高中物理人造卫星变轨问题专题
- 格式:docx
- 大小:27.80 KB
- 文档页数:3
人造卫星变轨问题专题(一) 人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供..轨道半径r 确定后;与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度2r GMa =也都是唯一确定的..如果卫星的质量是确定的;那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的..一旦卫星发生了变轨;即轨道半径r 发生变化;上述所有物理量都将随之变化E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒;其增减由该过程的能量转换情况决定..同理;只要上述七个物理量之一发生变化;另外六个也必将随之变化..(二) 常涉及的人造卫星的两种变轨问题1. 渐变由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化逐渐增大或逐渐减小;由于半径变化缓慢;卫星每一周的运动仍可以看做是匀速圆周运动..解决此类问题;首先要判断这种变轨是离心还是向心;即轨道半径r 是增大还是减小;然后再判断卫星的其他相关物理量如何变化..1) 人造卫星绕地球做匀速圆周运动;无论轨道多高;都会受到稀薄大气的阻力作用..如果不及时进行轨道维持即通过启动星上小型发动机;将化学能转化为机械能;保持卫星应具有的状态;卫星就会自动变轨;偏离原来的圆周轨道;从而引起各个物理量的变化..这种变轨的起因是阻力..阻力对卫星做负功;使卫星速度减小;卫星所需要的向心力r mv 2减小了;而万有引力2r GMm的大小没有变;因此卫星将做向心运动;即轨道半径r 将减小..由基本原理中的结论可知:卫星线速度v 将增大;周期T 将减小;向心加速度a 将增大;动能E k 将增大;势能E p 将减小;有部分机械能转化为内能摩擦生热;卫星机械能E 机将减小..为什么卫星克服阻力做功;动能反而增加了呢 这是因为一旦轨道半径减小;在卫星克服阻力做功的同时;万有引力即重力将对卫星做正功..而且万有引力做的正功远大于克服空气阻力做的功;外力对卫星做的总功是正的;因此卫星动能增加..根据E机=E k+E p;该过程重力势能的减少总是大于动能的增加..2)有一种宇宙学的理论认为在漫长的宇宙演化过程中;引力常量G是逐渐减小的..如果这个结论正确;那么环绕星球将发生离心现象;即环绕星球到中心星球间的距离r将逐渐增大;环绕星球的线速度v将减小;周期T将增大;向心加速度a将减小;动能E k将减小;势能E p将增大..2.突变短时间启动飞行器上的发动机;使飞行器轨道发生突变;使其进入预定的轨道..1)发射同步卫星时;可以先将卫星发送到近地轨道Ⅰ;使其绕地球做匀速圆周运动;速率为v1;变轨时在P点点火加速;短时间内将速率由v1增加到v2;使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q时的速率为v3;此时进行第二次点火加速;在短时间内将速率由v3增加到v4;使卫星进入同步轨道Ⅲ;绕地球做匀速圆周运动..例题1. 某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用;人造卫星到地心的距离从r 1慢慢变到r 2;用E Kl .E K2分别表示卫星在这两个轨道上的动能;则A.r 1<r 2;E K1<E K2B.r 1>r 2;E K1<E K2C.r 1<r 2;E K1>E K2D.r 1>r 2;E K1>E K22. 1飞船在椭圆轨道1上运行;Q 为近地点;P 为远地点;当飞船运动到P 点时点火;使飞船沿圆轨道2运行;A .飞船在QB .飞船在PC .飞船在轨道1上P的速度小于在轨道2上P 的速度D .飞船在轨道1上P 的加速度大于在轨道2上P 的加速度 2假设由于飞船的特殊需要;美国的一艘原来在圆轨道运行的飞船前往与之对接;则飞船一定是A .从较低轨道上加速B .从较高轨道上加速C .从同一轨道上加速D .从任意轨道上加速3. 航天飞机在完成对哈勃太间望远镜的维修任务后;在A 点短时A间开动小型发动机进行变轨;从圆形轨道Ⅰ进入椭圆道Ⅱ;B 为轨道Ⅱ上的一点;如图所示..下列说法中正确的有A.在轨道Ⅱ上经过A的机械能大于经过B的机械能B.在A点短时间开动发动机后航天飞机的动能增大了C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度4.我国成功实施了“神舟”七号的载入航天飞行;并实现了航天员首次出舱..飞船先沿椭圆轨道飞行;后在远地点343千米处点火加速;把飞船运行轨道由椭圆轨道变成离地面高度为343千米的圆轨道;在此圆轨道上飞船运行周期约为90分钟..下列正确的是A.飞船变轨前后的机械能相等B.飞船在圆轨道上时航天员出舱前后都处于超重状态C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度1.B2.BC A3.C4.C。
P地球 Q 轨道1 轨道2 专题六:卫星变轨问题问题的理解及相关问题的解决思路1.假如一个作匀速圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作匀速圆周运动,则:A.根据公式,可知卫星运动的线速度将增大到原来的2倍。
B.根据公式,可知卫星所需的向心力将减小到原来的。
C.根据公式,可知地球提供的向心力将减小到原来的。
D.根据上述(B)和(C)中给出的公式,可知卫星运动的线速度将减小到原来的。
2. 发射地球同步卫星时,先将卫星发射至近地圆形轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步轨道3。
轨道1、2相切于P 点如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( )A.卫星在轨道3上的运行速率大于轨道1上的速率B.卫星在轨道3上的角速度小于在轨道3上的角速度C.卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度D.卫星在椭圆轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度3.某人造地球卫星因受高空稀薄气体的阻力作用,绕地球运转的轨道会慢慢改变.某次测量中卫星的轨道半径为1r ,后来变为2r 且1r >2r 。
