江西数学中考试卷
- 格式:doc
- 大小:652.00 KB
- 文档页数:16
江西省2023年中考数学真题及参考答案一、单项选择题(本大题共6小题,每小题3分,共18分)1.下列各数中,正整数是()A .3B .1.2C .0D .2-2.下列图形中,是中心对称图形的是()3.若4-a 有意义,则a 的值可以是()A .1-B .0C .2D .64.计算()322m 的结果为()A .68mB .66mC .62mD .52m 5.如图,平面镜MN 放置在水平地面CD 上,墙面CD PD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若︒=∠35AOC ,则OBD ∠的度数为()A .︒35B .︒45C .︒55D .︒656.如图,点D C B A ,,,均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为()A .3个B .4个C .5个D .6个二、填空题(本大题共6小题,每小题3分,共18分)7.单项式ab 5-的系数为.8.我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设总规模约1800万千瓦,比上一年同期翻一番,将18000000用科学计数法表示应为.9.化简:()=-+221a a .10.将含30°角的直角三角板和直尺按如图所示的方式放置,已知︒=∠60α,点C B ,表示的刻度分别为cm cm 31,,则线段AB 的长为cm .11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点Q B A ,,在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得m AQ cm BD cm AB 122040===,,,则树高=PQ m .12.如图,在▱ABCD 中,︒=∠60B ,AB BC 2=,将AB 绕点A 逆时针旋转角()︒<<︒3600αα得到AP ,连接PD PC ,.当PCD ∆为直角三角形时,旋转角α的度数为.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:03345tan 8-︒+;(2)如图,AD AB =,AC 平分BAD ∠.求证:ADC ABC ∆≅∆.14.如图是44⨯的正方形网格,请仅用无刻的的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ∆,使点C 在格点上;(2)在图2中的线段AB 行作点Q ,使PQ 最短.15.化简x x x x x x 1112-⋅⎪⎭⎫ ⎝⎛-++.下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是,乙同学解法的依据是;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配率;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动.根据活动要求,每班需要2名宣传员.某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是事件;(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17.如图,已知直线b x y +=与反比例函数()0>=x x k y 的图象交于点()32,A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数()0>=x xk y 的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC ∆的面积.四、解答题(本大题共3小题,每小题8分,共24分)18.今年植树节,某班同学共同发种植一批树苗,如果没人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19.图1时某红色是文化主题公园内的雕塑,将其抽象成如图2所示的示意图,已知点B ,E D A ,,均在同一直线上,AD AC AB ==,测得︒=∠55B ,m DE m BC 28.1==,.(结果保留小数点后一位)(1)连接CD ,求证:BC DC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:82.055sin ≈︒,57.055cos ≈︒,43.155tan ≈︒)20.如图,在ABC ∆中,︒=∠=644C AB ,,以AB 为直径的☉O 与AC 相交于点E D ,为弧ABD 上一点,且︒=∠40ADE .(1)求E B 的长;(2)若︒=∠76EAD ,求证:CB 为☉O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.为了解中学生的示例情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.(1)=m ,=n ;(2)被调查的高中学生视力情况的样本容量为;分析处理(3)①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由;②约定:视力未达到1.0的视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.22.定理证明(1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.已知:在▱ABCD 中,对角线AC BD ⊥,垂足为O .求证:▱ABCD 是菱形.知识应用(2)如图②,在▱ABCD 中,对角线AC 和BD 相交于点O ,685===BD AC AD ,,①求证:▱ABCD 是菱形;②延长BC 至点E ,连接OE 交CD 与点F ,若ACD E ∠=∠21,求EFOF 的值.六、解答题(本大题共12分)23.综合与实践问题提出某兴趣小组开展综合实践活动:在ABC Rt ∆中,︒=∠90C ,D 为AC 上一点,2=CD .动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿A B C →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF .设点P 的运动时间为ts ,正方形DPEF 的面积为S ,探究S 与t 的关系.初步感知(1)如图1,当点P 由点C 运动到点B 时,①当1=t 时,=S ;②S 关于t 的函数解析式为.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象.请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.延伸探究(3)若存在3个时刻321,,t t t (321t t t <<)对应的正方形DPEF 的面积均相等.①=+21t t ;②当134t t =时,求正方形DPEF 的面积.参考答案一、选择题1.A2.B3.D4.A5.C6.D 二、填空题7.5-8.7108.1⨯9.12+a 10.211.612.90°或180°或270°三、解答题13.(1)解:原式=2+1-1=2(2)证明:∵AC 平分BAD ∠,∴DAC BC ∠=∠.在ABC ∆和ADC ∆中,⎪⎩⎪⎨⎧=∠=∠=AC AC DAC BAC AD AB ,∴ABC ∆≌()SAS ADC ∆.14.解:(1)如下左图(右图中的51~C C 亦可):答:ABC ∆即为所求.(2)如下图:答:点Q 即为所求.15.解:(1)②,③;(2)按甲同学的解法化简:原式()()()()()()x x x x x x x x x x 11111112-⋅⎥⎦⎤⎢⎣⎡+-++-+-=()()()()()()()()()()x xx x x x x x x x x x x x x x 2111121111112=-+⋅-+=-+⋅-+++-=按乙同学的解法化简:原式()()()()xx x x x x x x x x x x x x x x x x 111111111122-+⋅-+-+⋅+=-⋅-+-⋅+=x x x 211=++-=.16.解:(1)随机(2)解法一:列表如下:由上表可知,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.∴P (甲、丁同学都被选为宣传员)61122==.解法二:画树状图如下:由树状图可以看出,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.∴P (甲、丁同学都被选为宣传员)61122==.17.解:(1)∵直线b x y +=与反比例函数()0>=x x k y 的图象交于点()32,A ,∴32=+b ,23k =.∴1=b ,6=k .∴直线AB 的表达式为1+=x y ,反比例函数图象的表达式为()06>=x xy .(2)过点A 作BC AD ⊥,垂足为D .∵直线1+=x y 与y 轴交点B 的坐标为()1,0,x BC ∥轴,∴C 点的纵坐标为1.∴616==x x ,,即6=BC .由x BC ∥轴,得BC 与x 轴的距离为1.∴2=AD .∴6262121=⨯⨯=⋅=∆AD BC S ABC .四、解答题18.解:(1)设该班的学生人数为x 人.依题意,得254203-=+x x .解得45=x .答:该班的学生人数为45人.(2)由(1)可知,树苗总数为155203=+x .设购买甲种树苗y 棵,则购买乙种树苗()y -155棵.依题意得()54001554030≤-+y y .解得80≥y .答:至少购买了甲种树苗80棵.19.(1)证明:∵AD AC AB ==,∴点D C B ,,在以点A 为圆心,BD 为直径的圆上.∴︒=∠90BCD ,即BC DC ⊥.(2)解:过点E 作BC EF ⊥,垂足为F .在BCD Rt ∆中,BDBC B =cos ,8.1=BC ,∴16.355cos 8.1cos ≈︒==B BC BD .∴16.5216.3=+=+=DE BD BE .在EBF Rt ∆中,BEEF B =sin ,∴2.455sin 16.5sin ≈︒⨯=⋅=B BE EF .因此,雕塑的高约为m 2.4.20.解:(1)连接OE .∵︒=∠40ADE ,∴︒=∠=∠802ADE AOE .∴︒=∠-︒=∠100180AOE BOE .∴E B 的长ππ9101802100=⋅⋅=l .(2)证明:∵︒=∠=80AOE OE OA ,,∴︒=∠-︒=∠502180AOE OAE .∵︒=∠76EAD ,∴︒=∠-∠=∠26OAE EAD BAC .又︒=∠64C ,∴︒=∠-∠-︒=∠90180C BAC ABC ,即BC AB ⊥.又OB 是☉O 的半径,∴CB 为☉O 的切线.五、解答题21.解:(1)68,23%.(2)320.(3)①小胡的说法正确.理由如下:理由一:从中位数看,初中生视力的中位数为1.0,高中生视力的中位数为0.9,∴初中生的视力水平好于高中生.理由②:从众数看,初中生视力的众数为1.0,高中生视力的众数为0.9,∴初中生的视力水平好于高中生.②1430032020082604414342816826000=++++++++⨯(名).∴估计该区有14300名中足额生视力不良.建议:①勤做眼保健操;②不要长时间用眼;③不要在强光下看书;④加强户外运动.22.(1)证明:∵四边形ABCD 是平行四边形,∴OCOA =又AC BD ⊥,∴BD 垂直平分AC .∴BC BA =.∴▱ABCD 是菱形.(2)①证明:∵四边形ABCD 是平行四边形,68==BD AC ,,∴321421====BD OD AC OA ,.∴25342222=+=+OD OA .又25522==AD ,∴222AD OD OA =+,∴︒=∠90AOD ,即AC BD ⊥.∴▱ABCD 是菱形.②解:如图,取CD 的中点G ,连接OG .∵▱ABCD 是菱形,∴ACDACB OD OB AD BC ∠=∠===,,5∵ACD E ∠=∠21,∴ACB E ∠=∠21,即E ACB ∠=∠2,又COE E ACB ∠+∠=∠,∴COE E ∠=∠,∴4==CO CE ∵GD GC OD OB ==,,∴OG 为DBC ∆的中位线11∴BC OG ∥,且2521==BC OG ,∴CE OG ∥,∴ECF OGF ∆∆~,∴85==CE OG EF OF .六、解答题23.解:(1)①3.②22+=t S (2)由图象可知,当点P 运动到点B 时,6=S .将6=S 代入22+=t S ,得262+=t ,解得2=t 或2-=t (舍),当点P 由点B 运动到点A 时,设S 关于t 的函数解析式为()242+-=t a S .将()6,2代入,,得()24262+-=a ,解得1=a .故S 关于t 的函数解析式为()242+-=t S .由图像可知,当P 运动到A 时,18=S .由()24182+-=t ,得8=t 或0=t (舍)∴()6128=⨯-=AB .(3)①4.由(1)(2)可得()⎪⎩⎪⎨⎧≤≤+-<≤+=82,2420,222t t t t S .在图②中补全20<≤t 内的图象,根据图象可知20≤≤t 内的图象与42≤≤t 内的图象关于直线2=x 对称.因此421=+t t .②根据二次函数的对称性,可知832=+t t .由①可知421=+t t ,∴413=-t t .又134t t =,∴4411=-t t ,得341=t .此时正方形DPEF 的面积93422=+=t S.。
2021年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣2的相反数是( )A .2B .﹣2C .12D .−12 【分析】根据相反数的意义,只有符号不同的两个数互为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A .【点评】本题考查了相反数的意义.注意掌握只有符号不同的两个数互为相反数,0的相反数是0.2.如图,几何体的主视图是( )A .B .C .D .【分析】根据简单组合体的三视图的画法得出该组合体的主视图即可.【解答】解:从正面看该组合体,长方体的主视图为长方形,圆柱体的主视图是长方形, 因此选项C 中的图形符合题意,故选:C .【点评】本题考查简单组合体的三视图,理解视图的意义,掌握三视图的画法是正确判断的前提.3.计算a+1a −1a 的结果为( ) A .1 B .﹣1 C .a+2a D .a−2a【分析】根据分式的加减运算法则即可求出答案.【解答】解:原式=a+1−1a=a a=1,故选:A .【点评】本题考查分式的加减运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.4.如图是2020年中国新能源汽车购买用户地区分布图,由图可知下列说法错误的是( )A .一线城市购买新能源汽车的用户最多B .二线城市购买新能源汽车用户达37%C .三四线城市购买新能源汽车用户达到11万D .四线城市以下购买新能源汽车用户最少【分析】根据扇形统计图中的数据一一分析即可判断.【解答】解:A 、一线城市购买新能源汽车的用户最多,故本选项正确,不符合题意;B 、二线城市购买新能源汽车用户达37%,故本选项正确,不符合题意;C 、由扇形统计图中的数据不能得出三四线城市购买新能源汽车用户达到11万,故本选项错误,符合题意;D 、四线城市以下购买新能源汽车用户最少,故本选项正确,不符合题意;故选:C .【点评】本题考查了扇形统计图.关键是根据扇形统计图中的数据进行分析,解题时要细心.5.在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.【分析】根据二次函数y=ax2与一次函数y=bx+c的图象,即可得出a>0、b>0、c<0,由此即可得出:二次函数y=ax﹣+bx+c的图象开口向上,对称轴x=−b2a<0,与y轴的交点在y轴负半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:a>0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向上,对称轴x=−b2a<0,与y轴的交点在y轴负半轴.故选:D.【点评】本题考查了一次函数的图象以及二次函数的图象,根据二次函数图象和一次函数图象经过的象限,找出a>0、b>0、c<0是解题的关键.6.