人教版初中数学七年级下册6.3.1《实数》教案设计
- 格式:docx
- 大小:645.91 KB
- 文档页数:5
6.1.1平方根(第一课时)】学问与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正驾驭算术平方根的意义。
情感看法与价值观:通过学习算术平方根,相识数与人类生活的亲密联络,建立初步的数感与符号感,开展抽象思维,为学生以后学习无理数做好打算。
教学重点:算术平方根的概念与求法。
教学难点:算术平方根的求法。
一、情境引入:问题:学校要实行美术作品竞赛,小欧很兴奋,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参与竞赛,这块正方形画布的边长应取多少?二、探究归纳:1.探究:学生能依据已有的学问即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm5。
接下来老师可以再深化地引导此问题:4,那么正方形的边长分别是假如正方形的面积分别是1、9、16、36、252,接下来老师可以引导性地提多少呢?学生会求出边长分别是1、3、4、6、5问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,老师需加以引导。
上面的问题,事实上是已知一个正数的平方,求这个正数的问题。
2.归纳:⑴算术平方根的概念:一般地,假如一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。
⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:例1、 求下列各数的算术平方根:注:①依据算术平方根的定义解题,明确平方与开平方互为逆运算; ②求带分数的算术平方根,须要先把带分数化成假分数,然后依据定义去求解;③0的算术平方根是0。
由此例题老师可以引导学生思索如下问题:你能求出-1,-36,-100的算术平方根吗?随意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。
(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。
本节内容主要包括实数的定义、实数的分类和实数的性质。
通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。
但是,对于实数的定义和性质,可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。
三. 教学目标1.理解实数的概念,掌握实数的分类和性质。
2.能够运用实数的概念和性质解决一些简单的实际问题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.实数的定义和性质。
2.实数的分类。
五. 教学方法采用讲授法、引导法、讨论法等教学方法。
通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。
六. 教学准备1.教师准备教案、PPT等教学资料。
2.学生准备笔记本、文具等学习用品。
七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。
2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。
引导学生理解和记忆实数的概念和性质,掌握实数的分类。
3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。
通过练习,巩固学生对实数的理解和掌握。
4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。
5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。
6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。
7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。
人教版数学七年级下册教案6.3《实数》一. 教材分析《实数》是人教版数学七年级下册的一章内容,主要介绍了实数的概念、性质和运算。
本章内容包括有理数、无理数和实数的分类,以及实数的运算规则。
通过本章的学习,学生能够理解实数的概念,掌握实数的性质和运算规则,为后续的数学学习打下基础。
二. 学情分析学生在学习本章内容前,已经学习了有理数的概念和运算规则,对数学运算有一定的基础。
但是,学生可能对无理数的概念和性质较为陌生,需要通过实例和讲解来加深理解。
此外,学生可能对实数的分类和运算规则有一定的困惑,需要通过具体的例题和练习来进行巩固。
三. 教学目标1.了解实数的概念和性质,能够对实数进行分类。
2.掌握实数的运算规则,能够进行实数的加减乘除运算。
