8253工作原理
- 格式:ppt
- 大小:740.00 KB
- 文档页数:11
8253的工作原理8253是一种计数器/定时器芯片,它通过与计算机的输入输出接口相连接,用来执行各种计数和定时操作。
8253具有三个可独立使用的计数器,分别称为计数器0、计数器1和计数器2。
计数器0和计数器1是16位计数器,可以被配置为16位二进制计数器或BCD (二进制编码十进制)计数器。
计数器2是一个8位计数器,只能是二进制计数器。
8253工作的基本原理是通过对计数器寄存器的编程配置,将计数器模式、分频因子和初始计数值设置为期望的值。
然后,8253开始计数,每经过一个时钟周期,计数器的值会递增一次。
当计数器的值和设定的目标值相等时,8253可以产生一个触发信号,可以用来触发中断或产生特定的定时操作。
计数器0和计数器1能够按照不同的计数模式工作。
其中,计数模式0是16位二进制计数器或BCD计数器,计数器值递增或递减,直到计数器达到最大值或最小值时就会重置。
计数模式1是16位计数器,当计数器的值和设定的目标值相等时,计数器会重置为初始值。
计数模式2与计数模式1相似,但在计数器达到目标值时,会产生一个短脉冲。
计数模式3是计数器1和计数器2之间的模式,计数器1会根据计数器2的值进行递增或递减。
计数模式4和模式5分别是软件触发的单脉冲发生器和硬件触发的单脉冲发生器。
除了计数模式之外,8253还提供了可编程的分频器。
分频器可以将输入时钟信号进行分频,从而改变计数器的计数速度。
分频因子可以设置为2、4、8、...、2^16,因此可以根据需要选择合适的分频因子来控制计数速度。
综上所述,8253是一种可编程的计数器/定时器芯片,根据计数模式和分频器配置可以实现各种计数和定时操作。
它通过与计算机接口相连接,可以广泛应用于许多需要计数和定时功能的电子设备和系统中。
河北专接本微机原理8253工作方式8253是一种微机原理的专接本技术,主要用于计时和计数应用。
它是由Intel公司设计的,并且被广泛应用于微处理器系统中。
本文将详细介绍8253的工作方式。
8253由3个计数通道组成,每个通道都具有一个16位的计数器寄存器,一个计数器控制寄存器和计数器输出端口。
每个通道都可以执行不同的计数功能,并且可以通过设置对应的控制寄存器来配置。
8253的主要工作模式有3种:方波发生器模式、比率发生器模式和计时器模式。
下面分别介绍这3种模式的工作方式。
1.方波发生器模式方波发生器模式下,计数器工作在一个循环计数的模式下,并产生一个固定频率的方波信号输出。
通过设置计数器控制寄存器,可以配置方波的频率和占空比。
具体的工作流程如下:-设置计数器控制寄存器,确定计数方式为方波发生器模式,并设置计数器的工作频率和占空比。
-启动计数器,计数器开始累加计数。
-当计数器的值达到设定的计数上限时,计数器会自动清零并继续计数。
-每次计数达到上限时,计数器输出端口会产生一次电平翻转,从而产生方波信号。
2.比率发生器模式比率发生器模式下,计数器工作在一个固定的计数上限下,并产生不同的方波信号输出。
通过设置计数器的初始计数值和计数上限,可以实现不同的频率和占空比。
具体的工作流程如下:-设置计数器控制寄存器,确定计数方式为比率发生器模式,并设置计数器的初始计数值和计数上限。
-启动计数器,计数器开始累加计数。
-当计数器的值达到计数上限时,计数器会自动清零,并产生一个电平翻转。
-根据初始计数值和计数上限的设置,可以实现不同频率和占空比的方波信号输出。
3.计时器模式计时器模式下,计数器工作在外部输入时钟的驱动下,并可以测量和记录时间间隔。
具体的工作流程如下:-设置计数器控制寄存器,确定计数方式为计时器模式。
-将外部时钟信号连接到计数器输入端口,计数器开始根据时钟信号进行计数。
-当计数器的值达到计数上限时,计数器会自动清零。
标签:82538253工作原理8253具有3个独立的计数通道,采用减1计数方式。
在门控信号有效时,每输入1个计数脉冲,通道作1次计数操作。
当计数脉冲是已知周期的时钟信号时,计数就成为定时。
一、8253内部结构8253芯片有24条引脚,封装在双列直插式陶瓷管壳内。
1.数据总线缓冲器数据总线缓冲器与系统总线连接,8位双向,与CPU交换信息的通道。
这是8253与CPU之间的数据接口,它由8位双向三态缓冲存储器构成,是CP U与8253之间交换信息的必经之路。