如图是用七巧板拼接成的一个轴对称图形(忽略拼接线)小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为()A.2B.3C.4D.5【分析】能拼剪为等腰梯形,等腰直角三角形,矩形,由此即可判断.【解答】解:观察图象可知,能拼接成不同轴对称图形的个数为3个.故选:B.【点评】本题考查利用轴对称设计图案,解题的关键是理解轴对称图形的性质,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)7.国务院第七次全国人口普查领导小组办公室5月11日发布,江西人口数约为45100000人,将45100000用科学记数法表示为 4.51×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:45100000=4.51×107,故答案为:4.51×107.【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.因式分解:x2﹣4y2=(x+2y)(x﹣2y).【分析】直接运用平方差公式进行因式分解.【解答】解:x2﹣4y2=(x+2y)(x﹣2y).【点评】本题考查了平方差公式分解因式,熟记公式结构是解题的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).9.已知x1,x2是一元二次方程x2﹣4x+3=0的两根,则x1+x1﹣x1x2=1.【分析】直接根据根与系数的关系得出x1+x2、x1x2的值,再代入计算即可.【解答】解:∵x1,x2是一元二次方程x2﹣4x+3=0的两根,∴x1+x2=4,x1x2=3.则x1+x2﹣x1x2=4﹣3=1.故答案是:1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,关键是掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1•x2=ca.10.如表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全表第四行空缺的数字是3.【分析】根据表中的数据和数据的变化特点,可以发现:每一行中间的数字都等于这个数字上一行左上角和右上角的数字之和,然后即可写出第四行空缺的数字.【解答】解:由表可知,每一行中间的数字都等于这个数字上一行左上角和右上角的数字之和,故第四行空缺的数字是1+2=3,故答案为:3.【点评】本题考查数字的变化类,解答本题的关键是发现数字的变化特点,写出相应的数字.11.如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为4a+2b.【分析】由∠B=80°,四边形ABCD为平行四边形,折叠的性质可证明△AFC为等腰三角形.所以AF=FC=a.设∠ECD=x,则∠ACE=2x,在△ADC中,由三角形内角和定理可知,2x+2x+x+80°=180°,解得x=20°,由外角定理可证明△DFC为等腰三角形.所以DC=FC=a.故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=2=4a+2b.【解答】解:∵∠B=80°,四边形ABCD为平行四边形.∴∠D=80°.由折叠可知∠ACB=∠ACE,又AD∥BC,∴∠DAC=∠ACB,∴∠ACE=∠DAC,∴△AFC为等腰三角形.∴AF=FC=a.设∠ECD=x,则∠ACE=2x,∴∠DAC=2x,在△ADC中,由三角形内角和定理可知,2x+2x+x+80°=180°,解得:x=20°.∴由三角形外角定理可得∠DFC=4x=80°,故△DFC为等腰三角形.∴DC=FC=a.∴AD=AF+FD=a+b,故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=2=4a+2b.故答案为:4a+2b.【点评】本题考查了平行四边形的性质、三角形内角和定理、外角定理、图形的翻折变换,证明△AFC和△DFC为等腰三角形是解题关键.12.如图,在边长为6√3的正六边形ABCDEF中,连接BE,CF,其中点M,N分别为BE 和CF上的动点.若以M,N,D为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为9或10或18.【分析】连接DF,DB,BF.则△DBF是等边三角形.解直角三角形求出DF,可得结论.当点N在OC上,点M在OE上时,求出等边三角形的边长的最大值,最小值,可得结论.【解答】解:连接DF,DB,BF.则△DBF是等边三角形.设BE交DF于J.∵六边形ABCDEF是正六边形,∴由对称性可知,DF⊥BE,∠JEF=60°,EF=ED=6√3,∴FJ=DJ=EF•sin60°=6√3×√32=9,∴DF=18,∴当点M与B重合,点N与F重合时,满足条件,∴△DMN的边长为18,如图,当点N在OC上,点M在OE上时,等边△DMN的边长的最大值为6√3≈10.39,最小值为9,∴△DMN的边长为整数时,边长为10或9,综上所述,等边△DMN的边长为9或10或18.故答案为:9或10或18.【点评】本题考查正多边形与圆,等边三角形的判定和性质,解直角三角形等知识,解题的关键是判断出△BDF是等边三角形,属于中考常考题型.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(﹣1)2﹣(π﹣2021)0+|−12|;(2)如图,在△ABC中,∠A=40°,∠ABC=80°,BE平分∠ABC交AC于点E,ED ⊥AB于点D,求证:AD=BD.【分析】(1)根据乘方的意义、零指数幂和绝对值的意义计算;(2)先证明∠A=∠ABE得到△ABE为等腰三角形,然后根据等腰三角形的性质得到结论.【解答】(1)解:原式=1﹣1+1 2=12;(2)证明:∵BE平分∠ABC交AC于点E,∴∠ABE=12∠ABC=12×80°=40°,∵∠A=40°,∴∠A=∠ABE,∴△ABE 为等腰三角形,∵ED ⊥AB ,∴AD =BD .【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了等腰三角形的判断与性质和实数的运算.14.(6分)解不等式组:{2x −3≤1x+13>−1并将解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x ﹣3≤1,得:x ≤2,解不等式x+13>−1,得:x >﹣4,则不等式组的解集为﹣4<x ≤2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(6分)为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A ,B ,C ,D 四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A 志愿者被选中”是 随机 事件(填“随机”或“不可能”或“必然”);(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A ,B 两名志愿者被选中的概率.【分析】(1)根据随机事件、不可能事件及必然事件的概念求解即可;(2)列表得出所有等可能结果数,再从中找到符合条件的结果数,继而利用概率公式求解即可.【解答】解:(1)“A 志愿者被选中”是随机事件,故答案为:随机;(2)列表如下:A B C DA﹣﹣﹣(B,A)(C,A)(D,A)B(A,B)﹣﹣﹣(C,B)(D,B)C(A,C)(B,C)﹣﹣﹣(D,C)D(A,D)(B,D)(C,D)﹣﹣﹣由表可知,共有12种等可能结果,其中A,B两名志愿者被选中的有2种结果,所以A,B两名志愿者被选中的概率为212=16.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.(6分)已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;(2)在图2中,将直线AC向上平移1个单位长度.【分析】(1)根据正方形的性质和旋转的性质即可作出图形;(2)根据平移的性质即可作出图形.【解答】解:(1)如图1,直线l即为所求;(2)如图2中,直线a即为所求.【点评】本题考查了作图﹣旋转变换,作图﹣平移变换,正方形的性质,解决本题的关键是掌握旋转的性质和平移的性质.17.(6分)如图,正比例函数y=x的图象与反比例函数y=kx(x>0)的图象交于点A(1,a)在△ABC中,∠ACB=90°,CA=CB,点C坐标为(﹣2,0).(1)求k的值;(2)求AB所在直线的解析式.【分析】(1)先求得A的坐标,然后根据待定系数法即可求得k的值;(2)作AD⊥x轴于D,BE⊥x轴于E,通过证得△BCE≌△CAD,求得B(﹣3,3),然后根据待定系数法即可求得直线AB的解析式.【解答】解:(1)∵正比例函数y=x的图象经过点A(1,a),∴a=1,∴A(1,1),∵点A 在反比例函数y =k x(x >0)的图象上, ∴k =1×1=1;(2)作AD ⊥x 轴于D ,BE ⊥x 轴于E , ∵A (1,1),C (﹣2,0), ∴AD =1,CD =3, ∵∠ACB =90°, ∴∠ACD +∠BCE =90°, ∵∠ACD +∠CAD =90°, ∴∠BCE =∠CAD , 在△BCE 和△CAD 中, {∠BCE =∠CAD∠BEC =∠CDA =90°CB =AC, ∴△BCE ≌△CAD (AAS ), ∴CE =AD =1,BE =CD =3, ∴B (﹣3,3),设直线AB 的解析式为y =mx +n , ∴{m +n =1−3m +n =3,解得{m =−12n =32, ∴直线AB 的解析式为y =−12x +32.【点评】本题是反比例函数与一次函数的交点问题,考查了一次函数图象上点的坐标特征,待定系数法求一次函数的解析式,全等三角形的判定和性质,求得B 的坐标是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件. (1)求这种商品的单价;(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是 48 元/件,乙两次购买这种商品的平均单价是 50 元/件.(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同 金额 加油更合算(填“金额”或“油量”). 【分析】(1)设这种商品的单价为x 元/件.根据“甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件”找到相等关系,列出方程,解出方程即可得出答案; (2)先计算出第二次购买该商品时甲购买的数量和乙购买的总价,再用两次总价和除以两次的数量和即可得出两次的平均单价; (3)通过比较(2)的计算结果即可得出答案. 【解答】(1)解:设这种商品的单价为x 元/件. 由题意得:3000x−2400x=10,解得:x =60,经检验:x =60是原方程的根. 答:这种商品的单价为60元/件.(2)解:第二次购买该商品时的单价为:60﹣20=40(元/件),第二次购买该商品时甲购买的件数为:2400÷40=60(件),第二次购买该商品时乙购买的总价为:(3000÷60)×40=2000(元), ∴甲两次购买这种商品的平均单价是:2400×2÷(240060+60)=48(元/件),乙两次购买这种商品的平均单价是:(3000+2000)÷(300060×2)=50(元/件).故答案为:48;50. (3)解:∵48<50, ∴按相同金额加油更合算. 故答案为:金额.【点评】本题考查了方式方程的应用,找到题目中的相等关系是解决问题的关键,计算平均单价的关键是能够正确的得出总价和数量,再思考从特殊到一般的规律.19.(8分)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71;乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77.甲厂鸡腿质量频数统计表质量x(g)频数频率20.168≤x<7130.1571≤x<7410a74≤x<7750.2577≤x<80合计201分析上述数据,得到下表:平均数中位数众数方差统计量厂家甲厂7576b 6.3乙厂757577 6.6请你根据图表中的信息完成下列问题:(1)a=0.5,b=76;(2)补全频数分布直方图;(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?【分析】(1)根据频数、频率、总数之间的关系可求出a的值,根据众数的意义可求出b 的值;(2)求出乙厂鸡腿质量在74≤x<77的频数,即可补全频数分布直方图;(3)根据中位数、众数、平均数综合进行判断即可;(4)求出甲厂鸡腿质量在71≤x<77的鸡腿数量所占的百分比即可.【解答】解:(1)2÷0.1=20(个),a=10÷20=0.5,甲厂鸡腿质量出现次数最多的是76g,因此众数是76,即b=76,故答案为:0.5,76;(2)20﹣1﹣4﹣7=8(个),补全频数分布直方图如下:(3)两个厂的平均数相同,都是75g,而甲厂的中位数、众数都是76g,接近平均数且方差较小,数据的比较稳定,因此选择甲厂;(4)20000×0.15=3000(只),答:从甲厂采购了20000只鸡腿中,可以加工成优等品的大约有3000只.【点评】本题考查频数分布表、频数分布直方图,掌握频数、频率、总数之间的关系是解决问题的前提.20.(8分)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.(1)求∠ABC的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6°≈0.40,√2≈1.414)【分析】(1)过点B作BH⊥MP,垂足为H,根据解直角三角形cos∠BMH=MHBM=16.842=0.4,即可计算出∠BMH的度数,再根据平行线的性质即可算出∠ABC的度数;(2)根据(1)中的结论和已知条件可计算出∠NMI的度数,根据三角函数即可算出MI 的长度,再根据已知条件即可算出PK的长度,即可得出答案.【解答】解:(1)过点B作BH⊥MP,垂足为H,过点M作MI⊥FG,垂足为I,过点P作PK ⊥DE,垂足为K,∵MP=25.3cm,BA=HP=8.5cm,∴MH=MP﹣HP=25.3﹣8.5=16.8(cm),在Rt△BMH中,cos∠BMH=MHBM=16.842=0.4,∴∠BMH=66.4°,∵AB∥MP,∴∠BMH+∠ABC=180°,∴∠ABC=180°﹣66.4°=113.6°;(2)∴∠ABC=180°﹣∠BMH=180°﹣66.4°=113.6°.∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMI=180°﹣∠BMN﹣∠BMH=180°﹣68.6°﹣66.4°=45°,∵MN=28cm,∴cos45°=MIMN=MI28,∴MI≈19.74cm,∵KI=50cm,∴PK=KI﹣MI﹣MP=50﹣19.74﹣25.3=4.96≈5.0(cm),∴此时枪身端点A与小红额头的距离是在规定范围内.【点评】本题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法进行计算是解决本题的关键.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;̂围成阴影部分的面积.②当AB=2时,求AD,AC与CD【分析】(1)先判断出∠CBE=∠D,再用等角的余角相等,即可得出结论;(2)①先判断出OC∥AB,再判断出BC∥OA,进而得出四边形ABCO是平行四边形,即可得出结论;②先求出AC,BC,再用面积的和,即可得出结论.【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∠D=90°﹣∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∴CE ⊥AB , ∴OC ∥AB ,∴∠DAB =∠COD =60°, 由(1)知,∠CBE +∠CAD =90°, ∴∠CBE =90°﹣∠CAD =60°=∠DAB , ∴BC ∥OA ,∴四边形ABCO 是平行四边形, ∵OA =OC , ∴▱ABCO 是菱形;②由①知,四边形ABCO 是菱形, ∴OA =OC =AB =2, ∴AD =2OA =4, 由①知,∠COD =60°, 在Rt △ACD 中,∠CAD =30°, ∴CD =2,AC =2√3,∴AD ,AC 与CD ̂围成阴影部分的面积为S △AOC +S 扇形COD =12S △ACD +S 扇形COD=12×12×2×2√3+60π×22360=√3+23π.