以1K E 、2K E 分别表示卫星在这两个轨道的动能.1T 、2T 分别表示卫星在这两个轨道绕地球运动的周期,则有 ( )A. 1K E <2K E 2T <1TB. 1K E <2K E 2T >1TC. 1K E >2K E 2T <1T D .1K E >2K E 2T >1T4.某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用,人造卫星到地心的距离从r 1慢慢变到r 2,用E Kl .E K2分别表示卫星在这两个轨道上的动能,则(A)r 1<r 2,E K1<E K2 (B)r 1>r 2,E K1<E K2 (C)r 1<r 2,E K1>E K2 (D)r 1>r 2,E K1>E K25.人造飞船首先进入的是距地面高度近地点为200km ,远地点为340km 的的椭圆轨道,在飞行第五圈的时候,飞船从椭圆轨道运行到以远地点为半径的圆行轨道上,如图所示,试处理下面几个问题(地球的半径R=6370km ,g=9.8m/s 2):(1)飞船在椭圆轨道1上运行,Q 为近地点,P 为远地点,当飞船运动到P 点时点火,使飞船沿圆轨道2运行,以下说法正确的是A .飞船在Q 点的万有引力大于该点所需的向心力B .飞船在P 点的万有引力大于该点所需的向心力C .飞船在轨道1上P 的速度小于在轨道2上P 的速度D .飞船在轨道1上P 的加速度大于在轨道2上P 的加速度(2)假设由于飞船的特殊需要,美国的一艘原来在圆轨道运行的飞船前往与之对接,则飞船一定是A .从较低轨道上加速B .从较高轨道上加速C .从同一轨道上加速D .从任意轨道上加速6.发射地球同步卫星时,先将卫星发射到近地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送人同步圆轨道3。
核心素养提升微课堂科学思维系列(一)——卫星变轨及飞船对接问题1.变轨原理及过程人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示.(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A点点火加速,速度变大,进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆轨道Ⅲ.2.卫星变轨问题分析方法(1)速度大小的分析方法.①卫星做匀速圆周运动经过某一点时,其速度满足GMm r2=m v2r即v=GMr.以此为依据可分析卫星在两个不同圆轨道上的速度大小.②卫星做椭圆运动经过近地点时,卫星做离心运动,万有引力小于所需向心力:GMmr2<m v2r.以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过近地点时的速度大小(即加速离心).③卫星做椭圆运动经过远地点时,卫星做近心运动,万有引力大于所需向心力:GMmr2>m v2r.以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过远地点时的速度大小(即减速近心).④卫星做椭圆运动从近地点到远地点时,根据开普勒第二定律,其速率越来越小.以此为依据可分析卫星在椭圆轨道的近地点和远地点的速度大小.(2)加速度大小的分析方法:无论卫星做圆周运动还是椭圆运动,只受万有引力时,卫星的加速度a n=Fm=G M r2.3.飞船对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.【典例】“嫦娥三号”探测器由“长征三号乙”运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察,“嫦娥三号”的飞行轨道示意图如图所示.假设“嫦娥三号”在环月段圆轨道和椭圆轨道上运动时,只受到月球的万有引力,则以下说法正确的是()A.若已知“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量,则可以计算出月球的密度B.“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,应让发动机点火使其加速C.“嫦娥三号”在从远月点P向近月点Q运动的过程中,加速度变大D.“嫦娥三号”在环月段椭圆轨道上P点的速度大于Q点的速度【解析】根据“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量可以求出月球的质量,但是由于不知道月球的半径,故无法求出月球的密度,A错误;“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,轨道半径减小,故应让发动机点火使其减速,B 错误;“嫦娥三号”在从远月点P 向近月点Q 运动的过程中所受万有引力逐渐增大,故加速度变大,C 正确;“嫦娥三号”在环月段椭圆轨道上运动时离月球越近速度越大,故P 点的速度小于Q 点的速度,D 错误.【答案】 C变式训练1 如图所示是“嫦娥三号”奔月过程中某阶段的运动示意图,“嫦娥三号”沿椭圆轨道Ⅰ运动到近月点P 处变轨进入圆轨道Ⅱ,“嫦娥三号”在圆轨道Ⅱ上做圆周运动的轨道半径为r ,周期为T ,已知引力常量为G ,下列说法正确的是( )A .由题中(含图中)信息可求得月球的质量B .由题中(含图中)信息可求得月球的第一宇宙速度C .“嫦娥三号”在P 处变轨时必须点火加速D .“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时的加速度大于沿圆轨道Ⅱ运动到P 处时的加速度解析:万有引力提供向心力,G Mm r 2=m 4π2T 2r ,得M =4π2r 3GT 2,故A 正确;万有引力提供向心力,G Mm ′R 2=m ′v 2R ,得v =GM R ,由于不知道月球半径,所以不能求得月球的第一宇宙速度,故B 错误;椭圆轨道和圆轨道是不同的轨道,“嫦娥三号”在P 点不可能自主改变轨道,只有在减速后,才能进入圆轨道,故C 错误;“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时和沿圆轨道Ⅱ运动到P 处时,所受万有引力大小相等,所以加速度大小也相等,故D 错误.答案:A变式训练2(多选)如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆轨道上的Q点),到达远地点Q时再次变轨,进入同步卫星轨道.设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道的近地点P点的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在同步卫星轨道上的速率为v4,三个轨道上运动的周期分别为T1、T2、T3,则下列说法正确的是()A.在P点变轨时需要加速,Q点变轨时要减速B.