沥青动态剪切试验dsr流变学原理
- 格式:docx
- 大小:4.41 KB
- 文档页数:1
沥青路面以其优越的路用性能得到全世界范围内的推广应用.但是近年来,高等级沥青路面在使用早期就出现诸如网裂、剥落和松散等病害并逐步扩展,严重影响行车质量和效益.沥青路面的早期破坏除了设计、施工等方面的原因外,还与沥青的老化密切相关.沥青路面在使用过程中,表层沥青老化后产生脆性,劲度大大增加,破坏应变变小,在冬天容易产生温缩裂缝,导致路面开裂.沥青老化后导致沥青路面的抗疲劳性能下降,路面产生疲劳裂缝.因此研究沥青的抗老化性能,对提高沥青路面使用质量有重的现实意义1.基本理论动态剪切流变仪(Dynamic Shear Rheometer,简称DSR,如图1所示)通过给沥青试样施加一个正弦变化的交变应力,产生一个正弦交变应变力,而这两个应力是有相位差的。
由试验数据得出复数剪切模量*G,相位角δ。
*G即最大剪应力与最大剪应变的比值,是总阻力的表征,它包括实数轴分量'G及虚数轴分量''G,其中:'G称为动力弹性模量,即弹性部分,反映沥青变形过程中储存的能量;''G称为损失弹性模量,即粘性部分,相当于动粘度η产生的损失弹性模量,反映沥青在变形过程中由于内部摩擦产生的以热的形式散失的能量。
相位角δ是由于材料粘性成分的影响,对材料输入正弦应力与产生的正弦应变响应不同步,滞后一定相位角产生的,是沥青结合料的弹性与粘性的成分比例指标。
图1动态剪切试验基本原理Fig.1 Principle of operation of DSR粘温指数VTS指的是能够表征粘度η与温度t的关系的一个参数。
其中粘度η可以通过DSR试验数据中的*G、δ及加载频率ω通过式(1)求得:4.86281()sin G ηωδ*= (1) 其中:*G —复数剪切模量;ω—加载频率;δ—相位角。
换算得到粘度后,有四种方法构建粘度-温度坐标系来求得VTS 。
纵坐标都取lgη的对数坐标,横坐标分别为摄氏温度坐标、摄氏温度的对数坐标、兰金式温度的对数坐标、开式温度的对数坐标。
动态剪切流变试验(DSR)动态剪切流变仪是一种评价高分子材料流变特性的通用仪器。
动态剪切流变仪用于测量沥青结合料的线粘弹性模量,在正弦(摆动的)加载模式下,可以得到不同温度、不同应力等级、不同试验频率下的测量结果,即温度扫描,应变扫描和频率扫描。
不同的测试模式只是固定的参数和改变的参数不同而已。
动态剪切流变仪的工作原理是:将试样夹在来回振荡的旋转轴和固定板之间,振荡板(常叫做“旋转轴”)从A点开始转动到B点,再从B点返回经A点到C 点,然后再从C点回到A 点,形成一个循环周期。
当力(剪应力f)通过旋转轴加到沥青上时,DSR就会测量沥青对此施加的力的反应(或剪应变)。
如果沥青是一个完全的弹性材料,其反应就与瞬时施加的力相一致,两者间的时间滞后就为零。
若是完全的粘性材料,荷载和反应之间的时间滞后就会很大。
在大多数沥青路面承受交通的工作温度下,沥青处于粘弹性的工作范围。
在DSR试验中施加的应力和产生的应变之间的关系,量化了这两种状况,提供了计算沥青胶结料的两个重要参数,复数剪切模量(G∗)和相位角(δ)。
复数剪切模量是材料重复剪切变形时总阻力的度量,它包括两部分:弹性(可恢复)部分和粘性(不可恢复)部分。
相位角是可恢复和不可恢复变形数量的相对指标。
G∗/sinδ为抗车辙因子,用来表示沥青材料抗永久变形能力,在最高路面设计温度下,其值越大表示沥青的流动变形越小,越有利于抵抗车辙的产生。
