第六章不定积分(1)
- 格式:doc
- 大小:295.50 KB
- 文档页数:6
第6章 不定积分6.1 复习笔记一、不定积分的概念和运算法则1.微分的逆运算——不定积分(1)原函数若在某个区间上,函数F (x )和f (x )成立关系F'(x )=f (x ),则称函数F (x )是f (x )的一个原函数。
(2)不定积分一个函数f (x )的原函数全体称为这个函数的不定积分,记作这里,“”称为积分号,f (x )称为被积函数,x 称为积分变量。
2.不定积分的线性性质若函数f (x )和g (x )的原函数都存在,则对任意常数k 1和k 2,函数k 1f(x )+k 2g (x)的原函数也存在,且有二、换元积分法和分部积分法1.换元积分法(1)在不定积分中,用u=g (x )对原式作变量代换,这时相应地有du=g'(x )dx ,于是,这个方法称为第一类换元积分法,也被俗称为“凑微分法”。
(2)找到一个适当的变量代换x=φ(t )(要求x=φ(t )的反函数t=φ-1(x )存在),将原式化为这个方法称为第二类换元积分法。
2.分部积分法对任意两个可微的函数u (x )、v (x ),成立关系式d[u (x )v (x )]=v (x )d[u (x )]+u(x)d[v (x )],两边同时求不定积分并移项,就有也即这就是分部积分公式。
三、有理函数的不定积分及其应用1.有理函数的不定积分(1)形如的函数称为有理函数,这里和分别是m 次和n 次多项式,n,m 为非负整数。
若m>n ,则称它为真分式;若m≤n,则称它为假分式。
(2)设有理函数是真分式,多项式有k 重实根α即则存在实数λ与多项的次数低于的次数,成立(3)设有理函数是真分式,多项式有l 重共轭复根,即其中则实数和多项式的次数低的次数,成立2.可化成有理函数不定积分的情况(1)类的不定积分。
这里R (u ,v )表示两个变量μ、υ的有理函数(即分子和分母都是关于u ,v的二元多项式)。
对作变量代换,则。
不定积分的定义和计算方法不定积分,也称为原函数或者积分函数,是微积分中的重要概念之一。
它与定积分相对应,是求解函数的面积或者曲线长度的逆运算。
本文将介绍不定积分的定义和计算方法,帮助读者更好地理解和掌握该概念。
一、不定积分的定义不定积分是求导运算的逆运算。
给定函数f(x),如果存在函数F(x),使得F'(x) = f(x),则称F(x)是函数f(x)的一个不定积分,记作∫f(x)dx =F(x) + C,其中C为任意常数。
不定积分的定义说明了不定积分与原函数之间的关系。
通过求某个函数的不定积分,我们能够得到该函数的原函数。
需要注意的是,不定积分有无穷多个解,因为对于一个函数而言,其原函数可以加上任意常数C而不改变。
二、常见的计算方法在求解不定积分时,我们需要掌握一些常见的计算方法。
下面将介绍一些常见的计算方法及其示例。
1. 基本积分法则基本积分法则是利用基本函数的导数公式反推不定积分。
以下是一些常见的基本积分法则及其示例:(1)常数函数积分:∫kdx = kx + C,其中k为常数。
(2)幂函数积分:∫x^n dx = (1/(n+1))x^(n+1) + C,其中n不等于-1。
(3)指数函数积分:∫e^x dx = e^x + C。
(4)三角函数积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C。
2. 分部积分法分部积分法是求解某些复杂函数不定积分的方法,它基于乘积公式(即(uv)' = u'v + uv')。
以下是分部积分法的公式及其示例:∫u dv = uv - ∫v du示例:∫x*sin(x) dx = -x*cos(x) + ∫cos(x) dx = -x*cos(x) + sin(x) + C3. 代换法代换法,也称为换元积分法,是通过引入一个新的变量,将原函数转化为更容易求解的形式。
以下是代换法的公式及其示例:∫f(g(x)) * g'(x) dx = ∫f(u) du示例:∫x*sin(x^2) dx,令u = x^2,那么du = 2x dx,原积分变为∫sin(u) (1/2)du = (-1/2)cos(u) + C = (-1/2)cos(x^2) + C除了基本积分法则、分部积分法和代换法,还有一些特殊的计算方法,如三角函数公式、倒数公式、欧拉公式等。