在P点变轨时需要减速,Q点变轨时要加速C.T1<T2< T3D.v2>v1>v4>v3答案:CD变式训练3发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2 3相切于P点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法不正确的是()A.要将卫星由圆轨道1送入圆轨道3,需要在圆轨道1的Q点和椭圆轨道2的远地点P分别点火加速一次B.由于卫星由圆轨道1送入圆轨道3点火加速两次,则卫星在圆轨道3上正常运行速度大于卫星在圆轨道1上正常运行速度C.卫星在椭圆轨道2上的近地点Q的速度一定大于7.9 k m/s,而在远地点P的速度一定小于7.9 km/sD .卫星在椭圆轨道2上经过P 点时的加速度一定等于它在圆轨道3上经过P 点时的加速度解析:从轨道1变轨到轨道2需在Q 处点火加速,从轨道2变轨到轨道3需要在P 处点火加速,故A 说法正确;根据公式GMm r 2=m v 2r 解得v =GMr ,即轨道半径越大,速度越小,故卫星在轨道3上正常运行的速度小于在轨道1上正常运行的速度,B 说法错误;第一宇宙速度是近地圆轨道环绕速度,即7.9 km/s ,轨道2上卫星在Q 点做离心运动,则速度大于7.9 km/s ,在P 点需要点火加速,则速度小于在轨道3上的运行速度,而轨道3上的运行速度小于第一宇宙速度,C 说法正确;卫星在椭圆轨道2上经过P 点时和在圆轨道3上经过P 点时所受万有引力相同,故加速度相同,D 说法正确.故选B.答案:B变式训练4 (多选)如图所示a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A .b 、c 的线速度大小相等,且大于a 的线速度B .a 加速可能会追上bC .c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD .a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大解析:因为b 、c 在同一轨道上运行,故其线速度大小、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,v =GMr ,可知v b =v c <v a ,故A 错误;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来。
专题 卫星变轨问题和双星问题班级 姓名 学号一、人造卫星的变轨问题 1.变轨问题概述 (1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mmr 2=m v 2r.(2)变轨运行卫星变轨时,先是线速度v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变迁.②当卫星加速时,卫星所需的向心力F 向=m v 2r增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变迁. 2.实例分析同步卫星的发射、变轨问题如图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMmr 2=m v 2r,进入同步圆轨道3做圆周运动.例1如图为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( ) A.卫星在轨道3上的速率大于在轨道1上的速率 B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度针对训练1航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图4所示.关于航天飞机的运动,下列说法中正确的有( ) A.在轨道Ⅱ上经过A 的速度小于经过B 点的速度 B.在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度 C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度二、双星问题1.双星模型(1)如图所示,宇宙中有相距较近、质量相差不大的两个星球,它们离其他星球都较远,其他星球对它们的万有引力可以忽略不计.在这种情况下,它们将围绕其连线上的某一固定点做周期相同的匀速圆周运动,通常,我们把这样的两个星球称为“双星”. (2)双星问题的特点①两星围绕它们之间连线上的某一点做匀速圆周运动,两星的运行周期、角速度相同. ②两星的向心力大小相等,由它们间的万有引力提供. ③两星的轨道半径之和等于两星之间的距离,即r 1+r 2=L .(3)双星问题的处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即Gm 1m 2L 2=m 1ω2r 1,G m 1m 2L2=m 2ω2r 2.例2 两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是( ) A.质量大的天体线速度较大 B.质量小的天体角速度较大 C.两个天体的向心力大小一定相等 D.两个天体的向心加速度大小一定相等针对训练2 两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O 为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图所示.已知双星的质量分别为m 1和m 2,它们之间的距离为L ,引力常量为G ,求双星的运行轨道半径r 1和r 2及运行周期T .巩固训练1.2019年春节期间,中国科幻电影里程碑的作品《流浪地球》热播,影片中为了让地球逃离太阳系,人们在地球上建造特大功率发动机,使地球完成一系列变轨操作,其逃离过程如图所示,地球在椭圆轨道 Ⅰ 上运行到远日点B 变轨,进入圆形轨道 Ⅱ.在圆形轨道 Ⅱ 上运行到B 点时再次加速变轨,从而最终摆脱太阳束缚.对于该过程,下列说法正确的是( ) A.沿轨道 Ⅰ 运动至B 点时,需向前喷气减速才能进入轨道 Ⅱ B.沿轨道Ⅰ运行的周期小于沿轨道Ⅱ运行的周期C.沿轨道 Ⅰ 运行时,在A 点的加速度小于在B 点的加速度D.在轨道 Ⅰ 上由A 点运行到B 点的过程,速度逐渐增大2.如图所示,我国发射的“神舟十一号”飞船和“天宫二号”空间实验室于2016年10月19日自动交会对接成功.假设对接前“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室轨道半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室轨道半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接3.