G′=G∗×cosδ为贮存剪切模量,反映沥青变形过程中能量的贮藏与释放,也称为弹性模量;。
G′=G∗×sinδ为损失剪切模量,反映沥青在变形过程中由于内部摩擦产生的以热的形式散失的能量,其值越大,表示重复荷载作用下的能量损失速度越快,也称为粘性模量。
很多研究表明,沥青混合料的疲劳损失、疲劳寿命与循环加载过程中的能量损失具有正比关系,因此较小的G∗/sinδ代表较好的抵抗疲劳能力。
在进行动态剪切流变实验之前应当采用应变扫描确定沥青材料的线粘弹性区域,以确保温度扫描实验和频率扫描实验在这个范围里进行。
沥青动态剪切流变性安全操作及保养规程1. 引言沥青动态剪切流变性是指沥青在外界力作用下的流变性质,是沥青性能评价中重要的参数之一。
本文档旨在介绍沥青动态剪切流变性的基本概念,以及安全操作和保养规程,以确保工作环境的安全,提高工作效率。
2. 沥青动态剪切流变性概述沥青是一种黑色或棕色油质物质,主要用于道路建设。
沥青在施工过程中经常需要进行剪切流变性测试,以评估其流变性能。
2.1 动态剪切流变性测试原理动态剪切流变性测试是通过施加正弦剪切应力和测量应力-应变响应来评估沥青的流变性质。
一般常用的测试方法有扭转试验、动态剪切粘度试验等。
2.2 测试结果分析方法根据测试结果可得到沥青的混合流变模量、相位角等参数,这些参数可以用于评估沥青的流变性能,判断其适用性和质量。
3. 安全操作规程3.1 实验室准备•实验室应具备良好的通风系统和消防设备,确保实验环境安全。
•检查实验设备和试验仪器是否正常工作。
•检查实验用沥青样品的质量和数量。
3.2 试验前操作•佩戴个人防护装备,包括实验服、手套、安全眼镜和防护口罩。
•打开实验设备,预热设备至所需温度。
•校准测试仪器,确保准确度和可靠性。
3.3 试验操作•根据试验要求制备沥青样品。
•将样品放入试验设备中。
•设置试验参数,如温度、频率、剪切应力等。
•开始试验,记录测试数据。
•根据需要进行多组试验,以获得准确的结果。
3.4 试验后操作•关闭试验设备,清理试验现场。
•处理废弃物和污染物,确保环境卫生和安全。
4. 保养规程4.1 定期维护设备•按照设备说明书进行定期维护,保证设备正常工作。
•定期检查设备的电气连接、润滑系统和冷却系统。
4.2 清洁设备•每次试验结束后,清洁试验设备,清除残留的沥青和污垢。
•使用合适的清洁剂,避免对设备造成损害。
4.3 定期校准仪器•定期校准测试仪器,确保准确度和可靠性。
•根据仪器的使用说明书,进行校准操作。
4.4 设备存储•对不经常使用的设备,进行适当的存储,避免损坏和污染。
附录C(规范性附录)应用动态剪切流变仪(DSR)测试沥青多重应力蠕变恢复试验(MSCR)的标准方法C.1 一般规定C.1.1 本方法为在特定温度条件下的动态剪切流变试验,确定沥青试样中可恢复和不可恢复的蠕变柔量。
本实验的样品为旋转薄膜烘箱试验(RTFOT,T0610)后的残留物。
C.1.2 通过可恢复百分率确定基质沥青或聚合物改性沥青的弹性恢复和应力依赖性。
C.1.3 本方法所测数据,需采用国际标准单位。
C.2试验仪器和设备C.2.1 本方法所需设备可按现行标准《公路工程沥青与沥青混合料试验规程》(JTG E20)中T0628方法要求配置。
C.3试验步骤C.3.1 试样条件—试样按照T0610进行旋转薄膜烘箱老化。
C.3.2 试样制备—按T0628要求制备试样,采用Φ25mm板制备多应力蠕变恢复试验试样,并根据要求控制试验温度。
