边交于点P ,则BP 的长为( )A .6.4B .3.2C .3.6D .8(5.如图,⊙O 的弦AB 平分半径OC ,交OC 于P 点,已知PA 、PB 的长分别为方程024122=+-x x 的两根,则此圆的直径为()A .28B .26C .24D .226.如图,⊙O 的直径Ab 垂直于弦CD ,垂足为H ,点P 是AC上一点(点P 不与A 、C 两点重合),连结PC 、PD 、PA 、AD ,点E 在AP 的延长线上,PD 与AB 交于点F ,给出下列四个结论:①CH 2=AH ·BH ;②AD =AC :③AD 2=DF ·DP ;④∠EPC=∠APD ,其中正确的个数是( )A .1B .2C .3D .47.如图,BC 是半圆的直径,O 为圆心,P 是BC 延长线上一点,PA 切半圆于点A ,AD ⊥BC 于点D .(1)若∠B=30°,问AB 与AP 是否相等?请说明理由; (2)求证:PD ·PO=PC ·PB ;(3)若BD :DC=4:l ,且BC =10,求PC 的长.⌒ ⌒ ⌒8.如图,已知PA 切⊙O 于点A ,割线PBC 交⊙O 于点B 、C ,PD ⊥AB 于点D ,PD 、AO 的延长线相交于点E ,连CE 并延长交⊙O 于点F ,连AF . (1)求证:△PBD ∽△PEC ; (2)若AB=12,tan ∠EAF=32,求⊙O 的半径的长.9.如图,已知AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,PF 分别交AB 、BC 于E 、D ,交⊙O 于F 、G ,且BE 、BD 恰哈好是关于x 的方程0)134(622=+++-m m x x (其中m 为实数)的两根.(1)求证:BE=BD ;(2)若GE ·EF=36,求∠A 的度数.B 组10.如图,△ABC 中,∠C=90°,O 为AB 上一点,以O 为圆心,OB 为半径的圆与AB 相交于点E ,与AC 相切于点D ,已知AD=2,AE=1,那么BC= .11.如图,已知A 、B 、C 、D 在同一个圆上,BC=CD ,AC 与BD 交于E ,若AC=8,CD=4,且线段BE 、ED 为正整数,则BD= .12.如图,P 是半圆O 的直径BC 延长线上一点,PA 切半圆于点A ,AH ⊥BC 于H ,若PA=1,PB+PC=a (a >2),则PH=( )A .a2 B .a1 C .2a D .3a13.如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB ,若AB=2,则DE 的长为( ) A .21 B .215 C .23 D .114.如图,已知AB 为⊙O 的直径,C 为⊙O 上一点,延长BC 至D ,使CD=BC ,CE ⊥AD 于E ,BE 交⊙O 于F ,AF 交CE 于P ,求证:PE=PC .15.已知:如图,ABCD 为正方形,以D 点为圆心,AD 为半径的圆弧与以BC 为直径的⊙O 相交于P 、C 两点,连结AC 、AP 、CP ,并延长CP 、AP 分别交AB 、BC 、⊙O 于E 、H 、F 三点,连结OF .(1)求证:△AEP ∽△CEA ;(2)判断线段AB 与OF 的位置关系,并证明你的结论; (3)求BH:HC16.如图,PA 、PB 是⊙O 的两条切线,PEC 是一条割线,D 是AB 与PC 的交点,若PE=2,CD=1,求DE 的长.17.如图,⊙O 的直径的长是关于x 的二次方程0)2(22=+-+k x k x (k 是整数)的最大整数根,P 是⊙O 外一点,过点P 作⊙O 的切线PA 和割线PBC ,其中A 为切点,点B 、C 是直线PBC 与⊙O 的交点,若PA 、PB 、PC 的长都是正整数,且PB 的长不是合数,求PA+PB+PC 的值.参考答案。
圆幂定理圆幂定理是平面几何中的一个定理,是相交弦定理、切线长定理、弦切角定理及割线定理(切割线定理推论)的统一,例如如果交点为P 的两条相交直线与圆O 相交于A 、B 与C 、D ,则PA ·PB=PC ·PD 。