冥王星与其附近的另一星体卡戎可视为双星系统,冥王星与星体卡戎的质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动,由此可知,冥王星绕O 点运动的( ) A.轨道半径约为卡戎的17 B.角速度大小约为卡戎的17C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍4.1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图1所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则( ) A.v 1>v 2,v 1=GM r B.v 1>v 2,v 1>GMr C.v 1<v 2,v 1=GMr D.v 1<v 2,v 1>GMr5.如图,“嫦娥三号”探测器经轨道 Ⅰ 到达P 点后经过调整速度进入圆轨道 Ⅱ,再经过调整速度变轨进入椭圆轨道 Ⅲ,最后降落到月球表面上.下列说法正确的是( ) A.“嫦娥三号”在地球上的发射速度大于11.2 km/s B.“嫦娥三号”由轨道Ⅰ经过P 点进入轨道Ⅱ时要加速C.“嫦娥三号”在轨道Ⅲ上经过P 点的速度大于在轨道Ⅱ上经过P 点的速度D.“嫦娥三号”稳定运行时,在轨道Ⅱ上经过P 点的加速度与在轨道Ⅲ上经过P 点的加速度相等6.(多选)如图所示,a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A.b 、c 的线速度大小相等,且大于a 的线速度B.a 加速可能会追上bC.c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD.a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大 7.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕其连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )A.m 1、m 2做圆周运动的线速度之比为3∶2B.m 1、m 2做圆周运动的角速度之比为3∶2C.m 1做圆周运动的半径为25LD.m 2做圆周运动的半径为25L8.中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A 、远地点为B 的椭圆轨道上,A 点距地面的高度为h 1,飞船飞行5圈后进行变轨,进入预定圆轨道,如图9所示.设飞船在预定圆轨道上飞行n 圈所用时间为t ,若已知地球表面重力加速度为g ,地球半径为R ,忽略地球的自转,求: (1)飞船在B 点经椭圆轨道进入预定圆轨道时是加速还是减速? (2)飞船经过椭圆轨道近地点A 时的加速度大小. (3)椭圆轨道远地点B 距地面的高度h 2. 参考答案例1 答案 B解析 卫星在圆轨道上做匀速圆周运动时有: G Mmr 2=m v 2r,v =GMr因为r 1<r 3,所以v 1>v 3,A 项错误, 由开普勒第三定律知T 3>T 2,B 项正确;在Q 点从轨道1到轨道2需要做离心运动,故需要加速. 所以在Q 点v 2Q >v 1Q ,C 项错误.在同一点P ,由GMmr 2=ma n 知,卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P点的加速度,D 项错误. 针对训练1答案 ABC解析 在轨道Ⅱ上由A 点运动到B 点,由开普勒第二定律可得经过A 的速度小于经过B 的速度,A 正确;从轨道Ⅰ的A 点进入轨道Ⅱ需减速,使万有引力大于所需要的向心力,做近心运动,所以在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度,B 正确;根据开普勒第三定律R 3T 2=k ,椭圆轨道的半长轴小于圆轨道的半径,所以在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,C 正确;在轨道Ⅱ上和在轨道Ⅰ上通过A 点时所受的万有引力相等,根据牛顿第二定律,加速度相等,D 错误. 例2 答案 C解析 双星系统的结构是稳定的,故它们的角速度相等,故B 项错误;两个星球间的万有引力提供向心力,根据牛顿第三定律可知,两个天体的向心力大小相等,而天体质量不一定相等,故两个天体的向心加速度大小不一定相等,故C 项正确,D 错误;根据牛顿第二定律,有:G m 1m 2L 2=m 1ω2r 1=m 2ω2r 2,其中:r 1+r 2=L 故r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,故v 1v 2=r 1r 2=m 2m 1故质量大的天体线速度较小,故A 错误. 针对训练2答案 Lm 2m 1+m 2 Lm 1m 1+m 24π2L 3G (m 1+m 2)解析 双星间的万有引力提供了各自做圆周运动的向心力,对m 1:Gm 1m 2L 2=m 1r 1ω2, 对m 2:Gm 1m 2L2=m 2r 2ω2,且r 1+r 2=L ,解得r 1=Lm 2m 1+m 2,r 2=Lm 1m 1+m 2.由G m 1m 2L 2=m 1r 14π2T 2及r 1=Lm 2m 1+m 2得周期T =4π2L 3G (m 1+m 2).巩固训练 1.答案 B 2.答案 C解析 飞船在同一轨道上加速追赶空间实验室时,速度增大,所需向心力大于万有引力,飞船将做离心运动,不能实现与空间实验室的对接,选项A 错误;同时,空间实验室在同一轨道上减速等待飞船时,速度减小,所需向心力小于万有引力,空间实验室将做近心运动,也不能实现对接,选项B 错误;当飞船在比空间实验室半径小的轨道上加速时,飞船将做离心运动,逐渐靠近空间实验室,可实现对接,选项C 正确;当飞船在比空间实验室半径小的轨道上减速时,飞船将做近心运动,远离空间实验室,不能实现对接,选项D 错误. 3.答案 A解析 双星系统内的两颗星运动的角速度相等,B 错误.双星的向心力为二者间的万有引力,所以向心力大小相等,D 错误.根据m 1ω2r 1=m 2ω2r 2,得r 1r 2=m 2m 1=17,A 正确.根据v =ωr ,得v 1v 2=r 1r 2=17,C 错误. 4.答案 B解析 根据开普勒第二定律知,v 1>v 2,在近地点画出近地圆轨道,因为过近地点做匀速圆周运动的速度为v =GMr,由于“东方红一号”在椭圆轨道上运动,所以v 1>GMr,故B 正确.5.答案 D6.