第六章 不定积分引 言我们知道,函数是数学分析研究的主要对象,前面几章我们已经学习了函数的微分学理论,主要内容包括导数的计算和导函数的分析性质,而其基本问题是导数的计算——给定已知函数,求出它的导数;但在某些实际问题中,往往需要考虑与之相反的问题——求一个函数,使其导数恰好是某一个给定的函数——这就是所谓的积分问题。
看一个例子:例1 一个静止的物体,其质量为m=1, 在力()sin F t t = 的作用下沿直线运动,给出物体的运动速度()v t 所满足的方程。
解、由所给的条件,可以利用Newton 第二定理计算出物体的加速度为sin F a t m==,因而,若设其速度为()v t ,则()sin v t a t ¢==。
因此,这个问题本质就是:已知导函数()v t ¢, 求原来的函数()v t 。
这类问题在实际应用和工程技术领域中还有很多,如几何问题中常见的已知切线求曲线问题、自然界中广泛存在的反应扩散现象等,因而,这类问题有很强的应用背景。
特别是在17世纪,这类问题是当时物理和几何学中急待解决的问题,是摆在数学家面前的重要的问题,经过3百多年的努力,今天,这类问题不仅已经得到彻底的解决,而且已经形成了完整且完美的数学理论――积分学理论:称这类由导函数()f x ¢ 求 原来函数)(x f 的运算为积分运算,研究这类运算及其相关的理论就是积分学理论。
我们将在本章和下一章引入这种理论。
为了引入这种理论,先引入基本概念。
§1不定积分概念与基本积分公式 一 、 原函数与不定积分我们引入积分理论中的基本概念。
定义1.1 设函数)(x f 与)(x F 在区间I 上有定义且)(x F 可导,若)()(x f x F =', Ix ∈,则称)(x F 为)(x f 在区间I 上的一个原函数。
注、由定义,若)(x F 为)(x f 的一个原函数,则从导数角度,)(x f 为)(x F 的导函数,这也反映了原函数何导函数的紧密关系。
总结不定积分知识点一、不定积分的概念1.1 不定积分的定义在微积分中,不定积分是定积分的一个重要概念,它是函数的一个原函数。
给定函数f(x),如果存在函数F(x),使得F'(x) = f(x),则称F(x)是f(x)的一个不定积分,记作∫f(x) dx =F(x) + C,其中C为积分常数。
1.2 不定积分的符号表示不定积分一般用∫f(x) dx表示,其中f(x)为被积函数,dx为积分变量的微元,∫表示积分的符号。
1.3 不定积分的意义不定积分的意义在于求解函数的原函数。
也就是说,通过不定积分,我们可以得到函数f(x)的原函数F(x),使得F'(x) = f(x),并且这个原函数不唯一,因为在不定积分的结果中,需要加上一个常数C。
1.4 不定积分与定积分的关系不定积分与定积分是紧密相关的,它们之间的关系可以通过牛顿-莱布尼茨公式来描述。
牛顿-莱布尼茨公式表明,如果F(x)是f(x)的一个原函数,那么函数f(x)在区间[a, b]上的定积分可以表示为F(b) - F(a)。
二、不定积分的性质2.1 基本性质不定积分具有以下基本性质:(1)线性性质:即∫(af(x) + bg(x)) dx = a∫f(x) dx + b∫g(x) dx,其中a和b为常数。
(2)积分的可加性:即∫[a, b] f(x) dx = ∫[a, c] f(x) dx + ∫[c, b] f(x) dx。
(3)不定积分的性质:若F(x)是f(x)的一个原函数,则F(x) + C也是f(x)的原函数,其中C为任意常数。
2.2 函数的原函数和不定积分在求解不定积分时,我们需要寻找函数的原函数。
要注意的是,不一定所有的函数都有原函数,而且对于一些函数,它的原函数不唯一。
2.3 被积函数的连续性与不定积分存在性要进行不定积分,被积函数需要满足一定的连续性条件,例如在不定积分的区间上是连续的。
2.4 替换积分变量法在不定积分中,有时会通过替换积分变量的方法来简化积分计算。