3.能够运用实数的概念和运算规则解决实际问题。
四. 教学重难点1.实数的分类:有理数、无理数和实数的区别和联系。
2.实数的运算规则:实数的加减乘除运算规则。
五. 教学方法采用问题驱动法和案例教学法,通过提问和举例引导学生思考和探索实数的概念和性质,通过具体的例题和练习来讲解和巩固实数的运算规则。
六. 教学准备1.PPT课件:实数的概念、性质和运算规则的讲解和例题。
2.练习题:针对实数的分类和运算的练习题。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算规则,为新课的学习做好铺垫。
2.呈现(15分钟)讲解实数的概念和性质,通过具体的例子来阐述实数的分类,如有理数、无理数和实数的区别和联系。
3.操练(20分钟)讲解实数的运算规则,通过具体的例题来演示和解释实数的加减乘除运算,引导学生进行思考和提问。
4.巩固(10分钟)学生进行实数的分类和运算的练习,教师进行个别指导和讲解,确保学生能够掌握实数的分类和运算规则。
5.拓展(10分钟)通过实际问题引导学生运用实数的概念和运算规则进行解决问题,培养学生的应用能力和创新思维。
6.小结(5分钟)对本节课的内容进行总结和回顾,强调实数的概念、性质和运算规则的重点和难点。
人教版数学七年级下册教学设计6.3《实数》一. 教材分析人教版数学七年级下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统认识的一节内容。
本节内容主要包括实数的定义、实数与数轴的关系以及实数的分类。
通过本节课的学习,使学生了解实数的丰富性和广泛性,培养学生对实数的认识和理解。
二. 学情分析七年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的认识。
但学生在实数的分类方面可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生充分理解实数的内涵和外延。
三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。
2.能够对实数进行分类,了解实数的丰富性和广泛性。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.实数的定义和实数与数轴的关系。
2.实数的分类和各类实数的特征。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,激发学生的学习兴趣;通过案例分析,使学生直观地理解实数的概念;通过小组合作学习,培养学生的团队协作能力和表达能力。
六. 教学准备1.准备与实数相关的案例和图片,以便在教学中进行展示和分析。
2.准备实数的分类表格,方便学生理解和记忆。
3.准备数轴的道具或图片,帮助学生直观地理解实数与数轴的关系。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了有理数和无理数,那么你们能总结一下有理数和无理数的特征吗?”2.呈现(10分钟)教师通过PPT或板书,呈现实数的定义和实数与数轴的关系。
同时,结合案例和图片,使学生直观地理解实数的概念。
例如:“同学们,今天我们要学习的是实数。
实数包括有理数和无理数,它们都可以用数轴上的点来表示。
请大家观察这个数轴,找出一些特殊的点,并试着解释它们的含义。
”3.操练(10分钟)学生分组讨论,根据实数的定义和实数与数轴的关系,对给定的实数进行分类。
人教版数学七年级下册6.3《实数》教学设计1一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数和无理数的概念之后,进一步对实数进行系统学习的开始。
本节内容主要包括实数的定义、实数与数轴的关系、实数的运算等。
通过本节课的学习,使学生对实数有一个清晰的认识,为后续的代数学习和解决实际问题打下基础。
二. 学情分析学生在之前的学习中已经掌握了有理数和无理数的概念,对数轴也有了一定的了解。
但实数作为介于有理数和无理数之间的一个整体,其定义和性质还需要进一步引导和探究。
此外,实数与数轴的关系以及实数的运算对学生来说也是一个新的挑战。
三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。
2.掌握实数的运算规则,能进行实数的基本运算。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.实数的定义和性质。
2.实数与数轴的关系。
3.实数的运算规则。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题引导学生思考,通过案例让学生理解实数的定义和性质,通过小组合作学习法让学生在讨论中掌握实数与数轴的关系和实数的运算规则。
六. 教学准备1.PPT课件。
2.数轴教具。
3.练习题。
七. 教学过程1.导入(5分钟)通过复习有理数和无理数的概念,引导学生思考实数的定义。