答案 BD解析 因为b 、c 在同一轨道上运行,故其线速度、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,由v =GMr可知,v b =v c <v a ,故选项A 错;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来到切(或交)点时,a 就追上了b ,故选项B 正确;当c 加速时,c 受的万有引力F <m v c 2r c,故它将偏离原轨道,做离心运动,当b 减速时,b 受的万有引力F >m v b 2r b ,它将偏离原轨道,做近心运动,所以无论如何c 也追不上b ,b 也等不到c ,故选项C 错;对a 卫星,当它的轨道半径缓慢减小时,由v =GMr可知,r 减小时,v 逐渐增大,故选项D 正确. 7.答案 C解析 设双星m 1、m 2距转动中心O 的距离分别为r 1、r 2,双星绕O 点转动的角速度均为ω,据万有引力定律和牛顿第二定律得G m 1m 2L 2=m 1r 1ω2=m 2r 2ω2,又r 1+r 2=L ,m 1∶m 2=3∶2,所以可解得r 1=25L ,r 2=35Lm 1、m 2运动的线速度分别为v 1=r 1ω,v 2=r 2ω, 故v 1∶v 2=r 1∶r 2=2∶3.综上所述,选项C 正确. 8.答案 (1)加速 (2)gR 2(R +h 1)2 (3)3gR 2t 24n 2π2-R 解析 (2)在地球表面有mg =GMmR 2① 根据牛顿第二定律有:G Mm(R +h 1)2=ma A ②由①②式联立解得,飞船经过椭圆轨道近地点A 时的加速度大小为a A =gR 2(R +h 1)2.(3)由万有引力提供向心力,有G Mm (R +h 2)2=m 4π2T 2(R +h 2)③由题意可知,飞船在预定圆轨道上运行的周期为T =tn ④由①③④式联立解得h 2=3gR 2t 24n 2π2-R .。
专题强化训练二:卫星(近地、同步、极地)的宇宙航行运动规律与变轨问题技巧归纳:人造卫星的变轨问题1.变轨问题概述 (1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mmr 2=m v 2r .(2)变轨运行卫星变轨时,先是线速度大小v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r 减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变轨.②当卫星加速时,卫星所需的向心力F 向=m v 2r 增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变轨. 2.实例分析 (1)飞船对接问题①低轨道飞船与高轨道空间站对接时,让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道空间站完成对接(如图甲所示).②若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道.通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如图乙所示.(2)卫星的发射、变轨问题如图发射卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMmr 2=m v 2r,进入圆轨道3做圆周运动.一、单选题1.(2022·江苏省江都中学高三开学考试)据报道,一颗来自太阳系外的彗星擦火星而过。
如图所示,设火星绕太阳在圆轨道上运动,运动半径为r ,周期为T 。
该彗星在穿过太阳系时由于受到太阳的引力,轨道发生弯曲,彗星与火星在圆轨道的A 点“擦肩而过”。
已知万有引力常量G ,则( )A.可计算出火星的质量B.可计算出彗星经过A点时受到的引力C.可确定太阳分别对彗星和火星的引力在A点产生的加速度相等D.可确定彗星在A点的速度大小为2r vTπ=2.(2022·云南·昆明一中模拟预测)随着“嫦娥奔月”梦想的实现,我国不断刷新深空探测的“中国高度”。
变轨问题专题练习一1、(05江苏)某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用,人造卫星到地心的距离从r1慢慢变到r2,用EKl.EK2分别表示卫星在这两个轨道上的动能,则A、r1<r2,EK1<EK2B、r1>r2,EK1<EK2C、r1<r2,EK1>EK2D、r1>r2,EK1>EK22、发射地球同步卫星时,先将卫星发射到近地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送人同步圆轨道3。
轨道1、2相切于Q点,轨道2、3相切于P点,如图所示,,则当卫星分别在1、2、3轨道上正常运行时,下列说法中正确的是A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度小于在轨道1上的角速度C.卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度3、我国成功实施了“神舟”七号载入航天飞行并实现了航天员首次出舱。
飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。
下列判断正确的是( )A.飞船变轨前后的速度相等B.飞船在圆轨道上时航天员出舱前后都处于超重状态C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度4、我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时);然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球。