第五章 不定积分第一节 不定积分的概念与性质思考题1. 在不定积分的性质x x f k x x kf d )(d )(⎰=⎰中,为何要求0≠k ? 答:因为0=k 时,C x x x kf =⎰=⎰d 0d )((任意常数),而不是0.2. 思考下列问题:(1) 若C x x x f x ++=⎰sin 2d )(,则)(x f 为何? 答:x x x f x f x cos 2ln 2)d )(()(+='⎰=. (2) 若)(x f 的一个原函数为3x ,问)(x f 为何? 答:233)()(x x x f ='=(3)若)(x f 的一个原函数的x cos ,则dx x f )('⎰为何?答:C x C x f x x f x x x f +-=+='⎰-='=sin )(d )(,sin )(cos )(.习 题1. 已知曲线)(x f y =过点(0,0)且在点(y x ,)处的切线斜率为132+=x k ,求该曲线方程.解:依题意,132+=='x k y ,故C x x x x y ++=+⎰=32d )13(,又0)0(=y ,故0=C ,从而曲线方程为x x y +=3.2. 计算下列不定积分:(1)x x d 5⎰, (2)x xd 2⎰, (3)xe x d 1+⎰, (4)x x x d )sin (cos -⎰,(5)x x d 122+⎰,(6)x xd 122--⎰,(7)x xe x d )(3+⎰,(8)x x x d )cos 1sin 1(22+⎰. 解:(1)C x C x x x +=++=⎰+651d 6515. (2)C x xx+=⎰2ln 2d 2. (3)C C x x x x x x +=+=⎰=⎰++11e ee d e e d e.(4)C x x x x x x x x x ++=-⎰+⎰=-⎰cos sin d )sin (d cos d )sin (cos . (5)C x x x x x +=+=+⎰⎰arctan 2d 112d 1222.(6)C x x xx x+-=--=--⎰⎰arcsin 2d 11)2(d 1222.(7)C x C xx x x x x xxxx++=+++=⎰+⎰=+⎰+3431131343e 311e d d e d )e (. (8)C x x x x x x x xx ++-=⎰+⎰=+⎰tan cot d sec d csc d )cos 1sin 1(2222.第二、三节 换元、分部积分法思考题1. 第一换元法(即凑微分法)与第二换元法的区别是什么?答:第一换元法与第二换元法的区别在于置换的变元不同,前者将被积函数)()]([x x f ϕϕ'中的中间变量)(x ϕ作为新的积分变量,而后者将原积分变量x 替换成函数)(t ϕ,以t 作为新的积分变量.2. 应用分部积分公式u v uv v u d d ⎰-=⎰的关键是什么?对于积分x x g x f d )()(⎰,一般应按什么样的规律设u 和v d ?答:应用分部积分公式的关键是恰当的选择u 和v d ,对于积分x x g x f d )()(⎰,一般应按如下的规律去设u 和v d :(1)由v d 易求得v ;(2)u v d ⎰应比v u d ⎰容易积出. 3. 第二换元法有何规律可寻? 答: 一般地,若被积函数中含有22a x ±或22x a -,则可利用三角函数的平方关系化原积分为三角函数的积分;若被积函数中含有n b ax +,则可令n b ax +=t ,将原积分化为有理函数的积分.习 题1. 计算下列积分:(1))sin d(sin 5x x ⎰, (2)x x d cos 3⎰, (3)⎰+x xx x d )sin (,(4)x xe x d 2⎰, (5)⎰-21d xx x , (6)⎰-41d xx x ,(7)⎰x x x d 2ln , (8)x x d )32(2+⎰, (9)⎰-⋅dx x x 211arcsin 1, (10)⎰+x x x d arctan )1(12, (11)⎰+22d x x , (12)⎰-24d x x .解:(1)C xx x +=⎰6sin )sin d(sin 65. (2)x x x x x d cos )sin 1(d cos 23-⎰=⎰ =)sin d()sin 1(2x x -⎰ =)sin d(sin )sin d(2x x x ⎰-⎰=C xx +-3sin sin 3. (3)x x x x x xx x d sin 2d d )sin (⎰+⎰=+⎰=C x x +-cos 222. (4)C x x x x x x +=⎰=⎰222e 21)(d e 21d e 2. (5)C x x x x x x+--=--⎰-=--⎰2221221)1(d )1(21d 1.(6)C x x x x xx +=-=-⎰⎰22224arcsin 21)(1)(d 211d .