【点评】此题是圆的综合题,主要考查了同角的余角相等,切线的性质,菱形的判定,扇形的面积公式,判断出BC ∥OA 是解本题的关键.22.(9分)二次函数y =x 2﹣2mx 的图象交x 轴于原点O 及点A . 感知特例(1)当m =1时,如图1,抛物线L :y =x 2﹣2x 上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ′,O ′,C ′,A ′,D ′,如表: … B (﹣1,3) O (0,0) C (1,﹣1) A ( 2 , 0 )D (3,3) … … B '(5,﹣3) O ′(4,0) C '(3,1)A ′(2,0)D '(1,﹣3)…①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L'.形成概念我们发现形如(1)中的图象L'上的点和抛物线L上的点关于点A中心对称,则称L'是L 的“孔像抛物线”.例如,当m=﹣2时,图2中的抛物线L'是抛物线L的“孔像抛物线”.探究问题(2)①当m=﹣1时,若抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,则x的取值范围为﹣3≤x≤﹣1;②在同一平面直角坐标系中,当m取不同值时,通过画图发现存在一条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,这条抛物线的解析式可能是y =ax2(填“y=ax2+bx+c”或“y=ax2+bx”或“y=ax2+c”或“y=ax2”,其中abc≠0);③若二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点,求m 的值.【分析】(1)①根据中点公式即可求得答案;②根据题意先描点,再用平滑的曲线从左到右依次连接即可;(2)①当m=﹣1时,抛物线L:y=x2+2x=(x+1)2﹣1,当x≤﹣1时,L的函数值随着x的增大而减小,抛物线L′:y=﹣x2﹣6x﹣8=﹣(x+3)2+1,当x≥﹣3时,L′的函数值随着x的增大而减小,找出公共部分即可;②先观察图1和图2,可以看出随着m的变化,二次函数y=x2﹣2mx的所有“孔像抛物线”L':y=﹣(x﹣3m)2+m2,顶点坐标为N(3m,m2),顶点在抛物线y=19x2上,根据这条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,可知这条抛物线顶点为原点,即y=ax2;③观察图1和图2,可知直线y=m与抛物线y=x2﹣2mx及“孔像抛物线”L'有且只有三个交点,即直线y=m经过抛物线L的顶点或经过抛物线L′的顶点或经过公共点A,分别建立方程求解即可.【解答】解:(1)①∵B(﹣1,3)、B'(5,﹣3)关于点A中心对称,∴点A为BB′的中点,设点A(m,n),∴m=−1+52=2,n=3−32=0,故答案为:(2,0);②所画图象如图1所示,(2)①当m=﹣1时,抛物线L:y=x2+2x=(x+1)2﹣1,对称轴为直线x=﹣1,开口向上,当x≤﹣1时,L的函数值随着x的增大而减小,抛物线L′:y=﹣x2﹣6x﹣8=﹣(x+3)2+1,对称轴为直线x=﹣3,开口向下,当x≥﹣3时,L′的函数值随着x的增大而减小,∴当﹣3≤x≤﹣1时,抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,故答案为:﹣3≤x≤﹣1;②通过观察图1和图2,抛物线L:y=x2﹣2mx的“孔像抛物线”L':y=﹣(x﹣3m)2+m2,顶点坐标为N(3m,m2),顶点在抛物线y=19x2上,∴与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点的抛物线一定满足顶点在原点,开口向上;∴这条抛物线的解析式为y=ax2,故答案为:y=ax2;③抛物线L:y=x2﹣2mx=(x﹣m)2﹣m2,顶点坐标为M(m,﹣m2),其“孔像抛物线”L'为:y=﹣(x﹣3m)2+m2,顶点坐标为N(3m,m2),抛物线L与其“孔像抛物线”L'有一个公共点A(2m,0),∴二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点时,有三种情况:①直线y=m经过M(m,﹣m2),∴m=﹣m2,解得:m=﹣1或m=0(舍去),②直线y=m经过N(3m,m2),∴m=m2,解得:m=1或m=0(舍去),③直线y=m经过A(2m,0),∴m=0,但当m=0时,y=x2与y=﹣x2只有一个交点,不符合题意,舍去,综上所述,m=±1.【点评】本题是关于二次函数综合题,主要考查了二次函数图象和性质,中心对称性质及应用,二次函数与一元二次方程的关系,一元二次方程根的判别式,新定义理解及应用等,解题关键是理解题意,运用数形结合思想和分类讨论思想、方程思想思考解决问题.六、(本大题共12分)23.(12分)课本再现(1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与∠A相等的角是∠DCA′;类比迁移(2)如图2,在四边形ABCD中,∠ABC与∠ADC互余,小明发现四边形ABCD中这对互余的角可类比(1)中思路进行拼合:先作∠CDF=∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量关系是AD2+DE2=AE2;方法运用(3)如图3,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平分线的交点,连接OA,∠OAC=∠ABC.①求证:∠ABC+∠ADC=90°;②连接BD ,如图4,已知AD =m ,DC =n ,AB AC =2,求BD 的长(用含m ,n 的式子表示).【分析】(1)根据图形的拼剪可得结论.(2)利用勾股定理解决问题即可.(3)①如图3中,连接OC ,作△ADC 的外接圆⊙O .利用圆周角定理以及三角形内角和定理,即可解决问题.②如图4中,在射线DC 的下方作∠CDT =∠ABC ,过点C 作CT ⊥DT 于T .利用相似三角形的性质证明BD =√5AT ,求出AT ,可得结论.【解答】(1)解:如图1中,由图形的拼剪可知,∠A =∠DCA ′,故答案为:∠DCA ′.(2)解:如图2中,∵∠ADC +∠ABC =90°,∠CDE =∠ABC ,∴∠ADE =∠ADC +∠CDE =90°,∴AD 2+DE 2=AE 2.故答案为:AD 2+DE 2=AE 2.(3)①证明:如图3中,连接OC ,作△ADC 的外接圆⊙O .∵点O 是△ACD 两边垂直平分线的交点∴点O 是△ADC 的外心,∴∠AOC =2∠ADC ,∵OA =OC ,∴∠OAC =∠OCA ,∵∠AOC +∠OAC +∠OCA =180°,∠OAC =∠ABC ,∴2∠ADC +2∠ABC =180°,∴∠ADC +∠ABC =90°.②解:如图4中,在射线DC 的下方作∠CDT =∠ABC ,过点C 作CT ⊥DT 于T .∵∠CTD =∠CAB =90°,∠CDT =∠ABC ,∴△CTD ∽△CAB ,∴∠DCT =∠ACB ,CD CB =CT CA , ∴CD CT =CB CA ,∠DCB =∠TCA∴△DCB ∽△TCA ,∴BD AT =CB CA , ∵AB AC =2,∴AC :BC :BC =CT :DT :CD =1:2:√5,∴BD =√5AT ,∵∠ADT=∠ADC+∠CDT=∠ADC+∠ABC=90°,DT=2√55n,AD=m,∴AT=√AD2+DT2=m2+(2√55n)2=√m2+45n2,∴BD=√5m2+4n2.【点评】本题属于四边形综合题,考查了三角形的外心,勾股定理,相似三角形的判定和性质,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用辅助圆解决问题,属于中考压轴题.。
江西中考基础数学试卷真题一、选择题1. ( ) 已知函数f(x) = 3x + 2,那么f(1)的值是多少?A) 2B) 3C) 4D) 52. ( ) 若一个数的3倍加9等于24,则这个数是多少?A) 4B) 5C) 6D) 73. ( ) 如图所示,一个矩形的长是宽的3倍,如果矩形的周长是28米,那么矩形的面积是多少?A) 48平方米B) 56平方米C) 60平方米D) 64平方米4. ( ) 下面哪个数是负数?A) 0B) 1C) -1D) 25. ( ) 小红的体重是50千克,小明的体重是小红的五分之三,那么小明的体重是多少?A) 10千克B) 15千克C) 25千克D) 30千克二、填空题1. 用2和3两个数字组成互不相同的两位数的个数是______。
2. 12÷3×2-4的值是______。
3. 一个长度为12厘米的正方形的面积是______平方厘米。
4. 一个有250个席位的体育馆中,观众人数是席位数的_____。
5. 若a:b = 2:3,b:c = 4:5,求a:c = ______。
三、解答题1. 若甲数是5,乙数是7,则甲数的骨牌上的小点数是______,乙数的骨牌上的小点数是______。
2. 将一根长为18厘米的细铁丝折一折使之成为一个三角形,若一个角的大小是60度,则另外两个角的大小分别是______度。
3. 一种农药的有效成分含量为45%,已知农药的质量是800克,那么其中有效成分的质量是______克。
四、应用题某车间共有A、B、C、D四个工种,其中A工种和B工种每日产量之比为2:3,B工种和C工种每日产量之比为3:4,C工种和D工种每日产量之比为4:5,已知D工种每日产量为80个产品,求A工种每日产量为______个。
五、解析题某商店购进书籍,每本售价25元,若全部卖完,可以获得875元的利润,求购进这批书的数量。
六、证明题已知直角三角形ABC,∠C=90°,则AC的平方等于AB的平方加上BC的平方。
江西省南昌市年初中毕业暨中等学校招生考试数 学 试 卷说明:1.答卷前将密封线内的各项目填写清楚,并在“座位号”方框内填入自己的座位号.2.本卷共有六个大题、24个小题,全卷满分120分,考试时间120分钟. 一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内. 1.计算(-2)3的值等于 ( )A .-6B .6C .-8D .8 2.如图,在△ABC 中,D 是AC延长线上的一点,∠BCD 等于( ) A .72° B .82° C .98° D .124°3.用代数式表示“2a 与3的差”为( ) A .2a -3 B .3-2a C .2(a -3) D .2(3-a) 4.如图,数轴上的点A 所表示的是实数a ,则点A 到原点的距离是 ( )A .aB .-aC .±aD .-|a|5.化简aba b a +-222的结果是( )A .aba 2- B .aba - C .aba + D .ba ba +- 6.αααcos ,3tan ,则为锐角=等于( )A .21 B .22C .23 D .33 7.如图,在平面直角坐标系中,⊙O ′ 与两坐标轴分别交于A 、B 、C 、D四点.已知:A (6,0),B (0,-3),C (-2,0),则点D 的坐标是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5)8.(针孔成像问题)根据图中尺寸(AB//A ′B ′),那么物像长y(A ′B ′的长)与物长x (AB的长)之间函数关系的图象大致是 ( )9.如图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案.已知该图案的面积为49,小正方形的面积为4,若用x 、y 表示小矩形的两边长(x>y ),请观察图案,指出以下关系 式中不正确...的是 ( ) A .x+y=7 B .x -y=2 C .4xy+4=39 D .x 2+y 2=2510.右图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的 规则是:把跳棋棋子在棋盘内沿直线隔着棋子 对称跳行,跳行一次称为一步.已知点A 为已方 一枚棋子,欲将棋子A 跳进对方区域(阴影部 分的格点),则跳行的最少步数为( ) A .2步 B .3步 C .4步 D .5步二、填空题(本大题共6小题,每小题4分,共24分) 11.化简555-= .12.据报道:某省年中小学共装备计算机16.42万台,平均每 42名中小学生拥有一台计算机. 年在学生数不变的情况下, 计划平均每35名中小学生拥有 一台计算机,则还需装备计算机 万台. 13.如图,点P 是反比例函数xy 2-=上 的一点,PD ⊥x 轴于点D ,则△POD 的面积为 .14.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每个顶点处剪去一个四边形,例如图1中的四边形AGA′H那么∠GA′H的大小是度.15.欣赏下面的各等式:32+42=52102+112++122=132+142请写出下一个由7个连续正整数组成、前4个数的平方和等于后3个数的平方和的等式为 .16.如图,已知方格纸中的每个小方格都是相同的正方形,∠AOB画在方格纸上,请在小方格的顶点上标出一个..点P,使点P落在∠AOB的平分线上.三、(三大题共2小题,每小题7分,共14分)17.先化简,再求值:[(x-y)2+(x+y)(x-y)]÷2x,其中x=3,y=-1.5.18.已知关于x的方程x2-2(m+1)x+m2=0.(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数....,使原方程有两个实数根,并求这两个实数根的平方和.四、(本大题共2小题,每小题7分,共16分)19.如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C. (1)BT是否平分∠OBA?证明你的结论;(2)若已知AT=4,试求AB的长.20.如图,已知△ABC、△DCE、△FEG是三个全等的等腰三角形,底边BC、CE、EG在同一直线上,且AB=3,BC=1.连结BF,分别交AC、DC、DE于点P、Q、R.(1)求证:△BFG∽△FEG,并求出BF的长;(2)观察图形,请你提出一个与点..P.相关..的问题,并进行解答(根据提出问题的层次和解答过程评分).小朋友,本来你用10元钱买一盒饼干是有多的,但要再买一袋牛奶就不够了!今天是儿童节,我给你买的饼干 打9折,两样东西请拿好!还有找你 的8角钱. 阿姨,我买一盒 饼干和一袋牛奶(递上10元钱).五、(本大题共2小题,每小题8分,共16分) 21.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少元?22.某学校对初中毕业班经过初步比较后,决定从初三(1)、(4)、(8)班这三个班中推荐一个班为市级先进班集体的候选班.现对这三个班进行综合素质考评,下表是它们五项班级 行为规范 学习成绩 校运动会 艺术获奖 劳动卫生 初三(1)班 10 10 6 10 7初三(4)班 10 8 8 9 8初三(8)班9 10 9 6 9(1)请问各班五项考评分的平均数、中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们得分进行排序;(2)根据你对表中五个项目的重要程度的认识,设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高....的班级作为市级先进班集体的候选班.六、(本大题共2小题,每小题10分,共20分)23.在平面直角坐标系中,给定以下五点A (-2,0),B (1,0)C (4,0),D (-2,29),E (0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y 轴的直线为对称轴.我们约定:把经过三点A 、E 、B 的抛物线表示为抛物线AEB (如图所示).(1)问符合条件的抛物线还有哪几条.....不求解析式,请用约定的方法一一表示出来; (2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.24.