如果按圆形轨道计算,并忽略卫星质量的变化,则在每次变轨完成后与变轨前相比,A.卫星速度增大,角速度减小 B.卫星速度增大,角速度增大C.卫星速度减小,角速度增加 D.卫星速度减小,角速度减小5、宇宙飞船和空间站在同一轨道上运动,若飞船想与前面的空间站对接,飞船为了追上轨道空间站,可采取的方法是( )A. 飞船加速直到追上空间站,完成对接B. 飞船从原轨道减速至一个较低轨道,再加速追上空间站完成对接C. 飞船加速至一个较高轨道再减速追上空间站完成对接D. 无论飞船采取何种措施,均不能与空间站对接航天飞月空间站 B 6、人造地球卫星在轨道半径较小的轨道A 上运行时机械能为E A ,它若进入轨道半径较大的轨道B 运行时机械能为E B ,在轨道变化后这颗卫星( ) A.动能减小,势能增加,E B >E A B.动能减小,势能增加,E B =E AC.动能减小,势能增加,E B <E AD.动能增加,势能增加,E B >E A7、发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道运行,最后再次点火将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图所示,则卫星分别在轨道1、2、3上正常运行时,下列说法正确的是( )A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上角速度的小于在轨道1上的角速度C.卫星在轨道1上经过Q 点时的加速度等于它在轨道2上经过Q点时的加速度D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P点时的加速度8、地球绕太阳的运动可视为匀速圆周运动,太阳对地球的万有引力提供地球绕太阳做圆周运动所需要的向心力,由于太阳内部的核反应而使太阳发光,在这个过程中,太阳的质量在不断减小.根据这一事实可以推知,在若干年后,地球绕太阳的运动情况与现在相比( ) A.运动半径变大 B.运动周期变大 C.运动速率变大 D.运动角速度变大9、我国未来将建立月球基地,并在绕月轨道上建造空间站.如图所示,关闭动力的航天飞机在月球引力作用下经椭圆轨道向月球靠近,并将与空间站在B 处对接.已知空间站绕月轨道半径为r ,周期为T ,万有引力常量为G ,下列说法中正确的是( )A .图中航天飞机在飞向B 处的过程中,月球引力做正功 B .航天飞机在B 处由椭圆轨道可直接进入空间一站轨道C .根据题中条件可以算出月球质量D .根据题中条件可以算出空间站受到月球引力的大小10、 在“嫦娥一号”奔月飞行过程中,在月球上空有一次变轨是由椭圆轨道a 变为近月圆形轨道b,如图所示.在a 、b 切点处,下列说法正确的是( ) A.卫星运行的速度v a = v b B.卫星受月球的引力F a = F b C.卫星的加速度 a a > a b D.卫星的动能E ka < E kb21 3P Q参考答案:1、B 2、BD 3、C 4、D 5、B 6、A 7、BC 8、AB 9、AC 10、B。
人造卫星的发射过程要经过多次变轨方可到达预定轨道,在赤道上顺着地球自转方向发射卫星到圆点点火加速,速度变大,进入椭圆轨道Ⅱ再次点火加速进入圆轨道Ⅲ卫星变轨问题分析方法速度大小的分析方法.①卫星做匀速圆周运动经过某一点时,其速度满足以此为依据可分析卫星在两个不同圆轨道上的②卫星做椭圆运动经过近地点时,卫星做离心运动,m v2.以此为依据可分析卫星沿椭圆轨r道和沿圆轨道通过近地点时的速度大小(即加速离心.发射“嫦娥三号”的速度必须达到第三宇宙速度.在绕月圆轨道上,卫星周期与卫星质量有关.卫星受月球的引力与它到月球中心距离的平方成反比.在绕月轨道上,卫星受地球的引力大于受月球的引力明白第三宇宙速度是指被发射物体能够脱离太阳系的最小发射速度,而“嫦娥三号”没有脱离太阳的引力范要熟记万有引力的表达式并清楚是万有引力提供卫星做圆如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆,到达远地点Q时再次变轨,进入同步卫星轨设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道点的速率为v2,沿转移轨道刚到达远地点,在同步卫星轨道上的速率为v4,则下列说法正确的是点变轨时需要加速,Q点变轨时要减速点变轨时需要减速,Q点变轨时要加速D.v2>v1>v4>v3练2发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示,卫星分别在1、2、3轨道上正常运行时,以下说法正确的是()A.卫星在轨道3上的运行速率大于在轨道1上的运行速率B.卫星在轨道3上的角速度大于在轨道1上的角速度C.卫星在轨道1上运动一周的时间大于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度反思总结卫星变轨问题关键词转化二、有关宇宙航行的几个问题辨析辨析1.发射速度与运行速度的比较(1)发射速度在地面以某一速度发射一个物体,发射后不再对物体提供动力,在地面离开发射装置时的速度称为发射速度,三个宇宙速度都是指发射速度.(2)运行速度运行速度是指做圆周运动的人造卫星稳定飞行时的线速度,对于人造地球卫星,轨道半径越大,则运行速度越小.(3)有的同学这样认为:沿轨道半径较大的圆轨道运行的卫星的发射速度大,发射较为困难;而轨道半径较小的卫星发射速度小,发射较为容易.这种观点是片面的.因为高轨卫星的发射难易程度与发射速度没有多大关系,如果我们在地面上以7.9km/s 的速度水平发射一个物体,则这个物体可以贴着地面做圆周运动而不落到地面;如果速度增大,则会沿一个椭圆轨道运动.速度越大,椭圆轨道的半长轴就越大;如果这个速度达到11.2km/s,则这个物体可以摆脱地球的引力.可见,无论以多大速度发射一个物体或卫星,都不会使之成为沿较大的圆轨道做圆周运动的人造卫星,高轨卫星的发射过程是一个不断加速变轨的过程,并不是在地面上给一个发射速度就可以的.【典例2】(多选)如图所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则()A.该卫星的发射速度必定大于11.2km/sB.卫星在同步轨道Ⅱ上的运行速度大于7.9km/sC.在椭圆轨道上,卫星在P点的速度大于在Q点的速度D.卫星在Q点通过加速实现由轨道Ⅰ进入轨道Ⅱ辨析2.分清三个不同(1)重力和万有引力的向心加速度等于重力加速度g 的运动周期有可能是20小时如图所示,地球赤道上的山丘e,近地资源卫星均在赤道平面上绕地心做匀速圆周运动.设、v3,向心加速度分别为v2<v33<a2已知地球赤道上的物体随地球自转的线速度大小为近地卫星线速度大小为,地球同步卫星线速度大小为设近地卫星距地面高度不计,同步卫星距地面高度约为地倍.则下列结论正确的是(。
第3课时专题强化:卫星变轨问题双星模型目标要求 1.会处理人造卫星的变轨和对接问题。
2.掌握双星、多星系统,会解决相关问题。
3.会应用万有引力定律解决星球“瓦解”和黑洞问题。
考点一卫星的变轨和对接问题1.卫星发射模型(1)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道Ⅰ上,卫星在轨道Ⅰ上做匀速圆周运动,有G Mmr12=mv2r1,如图所示。
(2)在A点(近地点)点火加速,由于速度变大,所需向心力变大,G Mmr12<mv A2r1,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在椭圆轨道B点(远地点),G Mmr22>mv B2r2,将做近心运动,再次点火加速,使GMmr22=mv B′2r2,进入圆轨道Ⅲ。