根据两条与圆有相交关系的线的位置不同,有以下定理:1.相交弦定理相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB 和CD 交于O ⊙内一点P ,则PAP B P CP D ⋅=⋅.2.切割线定理切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.如图,PT 是O ⊙的切线,P AB 为O ⊙的割线,则2PT PA PB =⋅.3.割线定理割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.如图,P AB 和PCD 为O ⊙的两条割线,则PA PB PC PD ⋅=⋅.【例1】(1)如图1-1,已知O ⊙的弦AB 、CD 相交于点P ,6cm PA =,9cm PB =,:1:3PC PD =,则CD =__________.(2)如图1-2,在O ⊙中,弦AB 与半径OC 相交于点M ,且OM M C =, 1.5AM =,4BM =,则OC 的长为__________.(3)如图1-3,点P 为弦AB 上的一点,连接OP ,过点P 作PC OP ⊥,PC 交O ⊙于C ,且O ⊙的半径为3.若4AP =,1PB =,则OP 的长为________. ACO PDBACOMBACOPB图1-1 图1-2 图1-3A CBDP OTAOBPDAOBPC【例2】如图,已知O ⊙的弦AB ,CD 相交于点P ,4PA =,3PB =,6PC =,EA 切O ⊙于点A ,AE 与CD 的延长线交于点E,EA =PE 的长.【例3】(1)如图,过点P 作O ⊙的两条割线分别交O ⊙于点A 、B 和点C 、D ,已知3PA =,2AB PC ==,则PD 的长是____________. PA BCOD(2)如图,AB 是O ⊙的直径,弦CD AB ⊥,垂足为E ,P 是BA 延长线上的点,连接PC 交O ⊙于F ,如果7PF =,13FC =,且::2:4:1PA AE EB=,则CD 的长是______________. PFCAO D BE【练出高分】 班级 姓名1.(1)如图1,O ⊙的弦AB 与CD 相交于点P ,已知3cm PA =,4cm PB =,2cm PC =,PD =__________.(2)如图2,已知O ⊙中,弦25cm AB =,M 是AB 上一点,13cm OA =,5cm OM =,则AM =________.A CD B O PAB OM图1 图2 2.(1)如图3,一圆周上有三点A ,B ,C ,∠A 的平分线交边BC 于D ,交圆于E ,已知5BC =,4AC =,6AB =,则AD DE ⋅=__________.(2)如图4,已知AB 为O ⊙的直径,C 为O ⊙上一点,CD AB ⊥于D ,9AD =,4BD =,以C 为圆心,CD 为半径的圆与O ⊙相交于P ,Q 两点,弦PQ 交CD 于E ,则PE EQ ⋅=__________.AEDBCAE PO D BC Q图3 图43.(1)如图,PC 是半圆的切线,且PB OB =,过B 的切线交PC 于点D ,若6PC =,则O ⊙半径为__________,:CD DP =__________.(2)点A 是半径为3的圆外一点,它到圆的最近点的距离为5,则过点A 的切线长为__________.A O BCP D(3)如图,两圆相交于C 、D ,AB 为公切线,若12AB =,9CD =,则MD =____________.培 优:4.如图,四边形ABCD 是边长为a 的正方形,以D 为圆心、DA 为半径的圆弧与以BC 为直径的半圆交于另一点P .延长AP 交BC 于点N ,求BNNC的值.5.如图,四边形ABCD 内接于以BC 为直径的圆O ,且A B A D =,DA 、CB 的延长线相交于P 点.CE PD ⊥于E ,PB BO =,已知18DC =,求DE 的长.DC A B NPD C圆幂定理圆幂定理是平面几何中的一个定理,是相交弦定理、切线长定理、弦切角定理及割线定理(切割线定理推论)的统一,例如如果交点为P 的两条相交直线与圆O 相交于A 、B 与C 、D ,则PA ·PB=PC ·PD 。
1 / 1圆幂定理圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。
图1 图2图3 图4一、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
(如图,弦AB 和CD 交于O ⊙内一点P ,则PA PB PC PD ⋅=⋅).1、证 明:如图1,AB 、CD 为圆O 的两条任意弦。
相交于点P ,连接AD 、BC ,则∠D=∠B , ∠A=∠C 。
所以△APD ∽△BPC 。