如图,在矩形ABCD中,AB=3,AD=2,点E、F分别在AB、DC上,AE=DF=2.再把一块直径为2的量角器(圆心为O)放置在图形上,使其0°线MN与EF重合;若将量角器0°线上的端点N固定在点F上,再把量角器绕点F顺时针方向旋转∠α(0°<α<90°),此时量角器的半圆弧与EF相交于点P,设点P处量角器的读数为n°.(1)用含n°的代数式表示∠α的大小;(2)当n°等于多少时,线段PC与M′F平行?(3)在量角器的旋转过程中,过点M′作GH⊥M′F,交AE于点G,交AD于点H.设GE=x,△AGH的面积为S,试求出S关于x的函数关系式,并写出自变量x的取值范围.江西省南昌市年初中毕业暨中等学校招生考试数学试卷参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内.1.C 2.C 3.A 4.B 5.B 6.A 7.C 8.C 9.D 10.B二、填空题(本大题共6小题,每小题4分,共24分)11.1-5 12.3.284 13.1 14.6015.212+222+232+242=252+262+27216.(见右图,P1、P2、P3均可)三、(本大题共2小题,每小题7分,共14分)17.解法一:原式=(x-y)[(x-y)+(x+y)]÷2x…………3分=(x-y)·2x÷2x ………………………………………………4分=x-y. ………………………………………………5分当x=3,y=-1.5时,原式=3-(-1.5)=4.5.……………………………………………7分解法二:原式=[(x2-2xy+y2)+(x2-y2)] ÷2x ………………………………………3分=(2x2-2xy) ÷2x ……………………………………………………4分=x-y. …………………………………………………………………5分当x=3,y=-1.5时,原式=3-(-1.5)=4.5 ……………………………………………7分18.解:(1)△=[-2(m+1)]2-4m2………………………………………………………1分=4(m2+2m+1)-4m2=4(2m+1)<0. ……………………………………………………… 2分∴m<-21. 当m<-21时,原方程没有实数根; …………………………………………………3分 (2)取m=1时,原方程为x 2-4x+1=0.…………………………………………………4分 设此方程的两实数根为x 1, x 2,则x 1+x 2=4, x 1·x 2=1.…………………………………5分 ∴x 12+x 22=(x 1+x 2)2-2x 1x 2=42-2×1=14.…………………………………………………7分 【m 取其它符合要求的值时,解答正确可参照评分标准给分.】 四、(本大题共2小题,每小题8分,共16分) 19.(1)BT 平分∠OBA.………………1分 证法一:连结OT ,∵AT 是切线,∴OT ⊥AP.又∵∠PAB 是直角,即AQ ⊥AP ,∴AB ∥OT , ∴∠TBA=∠BTO.又∵OT=OB ∴∠OTB=∠OBT.∴∠OBT=∠TBA ,即BT 平分∠OBA.……………4分 (2)解法一:过点B 作BH ⊥OT 于点H ,则在Rt △OBH 中,OB=5,BH=A T=4 ∴OH=3.…………6分 ∴AB=HT=OT -OH=5-3=2…………………………………8分【(1)证法二:可作直径BD ,连结DT ,构成Rt △TBD ,也可证得BT 平分∠OBA ; (2)解法二:设AB=x 则由Rt △ABT 得BT 2=x 2+16, 又由Rt △ABT ∽Rt △TBD 得BT 2=BD ·AB=10x ,得方程x 2+16=10x, 解之并取舍,得AB=2. 解法三:过点O 作OM ⊥BC 于M ,则MO=AT=4.在Rt △OBM 中,∵OB=5,∴BM=3,∴BC=2BM=6.由AT 2=AB ·AC ,得AB=2.】 评分说明:方法二、三的得分可参照方法一评定. 20.(1)证明:∵△ABC ≌△DCE ≌△FEG333,3.3,131===∴==∴=====∴FG BG EG FG AB FG BG BG EG CE BC 即又∠BGF=∠FGE ,∴△BFG ∽△FEG.…………3分∵△FEG 是等腰三角形,∴△BFG 是等腰三角形,∴BF=BG=3.………………4分 (2)A 层问题(较浅显的,仅用到了1个知识点).例如:①求证:∠PCB=∠REC.(或问∠PCB 与REC 是否相等?)等;②求证:PC//RE.(或问线段PC 与RE 是否平行?)等. B 层问题(有一定思考的,用到了2~3个知识点).例如:①求证:∠BPC=∠BFG 等,求证:BP=PR 等;②求证:△ABP ∽△CQP 等,求证:△BPC ∽△BRE 等;③求证;△ABP ∽△DQR 等;④求BP :PF 的值等. C 层问题(有深刻思考的,用到了4个或4个以上知识点、或用到了(1)中结论).例如:①求证:△ABP ∽△BPC ∽ERF ;②求证:PQ=RQ 等; ③求证:△BPC 是等腰三角形;④求证:△PCQ ≌△RDQ 等;⑤求AP :PC 的值等;⑥求BP 的长;⑦求证:PC=33(或求PC 的长)等. A 层解答举列.求证:PC//RE.证明:∵△ABC ≌△DCE ,∴∠PCB=∠REB ,∴PC//RE.B 层解答举例.求证:BP=PR.证明:∵∠ACB=∠REC ,∴AC//DE. 又∵BC=CE ,∴BP=PR.C 层解答举例.求AP :PC 的值. 解:.3,33,31,//==∴==∴AC PC BG BC FG PC FG AC 而 .2:332333=∴=-=∴PC AP AP 评分说明:①考生按A 层、B 层、C 层中某一层次提出问题均给1分,若继续给出正确的解答则分别再加1分、2分、3分;②若考生提出其它问题,并作正确解答,可参照各相应层次的评分标准评分;③在本题中,若考生提出的是与点P 无关的问题,却是正确的结论及解答,就不再考虑其层次,只给1分.五、(本大题共2小题,每小题8分,共16分)21.解:设饼干的标价为每盒x 元,牛奶的标价为每袋y 元,则 x+y>10, (1)0.9x+y=10-0.8,...... (2)..................................................................2分 x<10. (3)由(2)得y=9.2-0.9x (4)把(4)代入(1)得:9.2-0.9x+x>10,解得x>8.…………………………………4分 由(3)综合得 ∴8<x<10. ………………………………………………………5分又∵x 是整数,∴x=9.………………………………………………………………6分 把x=9代入(4)得:y=9.2-0.9×9=1.1(元).…………………………………7分 答:一盒饼干标价9元,一袋牛奶标价1.1元.……………………………………8分 评分说明:①若x<10没在混合组中出现,但求整数解时用到,不扣分;②若用其它方法解答正确,可参照评分标准给分.22.解:(1)设P 1、P 4、P 8顺次为3个班考评分的平均数;W 1、W 4、W 8顺次为3个班考评分的中位数;Z 1、Z 4、Z 8顺次为3个班考评分的众数.则:P 1=51(10+10+6+10+7)=8.6分), P 4=51(8+8+8+9+10)=8.6(分),P 8=51(9+10+9+6+9)=8.6(分).………………………………………………1分 W 1=10(分),W 4=8(分),W 8=9(分).(Z 1=10(分),Z 4=8(分),Z 8=9(分)).………………………………………2分 ∴平均数不能反映这3个班的考评结果的差异,而用中位数(或众数)能反映差异, 且W 1>W 8>W 4(Z 1>Z 8>Z 4).……………………………………………………………3分(2)(给出一种参考答案)选定:行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:2:3:1:1…………5分 设K 1、K 4、K 8顺次为3个班的考评分,则:K 1=0.3×10+0.2×10+0.3×6+0.1×10+0.1×7=8.5,K 4=0.3×10+0.2×8+0.3×8+0.1×9+0.1×8=8.7,………………………………………………7分 K 8=0.3×9+0.2×10+0.3×9+0.1×6+0.1×9=8.9.∵K 8>K 4<K 1,∴推荐初三(8)班为市级先进班集体的候选班.………………………8分 评分说明:如按比例式的值计算,且结果正确,均不扣分.六、(本大题共2小题,每小题10分,共20分)23.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC ;②抛物线CBE ; ③抛物线DEB ;④抛物线DEC ;⑤抛物线DBC.评分说明:正确写出每一条抛物线给1分,共5分.(填错可酌情倒扣1分,不出现负分).(2)在(1)中存在抛物线DBC ,它与直线AE 不相交.…………7分设抛物线DBC 的解析式为y=ax 2+bx+c ,将D (-2,29),B (1,0),C (4,0)三点坐标分别代入,得: 4a -2b+c=29, a+b+c=0, …………………………8分16a+4b+c=0.解这个方程组,得:a=41,b=-45,c=1. ∴抛物线DBC 的解析式为y=41x 2-45x+1.……………………………………9分【另法:设抛物线为y=a(x -1)(x -4),代入D (-2,29),得a=41也可.】 又设直线AE 的解析式为y=mx+n.将A (-2,0),E (0,-6)两点坐标分别代入,得:-2m+n=0,解这个方程组,得m=-3,n=-6.n=-6.∴直线AE 的解析式为y=-3x -6.……………………………………………………10分24.解:(1)连结O ′P ,则∠P O ′F=n °.………………1分⌒ ⌒ ⌒ ∵O ′P =O ′F ,∴∠O ′PF=∠O ′FP=∠α.∴n °+2∠α=180° 即∠α=90°-21 n °……3分 (2)连结M ′P ,∵M ′F 是半圆O ′的直径,∴M ′P ⊥PF.又∵FC ⊥PF ,∴FC//M ′P.若PC// M ′F ,∴四边形M ′PCF 是平行四边形.……4分∴PC= M ′F=2FC ,∠α=∠CPF=30°.…………5分代入(1)中关系式得:30°=90°-21 n °,即n °=120 °.……………6分 (3)以点F 为圆心,FE 的长为半径画ED.∵G M ′⊥M ′F 于点M ′,∴GH 是ED的切线. 同理GE 、HD 也都是ED的切线,∴GE=G M ′,H M ′=HD.……………………7分 【另法:连结GF ,证明得Rt △GEF ≌Rt △G M ′F ,得EG= M ′G ,同理可证H M ′=HD.】设GE=x ,则AG=2-x,再设DH=y ,则H M ′=y,AH=2-y,在Rt △AGH 中,AG 2+AH 2=GH 2,得:(2-x)2+(2-y)2=(x+y)2.…………………8分 即:4-4x+x 2+4-4y+y 2=x 2+2xy+y 2 ∴y=2242+-x x x ,…………………………9分 S=21AG ·AH=21(2-x)(2-y)= 2242+-x x x ,自变量x 的取值范围为0<x<2.S 与x 的函数关系式为S =2242+-x x x (0<x<2).………………………………………10分。
江西省中考数学试卷样卷一、选择题:本大题共6小题,每小题3分,共18分,每小题只有一个正确选项。
1.9的算术平方根是()A.﹣3 B. 3 C.±3 D. 812.下列运算,正确的是()A. a2•a=a2B. a+a=a2C. a6÷a3=a2D.(a3)2=a63.如图是由一个圆柱和长方体组合而成的几何体,它的俯视图是()A.B.C.D.4.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A. 16a B. 12a C. 8a D. 4a5.二次函数y=kx2﹣6x+7的图象过点(1,2),且与x轴有两个交点A(x1,0),B(x2,0),则x1x2的值是()A. 1 B. 3 C. 6 D. 76.如图,在矩形ABCD中,AB=4,BC=5,点E、F、G、H分别在已知矩形的四条边上,且四边形EFGH也是矩形,GF=2EF.若设AE=a,AF=b,则a与b满足的关系为()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分。
7.﹣3的相反数是.8.不等式组的解集是.9.小亮家新房屋装修,购进了同为50×50cm规格但品牌不同的两种瓷砖,他从这两种瓷砖(都是正方形)中各随机抽取五块测量,并将这十块瓷砖的边长(单位:cm)记录下表中:A种品牌50.1 49.9 50.2 49.8 50.0B种品牌50.3 49.6 50.0 50.4 49.7算得两种品牌瓷砖边长的平均数相等,则从边长上可确定更标准的品牌为.10.化简的结果是.11.梁老师驾车从家乡出发,上国道到南昌,其间用了4.5h;返回时走高速公路,路程缩短了5km,平均速度提高了10km/h,比去时少用了0.5h回到家乡,若设他家乡到南昌走国道的路程为xkm,则可列方程为.12.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB绕点C转动的角度为.13.如图,△ABC是⊙O的内接三角形,平移△ABC使点B与圆心O重合,A、C两点恰好落在圆上的D、E两点处.若AC=2,则平移的距离为.14.如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.若P是四边形边上一动点,且∠BPC=30°,则CP的长为.三、解答题:本大题共4小题,每小题6分,共24分。
江西中考数学模拟试卷(六)一.选择题(共6小题,满分18分,每小题3分)1.(3分)如图,是正方体的表面展开图,在相对面上的两数字互为相反数,则在A、B、C 内的三个数依次为()A.0,1,﹣2B.0,﹣2,1C.1,0,﹣2D.﹣2,0,1 2.(3分)预防和控制新冠肺炎最有效的办法就是接种疫苗.截止2021年12月1日,某市累计接种新冠病毒疫苗超过350万剂次,用科学记数法表示350万为()A.35×105B.3.5×105C.3.5×106D.3.5×1073.(3分)如图所示的几何体是由五个小正方体组合而成的,它的俯视图是()A.B.C.D.4.(3分)下列计算正确的是()A.=±4B.3a3•2a2=6a6C.(﹣a3b)2=a6b2D.=5.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=2,AB=7,则△ABD的面积是()A.7B.30C.14D.606.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的是()A.a<0B.4a+2b+c>0C.c>0D.当x=1时,函数有最小值二.解答题(共6小题,满分18分,每小题3分)7.(3分)因式分解;(1)ax2+2a2x+a3;(2)(a﹣b)(x﹣y)﹣(b﹣a)(x+y).8.(3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性,若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为a n,计算a2021﹣a2020的值为.9.(3分)若x1,x2是一元二次方程x2+3x﹣2=0的两根,则x1+x2=,x1•x2=.10.(3分)某区10名学生参加实际汉字听写大赛,他们得分情况如表:那么10名学生所得分数的中位数是.人数3421分数8085909511.(3分)已知直角三角形的周长为3+,斜边上的中线长为1,则该直角三角形的面积是.12.(3分)若等腰三角形的两边长分别为2和5,则这个等腰三角形的周长是.三.解答题(共6小题,满分30分)13.(3分)已知:(|x|﹣4)x+5=1,求整数x的值.14.(3分)如图,在Rt△ACB中,∠ACB=90°,CM=BM,点E在线段AM上,EF⊥AC 于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.15.(6分)解不等式组,并在数轴上表示其解集.16.(6分)请仅用无刻度的直尺,分别按下列要求完成画图.