本方法同样适用于根据表13确定RTFOT残余物DSR性能的试样。
当用DSR试样时,试验开始前应有1min的应力松弛时间,当用新试样时,可不要求应力松弛。
C.3.3 试验要求—试样在给定的试验温度下,分别使用两个恒定应力(0.1kPa和3.2kPa)进行蠕变和恢复试验,应力加载持续1s后零应力恢复9s。
试验共经历30个蠕变和恢复循环,其中,0.1kPa应力水平下进行20个循环,随后3.2kPa应力水平下进行10个循环,总共30个循环。
0.1kPa应力水平下的前10个循环用以进行试样条件处理。
在蠕变和恢复循环间无松弛时间和应力改变。
完成两阶段蠕变和恢复试验的总时间为300s。
至少每0.1s记录1次蠕变循环试验中的应力和应变,至少每0.45s1次记录恢复阶段的数据。
在每个蠕变和恢复循环周期中,在第1s时记录应变峰值,第10s时记录恢复应变。
如果DSR没有在指定时间准确记录峰值应变和恢复应变,则先利用先前的数据,使用外推法确定第1s和10s的应变值。
蠕变期的时间偏差不应超过0.1s,恢复期的时间偏差不应超过0.5s。
DSR,MSCR,沥青黏度(1)动态剪切流变试验(DSR)动态剪切流变仪是⼀种评价⾼分⼦材料流变特性的通⽤仪器。
动态剪切流变仪⽤于测量沥青结合料的线粘弹性模量,在正弦(摆动的)加载模式下,可以得到不同温度、不同应⼒等级、不同试验频率下的测量结果,即温度扫描,应变扫描和频率扫描。
不同的测试模式只是固定的参数和改变的参数不同⽽已。
动态剪切流变仪的⼯作原理是:将试样夹在来回振荡的旋转轴和固定板之间,振荡板(常叫做“旋转轴”)从A点开始转动到B点,再从B点返回经A点到C 点,然后再从C点回到A 点,形成⼀个循环周期。
当⼒(剪应⼒f)通过旋转轴加到沥青上时,DSR就会测量沥青对此施加的⼒的反应(或剪应变)。
如果沥青是⼀个完全的弹性材料,其反应就与瞬时施加的⼒相⼀致,两者间的时间滞后就为零。
若是完全的粘性材料,荷载和反应之间的时间滞后就会很⼤。
在⼤多数沥青路⾯承受交通的⼯作温度下,沥青处于粘弹性的⼯作范围。
在DSR试验中施加的应⼒和产⽣的应变之间的关系,量化了这两种状况,提供了计算沥青胶结料的两个重要参数,复数剪切模量()和相位⾓(δ)。
复数剪切模量是材料重复剪切变形时总阻⼒的度量,它包括两部分:弹性(可恢复)部分和粘性(不可恢复)部分。
相位⾓是可恢复和不可恢复变形数量的相对指标。
/sinδ为抗车辙因⼦,⽤来表⽰沥青材料抗永久变形能⼒,在最⾼路⾯设计温度下,其值越⼤表⽰沥青的流动变形越⼩,越有利于抵抗车辙的产⽣。
=×cosδ为贮存剪切模量,反映沥青变形过程中能量的贮藏与释放,也称为弹性模量;。
=×sinδ为损失剪切模量,反映沥青在变形过程中由于内部摩擦产⽣的以热的形式散失的能量,其值越⼤,表⽰重复荷载作⽤下的能量损失速度越快,也称为粘性模量。
很多研究表明,沥青混合料的疲劳损失、疲劳寿命与循环加载过程中的能量损失具有正⽐关系,因此较⼩的/sinδ代表较好的抵抗疲劳能⼒。
在进⾏动态剪切流变实验之前应当采⽤应变扫描确定沥青材料的线粘弹性区域,以确保温度扫描实验和频率扫描实验在这个范围⾥进⾏。
T 0628─2011 沥青流变性质试验(DSR)1 目的与使用范围1.1 本方法适用于测定沥青的动态剪切模量和相位角。
沥青的动态剪切模量测量值范围为0.1~10MPa,相应的温度范围为5~85 o C。
1.2 本方法适用于原样沥青、压力老化后的沥青和薄膜烘箱(或旋转薄膜烘箱)后的老化沥青。