思考若使在轨道Ⅲ运行的宇宙飞船返回地面,应如何操作?________________________________________________________________________2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在椭圆轨道Ⅱ上过A点和B 点时速率分别为v A、v B,四个速度关系为v A>v1>v3>v B。
(2)向心加速度在A 点,轨道Ⅰ上和轨道Ⅱ上的向心加速度关系a ⅠA ________a ⅡA ,在B 点,轨道Ⅱ上和轨道Ⅲ上的向心加速度关系a ⅡB ________a ⅢB ,A 、B 两点向心加速度关系a A ________a B 。
(均选填“>”“=”或“<”)(3)周期卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期T 1、T 2、T 3的关系为T 1<T 2<T 3。
(4)机械能在一个确定的圆(椭圆)轨道上机械能______。
若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E 1、E 2、E 3,从轨道Ⅰ到轨道Ⅱ和从轨道Ⅱ到轨道Ⅲ都需要点火加速,则机械能关系为____________。
卫星的变轨问题1.圆轨道上的稳定运行G Mm r 2=m v 2r =mrω2=mr (2πT)2 2.变轨运行分析(1)当v 增大时,所需向心力m v 2r增大,即万有引力缺乏以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道运行,由v = GM r知其运行速度要减小,但重力势能、机械能均增加。
(2)当卫星的速度突然减小时,向心力mv 2r减小,即万有引力大于卫星所需的向心力,因此卫星将做向心运动,同样会脱离原来的圆轨道,轨道半径变小,进入新轨道运行时由v = GM r知运行速度将增大,但重力势能、机械能均减少。
典题分析12012年6月16日18时37分,执行我国首次载人交会对接任务的“神舟九号〞载人飞船发射升空,在距地面343公里的近圆轨道上,与等待已久的“天宫一号〞实现屡次交会对接、别离,于6月29日10时许成功返回地面,以下关于“神舟九号〞与“天宫一号〞的说确的是( )A .假设知道“天宫一号〞的绕行周期,再利用引力常量,就可算出地球的质量B .在对接前,“神舟九号〞轨道应稍低于“天宫一号〞的轨道,然后让“神舟九号〞加速追上“天宫一号〞并与之对接C .在对接前,应让“神舟九号〞和“天宫一号〞在同一轨道上绕地球做圆周运动,然后让“神舟九号〞加速追上“天宫一号〞并与之对接D .“神舟九号〞返回地面时应在绕行轨道上先减速2.(2021·高考)如图4-4-3所示,飞船从轨道1变轨至轨道2。
假设飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的( )图4-4-3A .动能大B .向心加速度大C .运行周期长D .角速度小解析:选CD 因为G Mm r 2=m v 2r =ma =mrω2=mr 4π2T2,解得v = GM r ,a =G M r 2,T =2 πr 3GM ,ω=GM r 3,因为r 增大,所以动能减小,加速度减小,运行周期变长,角速度减小,即只有C 、D 正确。
高一物理【人造卫星的发射、变轨问题】专题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。
(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做匀速圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。
2.三个运行物理量的大小比较(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B 点速率分别为v A、v B。
在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。
(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同。
(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3。
我国正在进行的探月工程是高新技术领域的一次重大科技活动,在探月工程中飞行器成功变轨至关重要。
如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞行器在距月球表面高度为3R的圆形轨道Ⅰ上运动,到达轨道的A点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动,则()A.飞行器在B点处点火后,速度增加B.由已知条件不能求出飞行器在轨道Ⅱ上的运行周期C.在只有万有引力作用的情况下,飞行器在轨道Ⅱ上通过B点的加速度大于在轨道Ⅲ上通过B点的加速度D.飞行器在轨道Ⅲ上绕月球运行一周所需的时间为2πR g0[解析]在椭圆轨道近月点变轨成为圆轨道,要实现变轨应给飞行器点火减速,减小所需的向心力,故点火后速度减小,故A错误;设飞行器在近月轨道Ⅲ绕月球运行一周所需的时间为T 3,则mg 0=mR 4π2T 32,解得T 3=2π R g 0,根据几何关系可知,轨道Ⅱ的半长轴a =2.5R ,根据开普勒第三定律a 3T2=k 以及飞行器在轨道Ⅲ上的运行周期,可求出飞行器在轨道Ⅱ上的运行周期,故B 错误,D 正确;在只有万有引力作用的情况下,飞行器在轨道Ⅱ上通过B 点的加速度与在轨道Ⅲ上通过B 点的加速度相等,故C 错误。
人造卫星变轨问题一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GMr T 32π=、向心加速度2r GM a =也都是确定的。
如果卫星的质量也确定,一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。
同理,只要上述物理量之一发生变化,另外几个也必将随之变化。
在高中物理中,会涉及到人造卫星的两种变轨问题。
二、渐变由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。
解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。
如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。