(1)如图1,在菱形ABCD中,E,F分别是AB,BC上的中点,以EF为边画一个矩形;(2)如图2,在网格中有一定角XOY和一定点P,请作一条线段AB,使点P为AB中点,且点A、B分别在OX、OY上.17.(6分)一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率为;(2)搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中摸出1个球,请用树状图或列表法列出所有的等可能结果,并求至少摸到1个红球的概率.18.(6分)如图,一次函数y=k1x+1的图象与反比例函数y=点的图象相交于A、B两点,点C在x轴正半轴上,点D(1,﹣2),连接OA、OD、DC、AC,四边形OACD为菱形.(1)求一次函数与反比例函数的解析式;(2)根据图象,直接写出反比例函数值大于一次函数值时,x的取值范围;(3)设点P是直线AB上一动点,且S△OAP=S菱形OACD,求点P的坐标.四.解答题(共3小题,满分24分,每小题8分)19.(8分)据悉,2022年,我国载人航天空间站工程进入空间站建造阶段,将完成问天实验舱、梦天实验舱、神舟载人飞船和天舟货运飞船等6次重大任务.为了庆祝我国航天事业的蓬勃发展,某校举办名为“弘扬航天精神•拥抱星辰大海”的书画展览,并给书画展上的作品打分(满分10分).评分结果有6分,7分,8分,9分,10分五种.每位同学只能上交一份作品,现从中随机抽取部分作品,对其份数及成绩进行整理,制成如图所示两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图;(2)所抽取作品成绩的众数为,中位数为,扇形统计图中6分所对应的扇形的圆心角为°;(3)已知该校收到书画作品共900份,请估计得分为8分(及8分以上)的书画作品大约有多少份?20.(8分)我国强大的制造业系统在“新冠肺炎”疫情防控中发挥了巨大作用.为缓解口罩供需矛盾,疫情防控期间新增3000多家公司生产口罩.统计数据显示:A公司口罩日产量比B公司口罩日产量多300万只,A公司生产10000万只口罩与B公司生产4000万只口罩所用的时间相等.(1)A,B两公司口罩日产量分别是多少?(2)A公司由主营汽车生产临时转型口罩生产,随着工人操作不断娴熟和技术不断改进,口罩月产量保持相同增长率的增长.已知A公司第1个月口罩产量为15000万只,第3个月口罩产量为18150万只,请通过计算判断A公司第4个月口罩产量能否达到20000万只?21.(8分)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B 的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).五.解答题(共2小题,满分18分,每小题9分)22.(9分)如图,已知△ABC内接于⊙O,直径AD交BC于点E,连接OC,过点C作CF ⊥AD,垂足为F.过点D作⊙O的切线,交AB的延长线于点G.(1)若∠G=50°,求∠ACB的度数;(2)若AB=AE,求证:∠BAD=∠COF;(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2,若,求tan∠CAF的值.23.(9分)如图,已知在平面直角坐标系中,抛物线y=ax2+bx+2与x轴交于A(﹣1,0),B两点(A点位于B点左侧),与y轴相交于点C,直线y=x+m经过B,C两点.(1)求抛物线的解析式;(2)点P为第一象限内抛物线上一动点,过点P作PD⊥BC,垂足为D,连接AP.①线段PD是否有最大值,如有请求出有最大值时点P的坐标,如没有请说明理由;②当∠DP A=∠ACO时,求直线AP的表达式.六.解答题(共1小题,满分12分,每小题12分)24.(12分)已知,点E在正方形ABCD的AB边上(不与点A,B重合),BD是对角线,延长AB到点F,使BF=AE,过点E作BD的垂线,垂足为M,连接AM,CF.(1)根据题意补全图形,并证明MB=ME;(2)回答问题:①用等式表示线段AM与CF的数量关系,并证明.②用等式表示线段AM,BM,DM之间的数量关系(直接写出即可).。
2023年江西省南昌市中考数学第一次效果检测试卷一、选择题(本大题共6小题,每小题3分,共18分。
每小题只有一个正确选项)1.(3分)如图是“光盘行动”的宣传海报(部分),图中餐盘与筷子可看成直线和圆的位置关系是()A.相切B.相交C.相离D.平行2.(3分)下列函数中,满足y的值随x的值增大而减少的是()A.y=2x B.y=(x>0)C.y=2x﹣3D.y=﹣x2 3.(3分)公园中的休闲桌如图所示,下面为其俯视图的是()A.B.C.D.4.(3分)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率B.任意写一个整数,它能被2整除的概率C.掷一枚质地均匀正六面体骰子,向上的面点数是2的概率D.暗箱中有1个红球和2个白球,它们只有颜色上的区别,从中任取一球是白球的概率5.(3分)某个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图所示的是该台灯的电流I(A)与电阻R(Ω)的关系图象,该图象经过点P(880,0.25).根据图象可知,下列说法正确的是()A.当I<0.25时,R<880B.I与R的函数关系式是C.当R>1000时,I>0.22D.当880<R<1000时,I的取值范围是0.22<I<0.256.(3分)如图,是抛物线y=ax2+bx+c的图象,根据图象信息分析下列结论:其中正确的结论是()①2a+b=0;②abc>0;③b2﹣4ac>0;④4a+2b+c<0.A.①②③B.①②④C.②③④D.①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)如图,四边形ABCD为圆内接四边形,若∠A=60°,则∠C=.8.(3分)在Rt△ABC中,∠C=90°,AC=2,AB=6,则tan A=.9.(3分)如图是某高铁站扶梯的示意图,扶梯AB的坡度i=5:12.李老师乘扶梯从底端A以0.5m/s的速度用时40s到达顶端B,则李老师上升的垂直高度BC为.10.(3分)已知α,β是方程x2+2x﹣2023=0的两个实数根,求α2+αβ﹣2β的值为.11.(3分)七巧板是中国传统数学文化的重要载体,利用七巧板可以拼出许多有趣的图案.现用图1所示的一副七巧板拼成如图2所示的六边形,若图1中七巧板的总面积为16,则图2中图形的周长为.12.(3分)已知点M(2,0),⊙M的半径为1,OA切⊙M于点A,点P为⊙M上的动点,连接OP,AP,若△POA是等腰三角形,则点P的坐标为.三、解答题(本大题共6小题,每小题3分,共30分)13.(3分)解方程:x(x+4)=2x+8.14.(3分)为了测量校园内一棵树的高度,学校数学应用实践小组做了如下的探索实践.根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把镜子放在离树(AB)9m的水平地面点E处,然后一同学沿着直线BE后退到点D,这时该同学恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3m,该同学身高CD=1.6m.请你计算树(AB)的高度.15.(6分)如图1是一张折叠型方桌子,图2是其侧面结构示意图,支架AD与CB交于点O,测得AO=BO=50cm,CO=DO=30cm.(1)若CD=40cm,求AB的长;(2)将桌子放平后,要使AB距离地面的高为40cm,求两条桌腿需叉开角度∠AOB.16.(6分)已知四边形ABCD是正方形,,请仅用无刻度直尺按下列要求作图(保留作图痕迹,不写作法)(1)在图1中,将线段AE绕着点A顺时针旋转90°;(2)在图2中,连接AC,将线段AC绕着点C顺时针旋转135°得到CG.17.(6分)如图,有一个质地均匀且四个面上分别标有数字“1”“2”“3”“4”的正四面体骰子,小明与小红按照以下规则进行游戏活动:两人轮流掷这枚骰子,骰子朝下的数字是几,就将棋子前进几格;开始棋子在数字“1”的那一格,小明先掷骰子,请解答下列问题:(1)小明挪出骰子,数字“6”朝下的是事件;A.不可能B.必然C.随机(2)用列表或画树状图的方法求小红第一次掷完骰子后,棋子前进到数字“6”那一格的概率.18.(6分)如图、在平面直角坐标系xOy中,点A是y轴正半轴上一点,过点A作直线AB 交反比例函数y=(k≠0)的图象于点B、E,过点A作AC∥x轴,交反比例函数的图象于点C,连接BC.AB=BC=5,AC=6.(1)求反比例函数的表达式;(2)求△EBC的面积.四、解答题(本大题共3小题,每小题8分,共24分)19.(8分)图1是某型号挖掘机,该挖掘机是由基座、主臂和伸展臂构成.图2是某种工作状态下的侧面结构示意图(MN是基座的高,MP是主臂,PQ是伸展臂,EM∥QN).已知基座高度MN为1m,主臂MP长为5m,测得主臂伸展角.∠PME=37°.(参考数据:sin37°≈,tan37°≈,sin53°≈,tan53°≈)(1)求点P到地面的高度;(2)若挖掘机能挖的最远处点Q到点N的距离为7m,求∠QPM的度数.20.(8分)学校某数学调查小组通过随机调查了某社交App的6000名用户(男性4000人,女性2000人),从中随机抽取了60人(其中女性20人),统计他们在日常消费时是否使用手机支付的情况,定义:使用手机支付的为“手机支付族”,其他的为“非手机支付族”.根据抽样数据,绘制如下统计表.手机支付非手机支付合计男301040女a820合计42b60(1)①a=,b=;②用样本估计总体,若从该社交App女性用户中随机抽取1位,这位女性用户是“手机支付族”的概率是多少?(2)某商场对“手机支付族”和“非手机支付族”有奖酬宾活动:凡购物满100元,均可得到一次抽奖的机会在一个纸盒里装有2个红球和2个白球,它们除颜色外其他都相同,抽奖者一次从中摸出两个球,根据球的颜色决定赠送相应券值的礼金券.(如表)手机支付族:球两红一红一白两白礼金券/元5105非手机支付族:球两红一红一白两白礼金券/元10510①用树状图表示某顾客进行一次摸奖的结果的所有情况;②如果只考虑中奖因素,你将会选择哪种付费方式?请说明理由.21.(8分)点A是矩形EFBG边EG上的点,以AB为直径的圆交EF于点D和点C,AE =ED,连接BD,BC,AC.(1)求证:AC=BC.(2)已知,求CD的长.五、解答题(本大题共3小题,每小题9分,共18分)22.(9分)小黄做小商品的批发生意,其中某款“中国结”每件的成本为15元,该款“中国结”的批发单价y(元)与一次性批发量x(x为正整数)(件)之间满足如图所示的函数关系.(1)当200≤x≤400时,求y与x的函数关系式.(2)某零售商在小黄处一次性批发该款“中国结”,共支付7280元,求此次批发量.(3)某零售商在小黄处一次性批发该款“中国结”x(200≤x≤600)件,小黄获得的利润为w元,当x为何值时,小黄获得的利润最大?最大利润是多少元?23.(9分)某公司为城市广场上一雕塑AB安装喷水装置.喷水口位于雕塑的顶端点B处,喷出的水柱轨迹呈现抛物线型.据此建立平面直角坐标系,如图.若喷出的水柱轨迹BC 上某一点与支柱AB的水平距离为x(单位:m),与广场地面的垂直高度为y(单位:m).下面的表中记录了y与x的五组数据:x/m02610y/m3根据上述信息,解决以下问题:(1)求出y与x之间的函数关系;(2)求水柱落地点与雕塑AB的水平距离;(3)为实现动态喷水效果,广场管理处决定对喷水设施做如下设计改进:在喷出水柱轨迹的形状y=ax2+bx+c不变的前提下,把水柱喷水的半径(动态喷水时,点C到到AB的距离)控制在7m到14m之间,请探究改建后喷水池水柱的最大高度和b的取值范围.24.(12分)如图,两个全等的四边形ABCD和OA′B′C′,其中四边形OA′B′C′的顶点O位于四边形ABCD的对角线交点O.回归课本(1)如图1,若四边形ABCD和OA′B′C′都是正方形,则下列说法正确有.(填序号)①OE=OF;②重叠部分的面积始终等于四边形ABCD的;③BE+BF=DB.应用提升(2)如图2,若四边形ABCD和OA′B′C′都是矩形,AD=a,DC=b,写出OE与OF之间的数量关系,并证明.类比拓展(3)如图3,若四边形ABCD和OA′B′C′都是菱形,∠DAB=α,判断(1)中的结论是否依然成立;如不成立,请写出你认为正确的结论(可用α表示),并选取你所写结论中的一个说明理由.2023年江西省南昌市中考数学第一次效果检测试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分。
2020年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)﹣3的倒数是()A.3B.﹣3C.﹣D.解析:根据倒数的定义即可得出答案.【解答】解:﹣3的倒数是﹣.故选:C.点拨:此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a 解析:根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.点拨:本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.(3分)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×1014解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:50175亿=5017500000000=5.0175×1012.故选:B.点拨:此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n的值.4.(3分)如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG解析:依据平行线的判定与性质,以及三角形外角性质,即可得出结论.【解答】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°﹣35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.点拨:本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.(3分)如图所示,正方体的展开图为()A.B.C.D.解析:根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.点拨:本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.6.(3分)在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt △OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2解析:求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.【解答】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x 轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴B(3,0),A(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,故选:B.点拨:本题考查了抛物线与x轴的交点,坐标和图形变换﹣平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:(a﹣1)2=a2﹣2a+1.解析:直接利用完全平方公式计算即可解答.【解答】解:(a﹣1)2=a2﹣2a+1.点拨:本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.8.(3分)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为﹣2.解析:利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解答】解:∵a=1,b=﹣k,c=﹣2,∴x1•x2==﹣2.∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.故答案为:﹣2.点拨:本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.9.