如用于含有颗粒的沥青,本标准试验方法只适用于颗粒尺寸小于250μm的沥青。
1.3 通过本方法测得的复合剪切模量和相位角经计算可以确定沥青性能(PG)分级等级。
2 仪具与材料技术要求2.1 动态剪切流变仪:试验系统由平行金属板、环境室、加载设备、控制和数据采集系统组成。
其基本原理如图T0628-1所示图T 0628-1 动态剪切流变仪基本原理1-沥青;2-振荡板;3-固定板2.2 试验系统基本技术要求和参数:2.2.1 试验板:两种规格的表面光滑的金属板。
一块直径为8.00mm±0.05mm;另一块直径为25.00mm±0.05mm。
2.2.2 环境室:用来控制试验时试件的温度,通过加热或冷却维持在一个恒定的试件环境。
环境室中加热或冷却试件的介质应为不影响沥青性质的液体或气体。
2.2.3 温度控制器:在5~85 o C温度范围内可将试件温度控制在试验温度±0.1 o C内。
2.2.4 加载设备:可以向试件施加10rad/s±0.,1rad/s频率的正弦振荡荷载。
加载方式可采用应力控制荷载或应变控制荷载。
2.2.5控制利数据采集系统:可记录温度、频率、偏转角和扭矩。
应满足T0628-1中规定的精度要求。
表T0628-1控制利数据采集系统精度要求2.2.6 温度传感器:精度至±0.1 o C。
2.3 试件修整器:刮刀过刀片,用于修整试件。
3 方法和步骤3.1准备工作3.1.1 按本规程T0602的方法制备试样。
加热沥青至足够流动状态,用来浇注试件,原样沥青加热的温度不宜高于135o C,改性沥青加热温度不超过163 o C。
文章编号:1671-2579(2007)04-0257-03低标号硬质沥青动态剪切流变试验分析研究刘 闯1,吴 健2,李长海3(1.河南省交通厅,河南郑州 450052; 2.长沙理工大学; 3.河南许昌至扶沟高速公路有限公司) 摘 要:采用动态剪切流变仪(DSR)在不同温度下测定3种标号沥青试样的动态剪切流变性状参数,分析了低标号硬质沥青的性能。
关键词:动态剪切流变仪;低标号硬质沥青;抗车辙因子收稿日期:2007-06-01作者简介:刘 闯,男,硕士研究生,高级工程师.1 前言据了解,在许多国家,高速公路路面维修、罩面的原因中,车辙的比率高达80%以上。
车辆轴载严重超限和沥青混合料抗车辙性能欠佳,是车辙产生的主要原因。
路面车辙不仅影响行车舒适性,还会造成交通安全隐患。
然而,作用于道路上的汽车荷载并非一般的静止荷载,而是连续不断的反复荷载。
路面层内一点的上方有车辆通过时,经历一个从受压变成受拉、又变成受压的循环过程。
因此,要研究沥青材料的真正力学响应,应该先研究它在动载作用下的变形特性,即它的动粘弹性。
动态剪切流变仪(DSR)是Superpave 体系中用以测定沥青结合料高温稳定性和中等温度条件下疲劳特性的仪器。
沥青试样被放入平板中,测定沥青的复数剪切劲度模量G *和相位角 。
复数剪切劲度模量G *是材料重复剪切变形时总阻力的度量,它由动弹性模量G =G *cos (可恢复的弹性部分)和损失弹性模量G =G *sin (不可恢复的粘性部分)组成; 是相位角,而tan =G /G ,表示剪切劲度模量中粘性成分与弹性成分的比例。
采用抗车辙因子G */sin 表征结合料抗永久性变形的能力。
美国战略公路研究计划(SH RP)在沥青结合料路用性能规范中提出的评价沥青结合料高温稳定性的指标是采用动态剪切流变仪(DSR ),对沥青进行动态剪切试验,以G */sin 作为评低,但因为其聚合性,后期强度要高于不掺聚合物的混凝土。