如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。
由于这种变轨的起因是阻力,阻力对卫星做负功,使卫星速度减小,所需要的向心力r mv 2减小了,而万有引力大小2r GMm 没有变,因此卫星将做向心运动,即半径r 将减小。
由㈠中结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大。
三、突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的目标。
如:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1,第一次在P 点点火加速,在短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。
第一次加速:卫星需要的向心力r mv 2增大了,但万有引力2rGMm 没变,因此卫星将开始做离心运动,进入椭圆形的转移轨道Ⅱ。
人造卫星变轨问题专题
(一) 人造卫星基本原理
绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度
2r GM a =也都是唯一确定的。
如果卫星的质量是确定的,那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的。
一旦卫星发生了变轨,即轨道半径r 发生变化,上述所有物理量都将随之变化(E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒,其增减由该过程的能量转换情况决定)。
同理,只要上述七个物理量之一发生变化,另外六个也必将随之变化。
(二) 常涉及的人造卫星的两种变轨问题
1. 渐变
由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。
解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r 是增大还是减小,然后再判断卫星的其他相关物理量如何变化。
1) 人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。
如果不及时进行轨道维持(即通过启动星上小型发动机,将化学能转化为机械能,保持卫星应具有的状态),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。
这种变轨的起因是阻力。
阻力对卫星做负功,使卫星速度减小,卫星所需要的向心力r m v 2减小了,而万有引力2r GMm
的大小没有变,因此卫星将
做向心运动,即轨道半径r 将减小。
由基本原理中的结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大,动能E k 将增大,势能E p 将减小,有部分机械能转化为内能(摩擦生热),卫星机械能E 机将减小。
为什么卫星克服阻力做功,动能反而增加了呢?这是因为一旦轨道半径减小,
在卫星克服阻力做功的同时,万有引力(即重力)将对卫星做正功。
而且万有引力做的正功远大于克服空气阻力做的功,外力对卫星做的总功是正的,因此卫星动能增加。
根据E 机=E k +E p ,该过程重力势能的减少总是大于动能的增加。
2) 有一种宇宙学的理论认为在漫长的宇宙演化过程中,引力常量G 是逐渐减小的。
如果这个结论正确,那么环绕星球将发生离心现象,即环绕星球到中心星球间的距离r 将逐渐增大,环绕星球的线速度v 将减小,周期T 将增大,向心加速度a 将减小,动能E k 将减小,势能E p 将增大。
2. 突变 由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道。
1) 发射同步卫星时,可以先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1;变轨时在P 点点火加
速,短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q 时的速率为v 3;此时进
行第二次点火加速,在短时间内将速率由v 3增加到v 4,使
卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。
例题
1. 某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用,人造卫
星到地心的距离从r 1慢慢变到r 2,用E Kl .E K2分别表示卫星在这两个轨道上的动能,则
A.r 1<r 2,E K1<E K2
B.r 1>r 2,E K1<E K2
C.r 1<r 2,E K1>E K2
D.r 1>r 2,E K1>E K2
2. (1)飞船在椭圆轨道1上运行,Q 为近地点,P 为远地点,当飞船运动到P 点时
点火,使飞船沿圆轨道2运行,以下说法正确的是( )
A .飞船在Q 点的万有引力大于该点所需的向心力
B .飞船在P 点的万有引力大于该点所需的向心力
C .飞船在轨道1上P 的速度小于在轨道2上P 的速度
D .飞船在轨道1上P 的加速度大于在轨道2上P 的加速度
(2)假设由于飞船的特殊需要,美国的一艘原来在圆轨道运行的飞船前往与之对接,则飞船一定是
A .从较低轨道上加速
B .从较高轨道上加速
C .从同一轨道上加速
D .从任意轨道上加速
3.航天飞机在完成对哈勃太间望远镜的维修任务后,在A点短时间开动小型发动机
进行变轨,从圆形轨道Ⅰ进入椭圆道Ⅱ,B为轨道Ⅱ上的一点,如图所示。
下列说法中正确的有
A.在轨道Ⅱ上经过A的机械能大于经过B的机械能Array B.在A点短时间开动发动机后航天飞机的动能增大了
A
C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期
D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度
4.我国成功实施了“神舟”七号的载入航天飞行,并实现了航天员首次出舱。
飞船
先沿椭圆轨道飞行,后在远地点343千米处点火加速,把飞船运行轨道由椭圆轨道变成离地面高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。
下列正确的是( )
A.飞船变轨前后的机械能相等
B.飞船在圆轨道上时航天员出舱前后都处于超重状态
C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度
D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度
1. B
2.BC A
3. C
4. C。