所以AP PDAP BP PC PD PC BP=⇒⋅=⋅ 2、练习:如图2,在O ⊙中,弦AB 与CD 相交于点P ,已知3cm 4cm 2cm PA PB PC ===,,,那么PD = cm .二、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项。
(如图,PT 是O 的切线,PB 是O 的割线,则有PT 2=PA PB)1、证明:如图3,PT 为圆切线,PAB 为割线。
连接TA ,TB ,则∠PTA=∠B (弦切角等于同弧圆周角)所以△PTA ∽△PBT ,所以2PT PAPT PA PB PB PT=⇒=⋅ 2、练习 如图4,PC 是半圆的切线,且PB OB =,过B 的切线交PC 与D ,若6PC =,则O ⊙半径长= ,:CD DP =__________.三、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
(从圆外一点P 引两条割线与圆分别交于A.B.C.D 则有 PA·PB=PC·PD )1、证明:这个证明就比较简单了。
可以过P 做圆的切线,也可以连接CB 和AD 。
证相似。
存在:PA PB PC PD ⋅=⋅2、练习如下图,过点P 作O ⊙的两条割线分别交O ⊙于点A B 、和点C D 、,已知32PA AB PC ===,,则PD 的长是( )A .3B .7.5C .5D .5.5。
圆中的重要模型--圆幂定理模型圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理、割线定理、弦切角定理、托勒密定理以及它们推论的统一与归纳。
可能是在19世纪由德国数学家施泰纳(Steiner)或者法国数学家普朗克雷(Poncelet)提出的。
圆幂定理的用法:可以利用圆幂定理求解与圆有关的线段比例、角度、面积等问题。
模型1.相交弦模型条件:在圆O中,弦AB与弦CD交于点E,点E在圆O内。
结论:△CAE∼△BDE⇒ECEB=EAED⇒EC⋅ED=EB⋅EA。
1(2023·广东广州·九年级校考期中)如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,两圆组成的圆环的面积是.2(2023·江西景德镇·九年级校考期末)如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=.3(2023·江苏·九年级专题练习)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(1)为了说明相交弦定理正确性,需要对其进行证明,如下给出了不完整的“已知”“求证”,请补充完整,并写出证明过程.已知:如图①,弦AB,CD交于点P,求证:.(2)如图②,已知AB是⊙O的直径,AB与弦CD交于点P,且AB⊥CD于点P,过D作⊙O的切线,交BA的延长线于E,D为切点,若AP=2,⊙O的半径为5,求AE的长.模型2.双割线模型条件:如图,割线CH与弦CF交圆O于点E和点G。
结论:△CEG∼△CHF⇒ECCH=CGCF⇒EC⋅FC=GC⋅HC4(2023·浙江·九年级假期作业)如图:PAB、PCD为⊙O的两条割线,若PA∙PB=30,PC=3,则CD的长为()A.10B.7C.510D.35(2023·四川成都·九年级校考阶段练习)如图,PAB为⊙O的割线,且PA=AB=3,PO交⊙O于点C,若PC=2,则⊙O的半径的长为.6(2022·河南洛阳·统考一模)我们知道,直线与圆有三种位置关系:相交、相切、相离.当直线与圆有两个公共点(即直线与圆相交)时,这条直线就叫做圆的割线.割线也有一些相关的定理.比如,割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等.下面给出了不完整的定理“证明一”,请补充完整.已知:如图①,过⊙O 外一点P 作⊙O 的两条割线,一条交⊙O 于A 、B 点,另一条交⊙O 于C 、D 点.求证:PA ⋅PB =PC ⋅PD .证明一:连接AD 、BC ,∵∠A 和∠C 为BD 所对的圆周角,∴.又∵∠P =∠P ,∴,∴.即PA ⋅PB =PC ⋅PD .研究后发现,如图②,如果连接AC 、BD ,即可得到学习过的圆内接四边形ABDC .那么或许割线定理也可以用圆内接四边形的性质来证明.请根据提示,独立完成证明二.证明二:连接AC 、BD ,模型3.切割线模型条件:如图,CB 是圆O 的切线,CA 是圆O 的割线。