69第2卷 第18期Industrial Technology Innovation 基于流变性能试验的沥青性能评价陶 洁(苏交科集团股份有限公司,江苏 南京 210017)摘要:动态剪切流变仪(DSR )是美国SHRP 计划中提出的用以测试沥青胶结料的中、高温流变性能指标的重要测试设备,基于我国新规范中添加了关于DSR 流变性能试验的部分,本文通过对DSR 试验仪器、试验原理、试验指标等方面对动态剪切流变仪进行简要介绍。
对国内外基于DSR 的改性沥青流变性能研究进行了介绍,同时对DSR 指标的创新和发展进行介绍,提出的新型DSR 指标可以更好地评价沥青流变性能指标。
最终对在道路工程领域下动态剪切流变仪的研究应用和发展进行概述。
关键词:DSR ;道路工程;流变性能指标;应用发展中图分类号:U414 文献标识码:A 文章编号:2096-6164(2020)18-0069-02基于道路运行的实际情况可知,车辆荷载在实际道路路面上是以移动荷载的形式作用的。
而我国现阶段的道路方面的规范中沥青技术指标多是考虑静载条件下。
同时随着国内外道路工程领域研究的不断进步和发展,在试验室研究阶段采用更加精准和合理的指标来进行研究是未来发展的趋势。
其中重要的试验指标便是基于美国SHRP 计划中提出的动态剪切流变仪(DSR)试验仪,试验对沥青的中高温流变性能有着很好的评价,并且以此法为基础的,建立起了一种新型的沥青评价体系。
1 DSR 试验1.1 试验仪器动态剪切流变仪主要由动态剪切流变仪试验机、空气压缩机、水浴箱和与之连接的计算机组成,计算机中的流变仪控制软件进行具体的参数控制。
1.2 工作原理动态剪切流变仪(DSR)是可以测定多类不同种材料流变性能的试验仪器,因美国首先在沥青材料的研究中提出,所以才在道路工程领域有着广泛应用。
其工作的主要原理如图1所示。
仪器主要是将沥青试样放置在下端固定板上而后使上端振荡板下降与沥青接触,通过设定以一定的角速度ω来回转动,转动方向为首先从A 点转到B 点,再从B 点转回A 点;经过A 点到C 点,最后从C 点再转回A 点。
T315-04⽤动态剪切流变仪(DSR)测量沥青胶结料的流变性质标准试验⽅法T315-04⽤动态剪切流变仪(DSR)测量沥青胶结料的流变性质标准试验⽅法1适⽤范围1.1本试验⽅法包含了⽤平⾏板进⾏动态剪切(振荡的)测试,测量沥青胶结料的动态剪切模量和相位⾓。
本标准测量沥青胶结料的动态剪切模量值的范围为100Pa~10MPa。
通常在3~88℃之间得到这个范围的模量。
本试验的⽬的是测定试验规范要求的沥青胶结料的线性黏弹性质,⽽不是要得到沥青胶结料的所有线性黏弹性质的综合过程。
1.2本标准适合未⽼化和根据T240和R28⽼化的材料。
1.3对含有颗粒的沥青胶结料,颗粒最⼤粒径尺⼨⼩于250µm。
1.4本标准可能包含危险材料、操作和设备。
本标准并不能强调关于使⽤时的所有安全问题。
在使⽤本标准之前,使⽤者有责任采⽤合适的安全和健康实践,并确定其使⽤的规则限制。
2参考⽂件2.1AASHTO标准M320沥青胶结料性能分级R28⽤压⼒容器(PAV)对沥青胶结料进⾏加速⽼化R29沥青胶结料的性能分级和验证T40沥青材料取样T240热和空⽓对流动的沥青薄膜的影响(旋转薄膜烘箱试验)2.2ASTM标准C670⽤于建筑材料的制备精度和误差报告的试验⽅法E1ASTM温度计规范E77温度计的检验和校验E563⽤冰点⽔浴作为基准温度的准备和使⽤E644⼯业电阻温度计的试验E220⽤对⽐技术标定热电偶的⽅法2.3德国⼯业规范标准43760热电偶标定标准3名词术语3.1定义沥青胶结料(asphalt binder)——由⽯油渣油⽣产的、添加或未添加⾮颗粒的有机改性剂的沥青基质材料。