(3分)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是25.解析:根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.【解答】解:由题意可得,表示25.故答案为:25.点拨:本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.(3分)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为9.解析:直接根据众数的定义可得答案.【解答】解:圆周率的小数点后100位数字的众数为9,故答案为:9.点拨:本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.(3分)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为82°.解析:证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.【解答】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.点拨:本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.(3分)矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米或4厘米或厘米.解析:根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE =30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.【解答】解:①当∠ABE=30°时,AE=AB×tan30°=;②当∠AEB=30°时,AE===4;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=,∵AF=AE+EF=ABtan30°=,∴x+=,∴x=8﹣4,∴AE=8﹣4.故答案为:厘米或4厘米或8﹣4厘米.点拨:本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:解析:(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=1﹣2+4=﹣1+4=3;(2)解不等式3x﹣2≥1,得:x≥1,解不等式5﹣x>2,得:x<3,则不等式组的解集为1≤x<3.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(6分)先化简,再求值:(﹣)÷,其中x=.解析:先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=[﹣]÷=•=,当x=时,原式==.点拨:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.解析:(1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率.【解答】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P(小志、小晴)==.点拨:本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.解析:(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据AB=2,BC=,AC=5,利用数形结合的思想解决问题即可.【解答】解:(1)如图1中,△A'B'C'即为所求.(2)如图2中,△AB'C'即为所求.点拨:本题考查作图﹣旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.解析:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y 元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:,解得:.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.点拨:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.解析:(1)根据题意求得A(2,2),然后代入y=(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质以及三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.【解答】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.点拨:本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6根据以上图表信息,完成下列问题:(1)m=14;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有20人,至多有34人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80解析:(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答】解:(1)m=(2+8+10+15+10+4+1)﹣(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15﹣1)=34(人),故答案为:20,34;(4)800×=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及点拨:本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)解析:(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40(mm)=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D===0.500,∴∠D=26.6°,因此旋转的角度为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.点拨:本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC 为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).解析:(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC =PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求,即可求解.【解答】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵PA,PB为⊙O的切线,∴PA=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=r,PD=r,∵∠AOP=90°﹣∠APO=60°,∴==,∴阴影部分的周长=PA+PD+=r+r+r=(+1+)r.点拨:本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,弧长公式,菱形的判定等知识,灵活运用这些性质解决问题是本题的关键.22.(9分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012…y…m0﹣3n﹣3…(1)根据以上信息,可知抛物线开口向上,对称轴为直线x=1;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系A3A4﹣A1A2=1.解析:(1)观察表格中的数据,得到x=0和x=2时,y值相等都为﹣3,且其他y的值比﹣3大,可得出抛物线开口方向及对称轴;(2)把三点坐标代入抛物线解析式求出a,b,c的值确定出解析式,进而求出m与n的值即可;(3)画出抛物线图象,确定出点P'运动的轨迹即可;(4)根据(3)中图象可得答案.【解答】解:(1)根据表格信息,可知抛物线开口向上,对称轴为直线x=1;故答案为:上,直线x=1;(2)把(﹣1,0),(0,﹣3),(2,﹣3)代入y=ax2+bx+c,得:,解得:,∴抛物线解析式为y=x2﹣2x﹣3,当x=﹣2时,m=4+4﹣3=5;当x=1时,n=1﹣2﹣3=﹣4;(3)画出抛物线图象,如图1所示,描出P'的轨迹,是一条抛物线,如备用图所示,(4)根据题意及(3)中图象可得:A3A4﹣A1A2=1.故答案为:A3A4﹣A1A2=1.点拨:本题考查了待定系数法求二次函数的解析式及二次函数的图象与性质,数形结合并熟练掌握二次函数的相关性质是解题的关键.六、(本大题共12分)23.(12分)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC 为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为S1+S2=S3;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC 为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC =90°,AB=2,DE=2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.解析:类比探究(1)通过证明△ADB∽△BFC,可得=()2,同理可得=()2,由勾股定理可得AB2+AC2=BC2,可得结论;推广验证(2)通过证明△ADB∽△BFC,可得=()2,同理可得=()2,由勾股定理可得AB2+AC2=BC2,可得结论;拓展应用(3)过点A作AH⊥BP于H,连接PD,BD,由直角三角形的性质可求AP=,BP=BH+PH=3+,可求S△ABP=,通过证明△ABP∽△EDP,可得∠EPD=∠APB=45°,,S△PDE=,可得∠BPD=90°,PD=1+,可求S△BPD=2+3,由(2)的结论可求S△BCD=S△ABP+S△DPE=+=2+2,即可求解.【解答】解:类比探究(1)∵∠1=∠3,∠D=∠F=90°,∴△ADB∽△BFC,∴=()2,同理可得:=()2,∵AB2+AC2=BC2,∴=()2+()2==1,∴S1+S2=S3,故答案为:S1+S2=S3.(2)结论仍然成立,理由如下:∵∠1=∠3,∠D=∠F,∴△ADB∽△BFC,∴=()2,同理可得:=()2,∵AB2+AC2=BC2,∴=()2+()2==1,∴S1+S2=S3,(3)过点A作AH⊥BP于H,连接PD,BD,∵∠ABH=30°,AB=2,∴AH=,BH=3,∠BAH=60°,∵∠BAP=105°,∴∠HAP=45°,∵AH⊥BP,∴∠HAP=∠APH=45°,∴PH=AH=,∴AP=,BP=BH+PH=3+,∴S△ABP===,∵PE=,ED=2,AP=,AB=2,∴=,=,∴,且∠E=∠BAP=105°,∴△ABP∽△EDP,∴∠EPD=∠APB=45°,,∴∠BPD=90°,PD=1+,∴S△BPD===2+3,∵△ABP∽△EDP,∴=()2=,∴S△PDE=×=∵tan∠PBD=,∴∠PBD=30°,∴∠CBD=∠ABC﹣∠ABP﹣∠CBD=30°,∴∠ABP=∠PDE=∠CBD,又∵∠A=∠E=∠C=105°,∴△ABP∽△EDP∽△CBD,由(2)的结论可得:S△BCD=S△ABP+S△DPE=+=2+2,∴五边形ABCDE的面积=++2+2+2+3=6+7.点拨:本题是四边形综合题,考查了相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,利用相似三角形的性质求三角形的面积是本题的关键.。
2022年江西省中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )A .45︒B .135︒C .75︒D .165︒ 2、有理数a ,b 在数轴上对应的位置如图所示,则下列结论正确的是( ).A .0a >B .1b >C .0a b ->D .a b >3、点()4,9-关于x 轴的对称点是( ) A .()4,9--B .()4,9-C .()4,9-D .()4,9 4、利用如图①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )·线○封○密○外A .22()4()a b ab a b -+=+B .22()()a b a b a b -+=-C .222()2a b a ab b +=++D .222()2a b a ab b ---+5、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程1y (米),2y (米)与运动时间x (分)之间的函数关系如图所示,下列结论中错误的是( )A .两人前行过程中的速度为180米/分B .m 的值是15,n 的值是2700C .爸爸返回时的速度为90米/分D .运动18分钟或31分钟时,两人相距810米6、下列图形是全等图形的是( ) A . B . C . D .7、已知ab =a ,b 的关系是( ) A .相等 B .互为相反数C .互为倒数D .互为有理化因式8、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )A .60︒B .75︒C .90︒D .105︒9、如图,在平面直角坐标系xOy 中,已知点A (1,0),B (3,0),C 为平面内的动点,且满足∠ACB =90°,D 为直线y =x 上的动点,则线段CD 长的最小值为( )A .1B .2 C1 D110、已知单项式5xayb +2的次数是3次,则a +b 的值是( ) A .1 B .3 C .4 D .0 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、如图,在ABC 中,3cm AB =,6cm BC ,5cm AC =,蚂蚁甲从点A 出发,以1.5cm/s 的速度沿着三角形的边按A B C A →→→的方向行走,甲出发1s 后蚂蚁乙从点A 出发,以2cm/s 的速度沿着三角形的边按A C B A →→→的方向行走,那么甲出发________s 后,甲乙第一次相距2cm .·线○封○密○外2、如图, 已知在 Rt ABC △ 中, 90,30,1,ACB B AC D ∠∠=== 是 AB 边上一点, 将 ACD △ 沿 CD 翻折, 点 A 恰好落在边 BC 上的点 E 处,那么AD =__________3、班主任从甲、乙、丙、丁四位同学中选择一位同学参加学校的演讲比赛.甲同学被选中的概率是______.4、据统计我国微信用户数量已突破8.87亿人,近似数8.87亿有__个有效数字.5、如图,围棋盘的方格内,白棋②的位置是()5,2--,白棋④的位置是()4,6--,那么黑棋①的位置应该表示为______.三、解答题(5小题,每小题10分,共计50分)1、如图1,把一副三角板拼在一起,边OA ,OC 与直线EF 重合,其中45AOB ∠=︒,60COD ∠=︒.(1)求图1中BOD ∠的度数;(2)如图2,三角板COD 固定不动,将三角板AOB 绕点O 顺时针旋转一个角度,在转动过程中,三角板AOB 一直在EOD ∠的内部,设EOA α∠=. ①若OB 平分EOD ∠,求α; ②若4AOC BOD ∠=∠,求α. 2、数学课上,王老师准备了若干个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积: 方法1: ; 方法2: ; (2)观察图2,请你写出代数式:(a +b )2,a 2+b 2,ab 之间的等量关系 ; (3)根据(2)题中的等量关系,解决如下问题: ①已知:a +b =5,(a ﹣b )2=13,求ab 的值; ②已知(2021﹣a )2+(a ﹣2020)2=5,求(2021﹣a )(a ﹣2020)的值. 3、问题发现: (1)如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE , ·线○封○密○外①求证:△ACD ≌△BCE ;②求∠AEB 的度数.