2.读/写控制读/写控制分别连接系统的IOR#和IOW#,由CPU控制着访问8253的内部通道。
接收CPU送入的读/写控制信号,并完成对芯片内部各功能部件的控制功能,因此,它实际上是8253芯片内部的控制器。
A1A0:端口选择信号,由CPU输入。
8253内部有3个独立的通道和一个控制字寄存器,它们构成8253芯片的4个端口,CPU可对3个通道进行读/写操作3对控制字寄存器进行写操作。
这4个端口地址由最低2位地址码A1A0来选择。
如表9.3.1所示。
3.通道选择(1) CS#——片选信号,由CPU输入,低电平有效,通常由端口地址的高位地址译码形成。
(2) RD#、WR#——读/写控制命令,由CPU输入,低电平有效。
RD#效时,CPU读取由A1A0所选定的通道内计数器的内容。
WR#有效时,CPU将计数值写入各个通道的计数器中,或者是将方式控制字写入控制字寄存器中。
CPU对8253的读/写操作如表9.3.2所示。
4.计数通道0~2每个计数通道内含1个16位的初值寄存器、减1计数器和1个16位的(输出)锁存器。
8253内部包含3个功能完全相同的通道,每个通道内部设有一个16位计数器,可进行二进制或十进制(BCD码)计数。
采用二进制计数时,最大计数值是FFFFH,采用BCD码计数时。
最大计数值是9999。
与此计数器相对应,每个通道内设有一个16位计数值锁存器。
8253的工作原理简介8253可编程计数器/定时器的工作频率为0~2MHz,它有3个独立编程的计数器,每个计数器有三个引脚,分别为时钟CLK、门控GATE、计数器和计时结束输出OUT;每个计数器分别有6种工作方式。
下面针对使用到的两种工作方式——方式1和方式2的工作原理[1]进行简述。
方式1:可编程单稳,即由外部硬件产生的门控信号GATE触发8253而输出单稳脉冲。
计数器装入计数初值后,在门控信号GATE由低电平变高电平并保持时,计数器开始计数,此时输出端变成低电平并开始单稳过程。
当计数结束时,输出端OUT转变成高电平,单稳过程结束,在OUT端输出一个单稳脉冲。
硬件再次触发,OUT端可再次输出一个同样的单稳脉冲。
单稳脉冲的宽度由装入计数器的计数初值决定。
在WR信号的上升沿(CPU写控制字之后),输出端OUT保持高电平(若OUT原为低电平则变为高电平)。
CPU写入计数值后,计数器并不马上开始计数,而要等到门控信号GATE启动之后的下一个CLK的下降沿才开始。
在整个计数过程中,输出端OUT保持低电平,直至计数值至0,OUT变为高电平为止。
方式2:速率发生器,其功能如同一个N分频计数器。
其输出是将输入时钟按照N计数值分频后得到的一个连续脉冲。
在该方式下,当计数器装入初始值开始工作后,输出端OUT 将不断地输出负脉冲,其宽度为一个时钟周期的时间,而两个负脉冲间的时间脉冲个数等于计数器装入的计数初值。
若计数初值为N,则每N个输入脉冲输出一个脉冲。
当CPU写完控制字后,输出端OUT转变成高电平,计数器将立即自动开始对输入CLK时钟计数。
在计数过程中,OUT端始终保持高电平,直至计数器的计数值减到1时,OUT端才变为低电平,其保持的宽度为一个输入CLK时钟周期的时间,然后输出端OUT恢复高电平,计数器重新开始计数。
8253控制字格式为:其中:SC1 SC0为计数器选择位;RL1 RL0为计数器读写操作选择位,以确定计数器进行装入或读出是单字节还是双字节;M2 M1 M0为计数器工作方式选择位;BCD表示计数器计数方式选择位。
8253工作原理解析8253是Intel公司推出的可编程定时/计数器芯片,主要用于微处理器系统的定时和计数功能。
它的工作原理是通过将时钟源与内部寄存器和计数器进行连接,并根据编程输入信号来控制计数和定时过程。
下面,我们将从时钟源、内部寄存器和计数器以及编程输入信号三个方面对8253的工作原理进行解析。
首先,时钟源是8253工作的基础。
该芯片可以接受外部的单脉冲信号作为时钟源,也可以使用芯片内部的时钟发生器来产生时钟信号。
时钟信号是8253芯片的主要驱动信号,它通过时钟输入端进入芯片内部的计数电路。
其次,8253芯片内部包含有3个独立的16位计数器。
这些计数器可以独立地工作,同时具有计数和定时功能。
每个计数器都有一个计数寄存器和一个输出端。