(7)C x x x x x x x x x +=⎰==⎰⎰2ln 21)2ln d(2ln )2(d 22ln d 2ln 2. (8)C x x x x x ++=++⎰=+⎰322)32(61)32(d )32(21d )32(.(9)C x x x x x x +==-⋅⎰⎰|arcsin |ln )arcsin d(arcsin 1d 11arcsin 12.(10)C x x x x x x +==+⎰⎰|arctan |ln )arctan d(arctan 1d arctan )1(12.(11)C x x x x x x x +=+=+=+⎰⎰⎰22arctan 22)2(d )2(1121)2(1d 212d 222. (12)⎰2-4d x x =⎰2)2(-12d x x=)2(d )2(-112xx⎰=C x +2arcsin .2. 计算下列积分:(1)⎰x x d 2ln , (2)⎰x x d 2arctan , (3) ⎰x x x d e 4,(4)⎰x x xd 4sin e5, (5)⎰x x x d 100sin , (6) ⎰x x x d 2arctan .解:(1))2ln d(2ln d 2ln x x x x x x ⎰-=⎰=x xx x x d 222ln ⋅⎰- =C x x x +-2ln .(2)⎰x x d 2arctan =)d(arctan22arctan x x x x ⎰- =x x x x x d )2(122arctan 2+⋅⎰- =⎰+-2241)(d 2arctan x x x x=)41(d 411412arctan 22x xx x ++-⎰ =C x x x ++-)41ln(412arctan 2.(3)x x x x x x x xx d e 41e 41de 41d e 4444⎰-==⎰⎰=C x xx +-44e 161e 41. (4)5555e 1e e sin 4d sin 4d()e sin 4d(sin 4)555x xxx x x x x x ⎰=⎰=-⎰ =x x x xxd 4cose 544sin e5155⎰-=5e d 4cos 544sin e 5155xx x x ⎰-=⎥⎦⎤⎢⎣⎡--⎰)4cos d(5e 4cos 5e 544sin e 51555x x x xx x=x x x x xx xd 4sine 25164cos e 2544sin e 51555⎰--, 移项合并,得C x x x x xx+-=⎰)4cos 44sin 5(e 411d 4sin e55. (5)⎰---=-⎰=⎰x xx x x x x x x d )100100cos (100100cos )100100cos (d d 100sin =C xx x +-100100cos 10000100sin . (6)⎰x x x d 2arctan =⎰)2d(2arctan 2x x=⎰-)2(arctan d 22arctan 222x x x x =x x x x x d )2(1222arctan 2222⎰+⋅- =x x x x d )4111(412arctan 222⎰+-- =C x x x x ++-2arctan 8142arctan 22. 3. 计算下列不定积分:(1)x x d 162-⎰, (2)⎰+232)4(d x x .解:(1)令)2π2π(sin 4<<-=t t x ,则t x cos 4162=-,t t x d cos 4d =, 于是 t t t t t x x d )2cos 1(8d cos 4cos 4d 162+⎰=⋅⎰=-⎰ =C t t ++2sin 48.由右图所示的直角三角形,得81641642cos sin 22sin 22xx x x t t t -=-⋅⋅==, 故 C xx x dx x +-+⋅=-⎰2164arcsin81622. (2)令)2π2π(tan 2<<-=t t x ,则t t x t x d sec 2d ,sec 8)4(23232==+,x于是C t t t t t tx x +==⋅=+⎰⎰⎰2sin d 2cos d sec 2sec 41)4(d 23232. 由右图所示的直角三角形,得24sin xx t +=故 C xx x x ++=+⎰223242)4(d .x2。