(2)拓展探究:如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE =90°,点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高交AE 于M ,连接BE .请求∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.4、如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,且80AOD DOB ∠-∠=︒.求∠AOC 和∠DOE 的度数.5、计算:(a ﹣2b )(a +2b )﹣(a ﹣2b )2+8b 2.-参考答案-一、单选题1、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒∴∠1补角的度数为18015165︒-︒=︒故选:D .【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键. 2、D 【解析】 【分析】 先根据数轴可得101a b <-<<<,再根据有理数的减法法则、绝对值性质逐项判断即可得. 【详解】 解:由数轴的性质得:101a b <-<<<. A 、0a <,则此项错误; B 、1b <,则此项错误; C 、0a b -<,则此项错误; D 、1a b >>,则此项正确; 故选:D . 【点睛】 本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键. 3、A 【解析】 【分析】·线○封○密○外直接利用关于x 轴对称点的性质得出答案.【详解】解:点P (−4,9)关于x 轴对称点P ′的坐标是:(−4,−9).故选:A .【点睛】此题主要考查了关于x 轴对称点的性质,正确得出横纵坐标的关系是解题关键.4、A【解析】【分析】整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.【详解】∵大正方形边长为:()a b +,面积为:()2a b +; 1个小正方形的面积加上4个矩形的面积和为:()24a b ab -+; ∴()()2222424a b ab a ab b ab a b -+=-++=+.故选:A .【点睛】此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.5、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A ;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m =15,由此即可计算出n 的值和爸爸返回的速度,即可判断B 、C ;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案. 【详解】 解:∵3600÷20=180米/分, ∴两人同行过程中的速度为180米/分,故A 选项不符合题意; ∵东东在爸爸返回5分钟后返回即第20分钟返回 ∴m =20-5=15, ∴n =180×15=2700,故B 选项不符合题意; ∴爸爸返回的速度=2700÷(45-15)=90米/分,故C 选项不符合题意; ∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米, ∴运动18分钟时两人相距3240-2430=810米; ∵返程过程中东东45-20=25分钟走了3600米, ∴东东返程速度=3600÷25=144米/分, ∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米, ∴运动31分钟两人相距756米,故D 选项符合题意; 故选D . 【点睛】 本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像. 6、D 【解析】 【详解】·线○封○密○外解:A 、不是全等图形,故本选项不符合题意;B 、不是全等图形,故本选项不符合题意;C 、不是全等图形,故本选项不符合题意;D 、全等图形,故本选项符合题意;故选:D【点睛】本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.7、A【解析】【分析】求出a 与b 的值即可求出答案.【详解】解:∵a=,b =∴a =b ,故选:A .【点睛】本题考查了分母有理化,解题的关键是求出a 与b 的值,本题属于基础题型.8、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】 解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒ 故选B 【点睛】 本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键. 9、C 【解析】 【分析】 取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,求出DE 长即可求出答案. 【详解】 解:取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,∵点A (1,0),B (3,0), ∴OA =1,OB =3, ∴OE =2,∴ED∵∠ACB =90°, ∴点C 在以AB 为直径的圆上, ·线○封○密○外∴线段CD−1.故选:C .【点睛】本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C ,D 两点的位置是解题的关键.10、A【解析】【分析】根据单项式的次数的概念求解.【详解】解:由题意得:a+b +2=3,∴a+b =1.故选:A .【点睛】本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.二、填空题1、4【解析】【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】 解:根据题意, ∵3cm AB =,6cm BC ,5cm AC =, ·线∴周长为:35614++=(cm ),∵甲乙第一次相距2cm ,则甲乙没有相遇,设甲行走的时间为t ,则乙行走的时间为(1)t -,∴1.52(1)214t t +-+=,解得:4t =;∴甲出发4秒后,甲乙第一次相距2cm .故答案为:4.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程.21##1-【解析】【分析】翻折的性质可知AD DE AC CE ==,,A CED ∠=∠;在Rt ABC 中有60A ∠=︒,BC =CED B EDB ∠=∠+∠,得DEB 是等腰三角形,AD DE BE BC CE BC AC ===-=-即可求出长度.【详解】解:翻折可知:ACD ECD ≌,AD DE AC CE ==,∵30B ∠=︒,1AC =,90ACB ∠=︒∴在Rt ABC 中,22AB AC ==∴60A CED ∠=∠=︒,BC =∵CED B EDB ∠=∠+∠∴30EDB B ∠=∠=︒∴DEB 是等腰三角形∴DE EB =∴1AD EB BC CE ==-=1.【点睛】本题考查了轴对称的性质,等腰三角形的判定与性质,三角形的外角,勾股定理等知识点.解题的关键在于找出边相等的关系.3、14或0.25【解析】【分析】由题意得出从4位同学中选取1位共有4种等可能结果,其中选中甲同学的只有1种结果,根据概率公式可得.【详解】解:从4位同学中选取1位共有4种等可能结果,其中选中甲同学的只有1种结果, ∴恰好选中乙同学的概率为14, 故答案为:14.【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 4、3【解析】 【分析】 根据有效数字的定义求解.·线【详解】解:近似数8.87亿有3个有效数字,它们为8、8、7.故答案为:3.【点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.5、()1,5--【解析】【分析】先根据白棋②的位置是()5,2--,白棋④的位置是()4,6--确定坐标系,然后再确定黑棋①的坐标即可.【详解】根据图形可以知道,黑棋①的位置应该表示为()1,5--故答案为:()1,5--【点睛】此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系.三、解答题1、 (1)75°;(2)①15°;②40°.【解析】【分析】(1)根据平角定义,利用角的差∠BOD =180°-∠AOB -∠COD 运算即可;(2)①根据补角性质求出∠EOD =180°-∠COD =180°-60°=120°,根据角平分线定义求出∠EOB =12∠EEE =12×120°=60°,再根据两角差E =∠EEE −∠EEE =15°即可;②根据角的和求出∠AOC =∠AOB +∠BOD +∠COD =105°+∠BOD ,然后列方程求出∠EEE =35°,求出∠EEE =4∠EEE =4×35°=140°,再求补角即可.(1)解:∵45AOB ∠=︒,60COD ∠=︒,∴∠BOD =180°-∠AOB -∠COD =180°-45°-60°=75°;(2)解:①∵60COD ∠=︒,∴∠EOD =180°-∠COD =180°-60°=120°,∵OB 平分EOD ∠,∴∠EOB =12∠EEE =12×120°=60°,∵45AOB ∠=︒,∴E =∠EEE −∠EEE =60°−45°=15°;②∵45AOB ∠=︒,60COD ∠=︒.∴∠AOC =∠AOB +∠BOD +∠COD =45°+∠BOD +60°=105°+∠BOD ,∵4AOC BOD ∠=∠,∴105°+∠EEE =4∠EEE ,解得:∠EEE =35°,∴∠EEE =4∠EEE =4×35°=140°,∴α=180°-∠AOC =180°-140°=40°. 【点睛】 本题考查三角板中形成的角计算,平角,补角,角平分线有关的计算,角的和差倍分,一元一次方·线程,本题难度不大,是角中计算的典型题.2、 (1)(E+E)2;E2+E2+2EE(2)(E+E)2=E2+E2+2EE;(3)①EE=3;②-2【解析】【分析】(1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;(2)由(1)直接可得关系式;(3)①由(a-b)2=a2+b2-2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021-a=x,a-2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=-2,再求(2021-a)(a-2020)=-2即可.(1)方法一:∵大正方形的边长为(a+b),∴S=(a+b)2;方法二:大正方形是由2个长方形,2个小正方形拼成,∴S=b2+ab+ab+a2=a2+b2+2ab;故答案为:(a+b)2,a2+b2+2ab;(2)由(1)可得(a+b)2=a2+b2+2ab;故答案为:(a+b)2=a2+b2+2ab;(3)①∵(a-b)2=a2+b2-2ab=13①,(a+b)2=a2+b2+2ab=25②,由①-②得,-4ab=-12,解得:ab=3;②设2021-a=x,a-2020=y,∴x+y=1,∵(2021-a)2+(a-2020)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2=1,∴2xy=1-(x2+y2)=1-5=-4,解得:xy=-2,∴(2021-a)(a-2020)=-2.【点睛】本题考查完全平方公式的几何背景,熟练掌握正方形、长方形面积的求法,灵活应用完全平方公式的变形是解题的关键.3、(1)①见解析;②∠AEB=60°(2)∠AEB=90°,AE=BE+2CM.理由见解析【解析】【分析】(1)①先证明∠EEE=∠EEE,再结合等边三角形的性质,利用EEE证明△ACD≌△BCE即可;②先求解∠EEE=120°,由△ACD≌△BCE可得∠ADC=∠BEC,再利用角的和差关系可得答案;(2)先证明△EEE≌△EEE,∠EEE=135°,再结合全等三角形的性质与等腰直角三角形的性质可得∠EEE=90°,由EE⊥EE,结合等腰直角三角形的性质,可得EE=EE=EE,结合全等三角形的性质可得EE=EE+2EE.(1) 证明:①∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD =60°﹣∠DCB =∠BCE . 在△ACD 和△BCE 中,{EE =EE ∠EEE =∠EEEEE =EE, ∴△ACD ≌△BCE (SAS ).解:②∵△ACD ≌△BCE ,∴∠ADC =∠BEC .∵△DCE 为等边三角形,∴∠CDE =∠CED =60°.∵点A ,D ,E 在同一直线上,∴∠ADC =120°,∴∠BEC =120°.∴∠AEB =∠BEC ﹣∠CED =60°.(2)解:∠AEB =90°,AE =BE +2CM .理由如下: 如图2所示:由题意得:EE⊥EE ,·线○封○密○外∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,{EE=EE∠EEE=∠EEEEE=EE,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,确定每一问中的两个全等三角形是解本题的关键.4、50°,25°.【解析】【分析】 根据邻补角的性质,可得∠AOD +∠BOD =180°,即∠EEE =180°−∠EEE ,代入80AOD DOB ∠-∠=︒可得∠BOD ,根据对顶角的性质,可得∠∠AOC 的度数,根据角平分线的性质,可得∠DOE 的数. 【详解】 解:由邻补角的性质,得∠AOD +∠BOD =180°,即∠EEE =180°−∠EEE ∵80AOD DOB ∠-∠=︒, ∴180°−∠EEE −∠EEE =80°. ∴∠EEE =50°,∴∠AOC =∠BOD =50°, ∵OE 平分∠BOD ,得 ∠DOE =12∠DOB =25°.【点睛】 本题考查了角平分线的定义,对顶角、邻补角的性质,解题关键是熟记相关性质,根据角之间的关系建立方程求解. 5、4EE 【解析】 【分析】 根据整式的乘法公式及运算法则化简,合并即可求解. 【详解】 (a ﹣2b )(a +2b )﹣(a ﹣2b )2+8b 2 =a 2-4b 2-a 2+4ab -4b 2+8b 2 =4ab . ·线○封○密·○外【点睛】此题主要考查整式的乘法运算,解题的关键是熟知其运算法则及运算公式.。