计数寄存器用于存储计数器的初值,并根据计时或计数的要求递减或递增。
输出端用于将计数结果输出给微处理器或其他外部设备。
计数器的计数和定时方式可以通过编程输入信号进行设置和控制。
最后,编程输入信号是8253芯片的控制信号,用于对计数器进行编程。
它可以由微处理器通过编程方式输入,以控制计数器的工作方式。
编程输入信号主要包括计数器选择信号、计数方式信号和计数值信号。
计数器选择信号用于选择要编程的计数器,将编程输入信号应用于对应的计数器。
计数方式信号用于设置计数器的计数方式,可以选择连续计数、单次计数、定时计数等方式。
计数值信号用于设置计数器的初值或定时值,根据计数或定时方式的不同,计数值信号的含义也不同。
总体来说,8253芯片的工作原理是将时钟源与内部寄存器和计数器相连,根据编程输入信号的设置,控制计数器的计数和定时过程。
通过编程方式,可以灵活地配置和控制8253芯片的功能,实现不同的计时和计数需求。
8253的工作原理及应用一、工作原理8253是一种常见的计时/计数芯片,它能够完成各种定时和计数功能。
它采用了三个计数器,分别为计数器0、计数器1和计数器2。
每个计数器可以独立工作,同时也可以与其他计数器进行协同工作。
具体的工作原理如下:1.计数器的基本工作原理是将外部时钟信号分频后输出,根据计数器的工作模式,可以输出不同的周期信号。
2.8253有三个计数器,计数器0可以设置工作模式,计数器1和计数器2可以由计数器0通过控制字来选择工作模式。
3.通过控制字可以设置计数器的工作模式,比如设置为定时器工作模式、内部触发工作模式、软件触发工作模式等等。
4.计数器工作的时候,是通过输入控制字来设置计数器的初始值,然后按照设定的模式进行计数,当计数到达设定的值时,会触发相应的事件,例如输出一个脉冲信号或者产生一个中断。
二、应用领域8253芯片在计算机系统中有广泛的应用,主要包括以下几个方面:1.定时器功能:8253芯片可以实现定时器的功能,通过改变控制字设置的工作模式和初始值,可以产生定时脉冲信号,精确地控制计时间隔。
这在操作系统中非常常见,可以用于定时器中断、延时等。
此外,它还可以用于工业自动化领域中的精确控制和同步任务。
2.计数器功能:8253芯片也可以作为计数器使用。
例如,在测量系统中,可以通过外部输入信号的脉冲数量来进行计数,并配合计时功能实现测量和统计。
3.PWM信号生成:8253芯片可以实现PWM(脉宽调制)信号的生成。
通过改变初始值和周期,可以控制PWM信号的占空比,实现对电机速度、光强等参数的控制。
4.音频处理:8253芯片中的计数器可以用于实现音频处理。
通过设定计数器的频率,可以控制音频信号的采样率,从而实现音频的录制和播放。
5.高速脉冲生成:8253芯片可以产生高速脉冲,用于直流电机控制、步进电机控制等应用场景中。
三、优势与不足8253芯片具有以下几个优点:•多功能性:8253芯片具有丰富的工作模式,可以根据不同的需求灵活地配置和应用。
8253的工作原理
8253是Intel 8253A/8254计时器芯片的型号,它是一种具有计数和计时功能的编程设备。
该芯片可在微处理器系统中生成多种定时信号和测量时间间隔。
8253芯片包含三个16位计数器,分别称为计时/计数器0(Timer/Counter 0)、计数器1(Counter 1)和计数器2(Counter 2)。
每个计数器都可以独立地以不同的计数方式和触发方式工作。
其中,计时/计数器0主要用于系统时钟的计时和分频功能。
它可设置为16位二进制计数或BCD(二进制编码十进制)计数,支持多种工作方式。
通过对计时/计数器0进行适当的编程,可以控制系统的时钟频率以及产生各种定时和计数信号。
计数器1和计数器2主要用于通用计数和脉冲计数应用。
它们可以被编程为16位二进制计数或BCD计数,并具有不同的计数方式和触发方式。
这些计数器可以用于计量时间间隔、频率测量、脉冲生成以及其他计数应用。
8253芯片的工作原理是通过编程设置芯片内部寄存器的值来控制其计数操作。
通过读写芯片地址空间中对应的寄存器,可以配置计数器的计数方式、触发方式、初始计数值等。
应用程序可以通过与8253通信,实现所需的定时和计数功能。
总之,8253芯片是通过编程设置寄存器的值来控制其计数和
计时操作的,它能够为微处理器系统生成多种定时信号和测量时间间隔的功能。