3.2本标准的特定术语3.2.1退⽕(annealing)——加热胶结料直⾄能够流动以消除位阻硬化的影响。
3.2.2复数剪切模量(complex shear modulus)(G*)——由剪切应⼒的峰值的绝对值(τ)除以剪切应变的峰值的绝对值(γ)计算得到的⽐值。
沥青路面以其优越的路用性能得到全世界范围内的推广应用.但是近年来,高等级沥青路面在使用早期就出现诸如网裂、剥落和松散等病害并逐步扩展,严重影响行车质量和效益.沥青路面的早期破坏除了设计、施工等方面的原因外,还与沥青的老化密切相关.沥青路面在使用过程中,表层沥青老化后产生脆性,劲度大大增加,破坏应变变小,在冬天容易产生温缩裂缝,导致路面开裂.沥青老化后导致沥青路面的抗疲劳性能下降,路面产生疲劳裂缝.因此研究沥青的抗老化性能,对提高沥青路面使用质量有重的现实意义1.基本理论动态剪切流变仪(Dynamic Shear Rheometer,简称DSR,如图1所示)通过给沥青试样施加一个正弦变化的交变应力,产生一个正弦交变应变力,而这两个应力是有相位差的。
由试验数据得出复数剪切模量*G,相位角δ。
*G即最大剪应力与最大剪应变的比值,是总阻力的表征,它包括实数轴分量'G及虚数轴分量''G,其中:'G称为动力弹性模量,即弹性部分,反映沥青变形过程中储存的能量;''G称为损失弹性模量,即粘性部分,相当于动粘度η产生的损失弹性模量,反映沥青在变形过程中由于内部摩擦产生的以热的形式散失的能量。
相位角δ是由于材料粘性成分的影响,对材料输入正弦应力与产生的正弦应变响应不同步,滞后一定相位角产生的,是沥青结合料的弹性与粘性的成分比例指标。
图1动态剪切试验基本原理Fig.1 Principle of operation of DSR粘温指数VTS指的是能够表征粘度η与温度t的关系的一个参数。
其中粘度η可以通过DSR试验数据中的*G、δ及加载频率ω通过式(1)求得:4.86281()sin G ηωδ*= (1) 其中:*G —复数剪切模量;ω—加载频率;δ—相位角。
换算得到粘度后,有四种方法构建粘度-温度坐标系来求得VTS 。
纵坐标都取lgη的对数坐标,横坐标分别为摄氏温度坐标、摄氏温度的对数坐标、兰金式温度的对数坐标、开式温度的对数坐标。
沥青动态剪切试验dsr流变学原理
沥青动态剪切试验(DSR)是一种用于评估沥青材料流变学性质的常用实验方法。
DSR实验方法基于沥青材料在剪切变形时的响应,通过施加正弦波形的动态应力以及测量材料的应变响应来分析沥青材料的变形行为。
DSR实验的流变学原理包括两个主要参数:频率和应变幅值。
频率是指施加剪切应力的频率,通常以弧长速度(rad/s)或角频率(rad/s)表示。
应变幅值则为施加剪切应力的最大值。
在DSR实验中,实验者测量沥青材料对施加的正弦波形应力的响应,并计算出复合剪切模量G*和损耗角δ。
G*代表沥青材料的弹性和粘性特性的平均值,而δ代表沥青材料的粘性特性。
DSR实验可以用于评估沥青材料的流变学特性,如动态剪切模量、黏度和延展性等。
通过分析沥青材料的流变学特性,可以优化沥青制品的性能设计,并预测其在使用中的性能。