2014 年江西省中等学校招生考试数学试题(含答案全解全析)第Ⅰ卷(选择题, 共 18分)一、选择题 ( 本大题共 6 小题 , 每题 3 分 , 共 18 分 . 每题只有一个正确选项)1.下列四个数中 , 最小的数是 ()A.-B.0C.-2D.22. 某市 6 月份某周气温 ( 单位 : ℃) 为 23,25,28,25,28,31,28, 则这组数据的众数和中位数分别是 ( )A.25,25B.28,28C.25,28D.28,313. 下列运算正确的选项是 ( )A.a 2+a3=a5B.(-2a 2) 3=-6a 62D.(2a 3 2 2C.(2a+1)(2a-1)=2a -1 -a ) ÷a=2a-14. 直线 y=x+1 与 y=-2x+a 的交点在第一象限, 则 a 的取值能够是 ( )A.-1B.0C.1D.25. 如图 , 贤贤同学用手工纸制作一个台灯灯罩, 做好后发现上口太小了, 于是他把纸灯罩对齐压扁 , 剪去上面一截后 , 正好合适 . 以下裁剪示意图中 , 正确的选项是 ( )6. 已知反比率函数y=的图象如下图, 则二次函数y=2kx 2-4x+k 2的图象大概为()第Ⅱ卷 ( 非选择题 , 共 102 分)二、填空题 ( 本大题共8 小题 , 每题 3 分, 共 24 分)7.计算: =.8.据有关报道 , 截止到今年四月 , 我国已达成 5.78 万个乡村教学点的建设任务 .5.78 万可用科学记数法表示为.-9. 不等式组的解集是.-)2 2 2.10. 若α β是方程 x -2x-3=0 的两个实数根 , 则α +β =11.如图 , 在△ ABC中 AB=4 BC=6 ∠B=6 °将△ ABC 沿射线 BC的方向平移 2 个单位后 , 得到12. 如图△ABC内接于☉ O AO= BC=, 则∠ BAC的度数为.13. 如图 , 是将菱形 ABCD以点 O为中心按顺时针方向分别旋转° 8° 7°后形成的图形 . 若∠ BAD=6 ° AB=则图中阴影部分的面积为.14.在 Rt△ABC中∠A= °有一个锐角为 6 ° BC=6. 若点 P 在直线 AC上 ( 不与点 A,C 重合 ), 且∠ ABP= °则CP的长为.三、 (本大题共4小题, 每题 6 分,共 24 分)15.计算--÷-.-16. 小锦和小丽购置了价钱分别相同的中性笔和笔芯 . 小锦买了 20 支笔和 2 盒笔芯 , 用了 56 元 ; 小丽买了 2 支笔和 3 盒笔芯 , 仅用了 28 元 . 求每支中性笔和每盒笔芯的价钱 .17.已知梯形 ABCD,请使用无刻度直尺绘图 .(1)在图 1 中画一个与梯形 ABCD面积相等 , 且以 CD为边的三角形 ;(2)在图 2 中画一个与梯形 ABCD面积相等 , 且以 AB为边的平行四边形 .18.有六张完全相同的卡片,分 A,B 两组,每组三张,在 A 组的卡片上分别画上“√ × √” B组的卡片上分别画上“√× ×” 如图 1 所示 .(1) 若将卡片无标记的一面朝上摆在桌上, 再分别从两组卡片中随机各抽取一张, 求两张卡片上标记都是“√”的概率( 请用“树形图法”或“列表法”求解);(2) 若把 A,B 两组卡片无标记的一面对应粘贴在一同得到三张卡片, 其正、反面标记如图....所示 , 将卡片正面朝上摆在桌上 , 并用瓶盖遮住标记 . ①若随机揭开其中一个盖子 , 看到的标记是“√”的概率是多少 ?②若揭开盖子 , 看到的卡片正面标记是“√”后, 猜想它的反面也是“√”求猜对的概率2 .四、 (本大题共3小题, 每题 8 分,共 24 分)19. 如图 , 在平面直角坐标系中 , 点 A,B 分别在 x 轴、y 轴的正半轴上 ,OA=4,AB=5. 点 D在反比率函数 y=(k>0) 的图象上 DA⊥OA 点 P 在 y 轴负半轴上 ,OP=7.(1)求点 B 的坐标和线段 PB的长 ;(2)当∠ PDB= °时 , 求反比率函数的解析式 .20. 某教研机构为认识在校初中生阅读数学教科书的现状, 随机抽取某校部分初中学生进行了检查 . 依据有关数据绘制成以下不完整的统计图表, 请根据图表中的信息解答下列问题:某校初中生阅读数学教科书统计图表类别人数占总人数比率重视a0.3一般57 0.38不重视 b c说不清楚9 0.06(1)求样本容量及表格中 a,b,c 的值 , 并补全统计图 ;(2) 若该校共有初中生 2 300 名 , 请估计该校“不重视阅读数学教科书”的初中生人数; ) ①根据上面的统计结果, 谈谈你对该校初中生阅读数学教科书的现状的见解及建议;②如果要认识全省初中生阅读数学教科书的情况, 你认为应该怎样进行抽样?21. 图 1 中的中国结挂件是由四个相同的菱形在极点处依次串接而成, 每相邻两个菱形均成°的夹角 , 示意图如图 2 所示 . 在图 2 中 , 每个菱形的边长为10 cm, 锐角为 6 °.(1)连接 CD,EB,猜想它们的位置关系并加以证明;(2) 求 A,B 两点之间的距离( 结果取整数 , 能够使用计算器).( 参照数据 :≈ .4≈ .76≈.45)五、 (本大题共2小题, 每题 9 分,共 18 分)22.如图 1,AB 是☉O的直径 , 点 C在 AB的延伸线上 ,AB=4,BC=2,P 是☉O上半部分的一个动点 ,....连接 OP,CP.(1)求△ OPC的最大面积 ;(2)求∠ OCP的最大度数 ;(3)如图 2, 延伸 PO交☉O于点 D,连接 DB.当 CP=DB时, 求证 :CP 是☉O 的切线 .23.如图 1, 边长为 4 的正方形 ABCD中 , 点 E 在 AB边上 ( 不与点 A,B 重合 ), 点 F 在 BC边上 ( 不与点 B,C 重合 ).第一次操作 : 将线段 EF 绕点 F 顺时针旋转 , 当点 E 落在正方形上时, 记为点 G;第二次操作 : 将线段 FG绕点 G顺时针旋转 , 当点 F 落在正方形上时 , 记为点 H; 依此操作下去备用图(1) 图 2 中的△ EFD 是经过两次操作后得到的, 其形状为, 求此时线段 EF 的长 ;(2) 若经过三次操作可得到四边形EFGH.①请判断四边形 EFGH的形状为, 此时 AE与 BF 的数量关系是;②以①中的结论为前提 , 设 AE的长为 x, 四边形 EFGH的面积为 y, 求 y 与 x 的函数关系式及面积 y 的取值范围 .六、 (本大题共12分)24. 如图 1, 抛物线 y=ax 2+bx+c(a>0) 的极点为 M,直线 y=m与 x 轴平行 , 且与抛物线交于点A,B, 若△ AMB为等腰直角三角形, 我们把抛物线上A,B 两点之间的部分与线段AB围成的图形 ( 如图 2) 称为该抛物线对应的准碟形 , 线段 AB称为碟宽 , 极点 M称为碟顶 , 点 M到线段 AB的距离称为碟高 .(1) 抛物线 y= x2对应的碟宽为; 抛物线y=4x 2对应的碟宽为; 抛物线y=ax 2(a>0) 对应的碟宽为; 抛物线 y=a(x-2) 2 +3(a>0) 对应的碟宽为;(2) 若抛物线 y=ax2-4ax- 5 (a>0) 对应的碟宽为 6, 且在 x 轴上 , 求 a 的值 ;(3) 将抛物线 y =a x +b x+c (a >0) 对应的准碟形记为 F n= ) 定义 F ,F F 为相nn 2n nn n 12 n似准碟形 , 相应的碟宽之比即为相像比 . 若 F n与 F n-1的相像比为 , 且 F n的碟顶是 F n-1的碟宽的中点 , 现将 (2) 中求得的抛物线记为 y1, 其对应的准碟形记为 F1. ①求抛物线 y2的表达式 ;②若 F1的碟高为 h1 ,F 2的碟高为 h2 F n的碟高为 h n, 则 h n=,F n的碟宽右端点横坐标为;F 1,F 2 F n的碟宽右端点是否在一条直线上?若是 , 直接写出该直线的表达式; 若不是 , 请说明原因 .备用图答案全解全析:一、选择题1.C 因为 -2<- <0<2, 所以最小的数是 -2, 应选 C.2.B 把这组数据从小到大排列为23,25,25,28,28,28,31, 出现次数最多的是28, 所以这组数据的众数是28; 因为最中间的一个数是28, 所以中位数是28, 应选 B.3.DA项 2 3 5 此选项错误;B 项,a +a ≠a,项 ,(2a+1)(2a-1)=(2a) 2 2 2此选项错误-1 =4a -1,,(-2a 2) 3=(-2) 3· a 2) 3=-8a 6, 此选项错误 ;C .应选 D.-4.D 联立解得--因为两直线的交点在第一象限, 所以解得 a>1, 应选 D.5.A 由圆台的侧面展开图可得A正确 , 应选 A.评析此题考察简单几何体的侧面展开图, 属容易题 .6.D 由反比率函数图象可知k<-1, 所以抛物线开口向下, 且与 y 轴的交点位于点(0,1) 上方 ,- 4评析此题考察反比率函数和二次函数的图象和性质, 属难题 .二、填空题7.答案 3解析= =3.8. 答案45.78 ×4.解析 5.78 万=5.78 ×9.答案 x>-①解析) 解不等式①得x> ; 解不等式②得x>-2, 所以原不等式组的解集为- ②x> .10.答案 10解析因为α 、β是方程x2-2x-3=0的两个实数根,所以α+β=αβ=-3,故α2+β2= α+β)2- αβ = 2- × -3)=10.评析此题考察一元二次方程的根与系数的关系, 属容易题 .11.答案 12解析∵B'C'=BC=6 CC'=∴B'C=B'C'-CC'=4,∵A'B'=AB=4 ∴B'C=A'B'又∵∠ A'B'C=∠B=6°∴△ A'B'C是等边三角形∴△ A'B'C的周长是12.评析此题考察平移变换和等边三角形的性质, 属容易题 .12.答案 6°解析连接 OB、 OC,作 OD⊥BC 于点 D,由垂径定理可得,BD=CD=∴OD=- B =1,∵s in ∠OBD= ∴∠ OBD= ° ∴∠ BOC= °则∠ BAC= ∠BOC=6°.评析此题考察垂径定理和圆周角与圆心角之间的关系, 属容易题 .13. 答案12-4解析连接 OB,OA,作 AE⊥OB 可得∠ BOA=45° ∠EAO=45°进而可得AE= ,BE=1,OE=AE=, 所以S△OAD=S△OAB-S △ABD= -, 所以 S 阴影 =8S△OAD=12-4.14.答案2或4或6解析图 1 中∠ABC=6 ° BC=6 则AB=3,AC=3 , 又∠ ABP= °则AP= , 所以 CP=2或CP=4 ;图2中,∵∠ ACB=6 ° ∠ABP= ° ∴△ CBP 是等边三角形∴CP=CB=6.图1 图2三、解答题--15. 解析- ÷ -- - ) = ·(4分)-=x-1.(6 分 )16. 解析设每支中性笔 x 元 , 每盒笔芯 y 元 ,根据题意得56(3 分)8.解这个方程组 , 得8.答 : 每支中性笔 2 元, 每盒笔芯 8 元.(6 分) 17. 解析 (1) 如下图 △CDE 即为所求 .( 答案不唯一 )(3 分)(2) 如下图 , ? ABFE 即为所求 .( 答案不唯一 )(6 分)18. 解析 (1) 解法一 : 根据题意 , 可画出如下树形图 :从树形图能够看出 , 所有可能结果共有 9 种 , 且每种结果出现的可能性相等, 其中两张卡片上标记都是“√”的结果有 2 种 , ∴P 两张都是“√” )=.(4 分)解法二 : 根据题意 , 可列表如下 :B 组 √××A 组√ √ √) √ ×) √ ×) × × √) × ×) × ×)√√ √)√ ×)√ ×)从上表能够看出 , 所有可能结果共有 9 种 , 且每种结果出现的可能性相等, 其中两张卡片上标记都是“√”的结果有 2 种 ,∴P 两张都是“√” )= .(4分)) ①∵三张卡片上正面的标记有三种可能, 分别为“√× √”∴随机揭开其中一个盖子, 看到的标记是“√”的概率为.(5分)②∵正面标记为“√”的卡片, 其反面标记情况有两种可能, 分别为“√”和“×”∴猜对反面也是“√”的概率为.(6分)四、解答题19. 解析(1) 在 Rt△OAB中 ,OA=4,AB=5,∴OB= -O= 5 -4 =3.∴点 B 的坐标为 (0,3).(2分)∵OP=7∴P B=OB+OP= +7= . 分 )(2)过点 D 作 DE⊥OB 垂足为点 E,由 DA⊥OA可得矩形 OADE.∴D E=OA=4∠BED= °.∴∠ BDE+∠EBD= °.又∵∠ BDP= °∴∠ BDE+∠EDP= °.∴∠ EBD=∠EDP.∴△ BED∽△ DEP. 4分)∴=.设点 D(4,m), 由 k>0, 得 m>0,则有 OE=AD=m,BE=3-m,EP=m+7,- 4∴4= 7.解得 m1=1,m2=-5( 不合题意 , 舍去 ).(6分)∴m= 点 D 的坐标为 (4,1).∴k=4 反比率函数的解析式为y=4.(8分)20.解析 (1) 由统计表可知 , 样本容量为 57÷ . 8= 5 . ∴a= 5 × . =45c=1-0.3-0.38-0.06=0.26,b= 5 × . 6= .分)补全统计图如下图.(4 分) )×.6=58人),∴该校“不重视阅读数学教科书”的初中生人数约为598 人.(6分)) ①从该校初中生重视阅读数学教科书的人数比率来看, 该校初中生对阅读数学教科书的重视程度不够, 建议数学教师在课内外加强引导学生阅读数学教科书, 逐步提高学生数学阅读能力 , 重视数学教材在数学学习过程中的作用;②考虑到样本具有的随机性、代表性和宽泛性, 要认识全省初中生阅读数学教科书的情况, 抽样时要选择城市、乡镇不同层次的学校.(8分)( 只需给出合理建议即可给分)21.解析)CD ∥EB.分)证明 : 连接 AC,DE.∵四边形AGCH是菱形 , 且∠ GCH=6°∴∠ =∠GCH=°.同理∠=°.∴∠ ACD= °.分)同理可得∠ CDE=∠DEB= °.∴CD∥EB.分)(2)解法一 :连接 AD,BD,AC,CD,DE,BE.由 (1) 知∠ ACD= °.∵CA=CD∴∠ CDA=∠CAD=45°.同理∠EDB=∠EBD=45°又由 (1) 知∠ CDE= °.∴∠ CDA+∠CDE+∠EDB= 8 °即点 A,D,B 在同一直线上 .(4分)连接 GH交 AC于点 M.由菱形的性质可知∠ CMH= ° CM=AC.在 Rt△CMH中 CM=CH·cos∠ =·cos°=5,∴CD=AC= CM=.(6分)∴在 Rt△ACD中 ,AD= C =10 6.(7 分 )同理 ,BD=10 6.∴A B=AD+DB= 6≈ × .45=4 .答 :A,B 两点之间的距离约为49 cm.(8分)解法二 : 连接 CD,DE,AB,延伸 AC交 BE的延伸线于点 F.由 (1) 知∠ ACD=∠CDE=∠DEB= °∴四边形 CDEF是矩形 .∵四个菱形全等 ,∴AC=CD=DE=EB.∴四边形 CDEF是正方形 .(4 分 )∴CF=FE=CD且∠ F= °.∴AF=BF= AC. 5 分 )在菱形 AGCH中, 连接 GH交 AC于点 M,∴AC⊥GH.在 Rt△CMH中 CM=CH·cos∠ = ·cos °=5,(6 分)∴AC= CM=,AF=BF=2AC=20 .(7 分)∴在 Rt△AFB 中 ,AB=B =20 6≈× .45=4 .答 :A,B 两点之间的距离约为49 cm.(8 分 )五、解答题22.解析) ∵△ OPC的边长 OC是定值 ,∴当 OP⊥OC时,OC 边上的高为最大值, 此时△ OPC的面积最大 .(1分) ∵A B=4 BC=∴OP=OB= OC=OB+BC=4.∴S△OPC=OC·OP= ×4× =4.∴△ OPC的最大面积为 4.(2 分 )(2)当 PC与☉O相切 , 即 OP⊥PC 时∠OCP的度数最大 .(3 分)在 Rt△OPC中∠OPC= ° OC=4 OP=∴s in ∠OCP== .∴∠ OCP= °. ∴∠ OCP 的最大度数为°. 5分)(3) 连接 AP,BP.∵∠ AOP=∠DOB∴A P=DB. 6 分 )∵CP=DB∴A P=PC.∴∠ A=∠C.∵∠ A=∠D∴∠ C=∠D. 7分)∵O C=PD=4 PC=DB∴△ OPC≌△ PBD.∴∠ OPC=∠PBD. 8分)∵PD是☉O 的直径 ,∴∠ PBD= °.∴∠ OPC= °.∴OP⊥PC.又∵ OP是☉O的半径 ,∴CP是☉O 的切线 .(9分)23.解析 (1) 等边三角形 .(1 分 )∵四边形ABCD是正方形 ,∴A D=CD=BC=AB∠ A=∠B=∠C= °.∵DE=DF∴R t△ADE≌Rt△CDF.∴A E=CF.∴B E=BF.∴△ BEF 是等腰直角三角形.设 EF长为 x, 则 BE= x,∴A E=4- x.∵在 Rt△ADE中 ,DE2=AD2+AE2,DE=EF,∴2=42+ 4- .(2 分 )∴2+8 x-64=0.解得 x =-4 +4 6,x =-4 -4 6( 不合题意 , 舍去 ).1 2∴E F=-4 +4 6.(3 分)) ①正方形 ;AE=BF.(5 分 )②∵ AE=∴B E=4-x.∵在 Rt△BEF 中 ,EF 2=BE2+BF2,2 2 2分)∴y= 4 -x) +x =2x -8x+16(0<x<4).(7∵y= 2-8x+16=2(x-2) 2+8,∴当 x=2 时 ,y 取得最小值8; 当 x=0 时 ,y=16.∴y的取值范围是8≤y< 6.分)六、解答题24. 解析(1)4; ; ; .(4分)(每空1分)(2) 解法一 : 由(1) 可知 , 抛物线 y=ax2+bx+c(a>0) 对应的碟宽为, 所以 =6,a= .(6分)解法二 :y=ax 2-4ax- 5=a(x-2) 2-4a-5∵碟宽在x 轴上 ,∴碟高 -4a- 5 6又 a>0, 解得 a= .(6 分) = =3,(3 ) ①由 (2) 知,y 1= (x-2) 2-3, 碟顶 M1的坐标为 (2,-3). ∵F的碟顶是 F 的碟宽的中点 ,2 1∴F2 的碟顶 M2的坐标为 (2,0), 可设 y2=a2(x-2) 2.∵F2 与 F1的相像比为,F 1的碟宽为 6,∴F2 的碟宽为6× =3, 即 =3,a 2= .∴y2= (x-2) 2 2 8 8= x - x+ .(8 分 )②- ;2+ - .(10 分)F1,F 2 F n的碟宽右端点在一条直线上, 该直线的表达式为y=-x+5.(12分)。