同时,提出问题:“实数与数轴有什么关系?”激发学生的学习兴趣。
2.呈现(10分钟)通过PPT课件呈现实数的定义和性质,实数与数轴的关系,实数的运算规则。
结合案例,让学生直观地理解实数的内涵。
3.操练(10分钟)让学生在小组内进行实数的运算练习,如加、减、乘、除等。
教师巡回指导,解答学生疑问。
4.巩固(5分钟)选取一些典型练习题,让学生独立完成,检验对实数知识的掌握程度。
教师及时点评,指出错误并讲解。
5.拓展(5分钟)引导学生思考实数在实际生活中的应用,如面积、体积计算等。
让学生举例说明,培养解决实际问题的能力。
人教版七年级数学下册6.3.1《实数的概念》说课稿一. 教材分析人教版七年级数学下册6.3.1《实数的概念》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统学习的开始。
本节内容从实际问题出发,引导学生认识实数的必要性,进而引入实数的概念,使学生感受数学与现实生活的密切联系。
教材通过丰富的例题和练习题,帮助学生理解和掌握实数的概念,培养学生的抽象思维能力。
二. 学情分析七年级的学生已经学习了有理数和无理数,对数学运算和逻辑推理有一定的基础。
但是,对于实数的定义和性质,学生可能还比较陌生。
因此,在教学过程中,需要结合学生的认知水平,循序渐进地引导学生理解和掌握实数的概念。
三. 说教学目标1.知识与技能:使学生理解实数的概念,掌握实数的性质,能够运用实数解决一些实际问题。
2.过程与方法:通过观察、分析、归纳等方法,让学生体验实数概念的形成过程,培养学生的抽象思维能力。
3.情感态度与价值观:让学生感受数学与现实生活的密切联系,激发学生学习数学的兴趣。
四. 说教学重难点1.教学重点:实数的概念和性质。
2.教学难点:实数的抽象性质和实数在实际问题中的应用。
五. 说教学方法与手段本节课采用讲授法、引导发现法、实践操作法等多种教学方法,结合多媒体课件、实物模型等教学手段,引导学生主动探究、合作交流,提高学生的学习效果。
六. 说教学过程1.导入新课:从实际问题出发,引导学生认识实数的必要性,激发学生的学习兴趣。
2.自主探究:让学生通过观察、分析、归纳等方法,自主发现实数的性质,体会实数概念的形成过程。
3.教师讲解:对实数的性质进行详细讲解,引导学生理解实数的概念。
4.例题讲解:通过典型例题,让学生了解实数在实际问题中的应用,巩固所学知识。
5.练习与巩固:让学生进行课堂练习,及时巩固所学知识,提高学生的实际应用能力。
6.课堂小结:对本节课的主要内容进行总结,帮助学生形成知识体系。
七. 说板书设计板书设计要简洁明了,突出实数的概念和性质。
6.3 实 数第1课时 实 数1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;(重点)2.进一步理解有理数和无理数的概念,会把实数进行分类;(重点)3.理解实数与数轴的关系,并进行相关运用.(难点)一、情境导入为了美化校园,学校打算建一个面积为225平方米的正方形植物园,这个正方形的边长应取多少?你能计算出来吗?如果把“225”改为其他数字,如“200”,这时怎样确定边长?二、合作探究探究点一:实数的相关概念及分类【类型一】 无理数的识别在下列实数中:157,3.14,0,9,π,5,0.1010010001…,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个解析:根据无理数的定义可以知道,上述实数中是无理数的有:π,5,0.1010010001….故选C.方法总结:常见无理数有三种形式:第一类是开方开不尽的数;第二类是化简后含有π的数;第三类是无限不循环的小数.【类型二】 实数的分类把下列各数分别填到相应的集合内:-3.6,27,4,5,3-7,0,π2,-3125,227,3.14,0.10100…. (1)有理数集合{ …};(2)无理数集合{ …};(3)整数集合{ …};(4)负实数集合{ …}.解析:实数分为有理数和无理数两类,也可以分为正实数、0、负实数三类.而有理数分为整数和分数.解:(1)有理数集合{-3.6,4,5,0,-3125,227,3.14,…};(2)无理数集合{27,3-7,π2,0.10100…,…};(3)整数集合{4,5,0,-3 125,…};(4)负实数集合{-3.6,3-7,-3125,…}.方法总结:正确理解实数和有理数的概念,做到分类不遗漏不重复.探究点二:实数与数轴上的点【类型一】求数轴上的点对应的实数如图所示,数轴上A,B两点表示的数分别是-1和3,点B关于点A的对称点为C,求点C所表示的实数.解析:首先结合数轴和已知条件可以求出线段AB的长度,然后利用对称的性质即可求出点C所表示的实数.解:∵数轴上A,B两点表示的数分别为-1和3,∴点B到点A的距离为1+ 3.则点C到点A的距离也为1+ 3.设点C表示的实数为x,则点A到点C的距离为-1-x,∴-1-x=1+3,∴x=-2- 3.∴点C所表示的实数为-2- 3.方法总结:本题主要考查了实数与数轴之间的对应关系,两点之间的距离为两数差的绝对值.【类型二】利用数轴进行估算如图所示,数轴上A,B两点表示的数分别是3和5.7,则A,B两点之间表示整数的点共有()A.6个B.5个C.4个D.3个解析:∵3≈1.732,∴3和5.7之间的整数有2,3,4,5,∴A,B两点之间表示整数的点共有4个.故选C.方法总结:要确定两点间的整数点的个数,也就是需要比较两个端点与邻近整点的大小,牢记数轴上右边的点表示的实数比左边的点表示的实数大.三、板书设计实数⎩⎪⎨⎪⎧实数的分类⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数分数无理数实数与数轴——实数与数轴上的点一一对应本节课学习了实数的有关概念和实数的分类,把我们所学过的数在有理数的基础上扩充到实数.在学习中,要求学生结合有理数理解实数的有关概念.本节课要注意的地方有两个:一是所有的分数都是有理数,如227;二是形如π2,π3等之类的含有π的数不是分数,而是无理数。
6.3实数第1课时实数教学内容第1课时实数课时1核心素养目标1.会用数学的眼光观察现实世界:经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数,培养自主学习的习惯,发展理论与实践相结合的.2.会用数学的思维思考现实世界:进一步理解有理数和无理数的概念,会把实数进行分类,培养归纳、分类的实践能力,发展数据意识.3.会用数学的语言表示现实世界:理解实数与数轴的关系,并进行相关运用,初步培养数学结合思想,形成数学的表达能力.知识目标1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;2.进一步理解有理数和无理数的概念,会把实数进行分类;3.理解实数与数轴的关系,并进行相关运用.教学重点1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;2.进一步理解有理数和无理数的概念,会把实数进行分类.教学难点理解实数与数轴的关系,并进行相关运用.教学准备课件教学过程主要师生活动设计意图一、新课导入一、创设情境导入新知数学危机师生活动:教师播放课件准备的视频,并跟随视频介绍著名数学家毕达哥拉斯及他的伟大发现.填一填师生活动:学生独立思考共同完成填空.提问1:上表中所填的这些数都是有理数吗?预设:±1,±2,-1,1 都是有理数提问2:,也是有理数吗?设计意图:运用数学家的伟大发现吸引学生的注意力,感受本节课在数学研究历史中的重要地位,激发学习兴趣.设计意图:回顾平方和立方根的计算方法,引出无理数及实数的概念.33224 ,,二、探究新知二、探究新知知识点一:实数的概念和分类问题 1 我们知道有理数包括整数和分数,利用计算器把下列分数写成小数的形式,它们有什么特征?-师生活动:学生独立完成操作后,小组讨论,并派代表回答发现,教师总结——它们都可以化成有限小数或无限循环小数的形式.追问:把导入中的 , 以及我们学习过的π化成小数,你能发现什么?预设: , 和π都能化成无限不循环小数.总结:1.有理数(整数、分数)可以写成有限小数或无限循环小数;2.反过来,任何有限小数或无限循环小数也都是有理数;3.很多数的平方根和立方根都是无限不循环小数.无理数的概念 无限不循环小数叫做无理数. 例如导入中的 ,以及我们学习过的π. 思考1: 是无理数吗?2.020 020 002 000 02…是无理数吗?师生活动:学生独立思考并作答,教师完成总结.常见的一些无理数:(1) 化简后含有 π 的数;(2) 开不尽方的数开方所得结果;(3) 有规律但不循环的小数,如1.01001000…思考2:我们将有理数和无理数统称为实数.你能设计意图:层层深入,加强新旧知识之间的练习,让学生自主探究,感悟无理数的概念.设计意图:锻炼学生归纳总结的能力吗,培养迁移思想.254911-,,,,532711933224±,,33224±,33224±,,π2仿照有理数的分类给实数分类吗?师生活动:学生独立思考,在教师的引导下共同完成实数思维导图.合作交流因为非零有理数和无理数都有正负之分,那么你能类比有理数的分类方法,按大小对实数分类吗?师生活动:学生独立思考,在教师的引导下共同完成实数思维导图.练习1.下列说法中,正确的是().A.实数分为正实数和负实数B.无限小数都是无理数C. 无理数都是无限小数D. 带根号的数都是无理数2.有一个数值转换器,原理如图所示,当输入的x 为81 时,输出的y是().A. 9B.C.3D.9393知识点二:实数与数轴上的点思考1:每个有理数都可以用数轴上的点来表示,无理数是否也能用数轴上的点表示出来呢?探究:能不能在数轴上找的表示π 的点呢?师生活动:学生独立思考,教师提示学生思考π在几何图形上的作用——π可以用于计算圆的周长和面积.教师播放课件,展示半径为 1 的圆上的点A滚动一周的运动路径,顺势指出——因为半径为 1 的圆的周长为π,所以数轴上点A表示的数是无理数π.思考2:你能在数轴上表示出和-吗?师生活动:学生独立思考,因为之前学习是利用正方形边长进行探究,学生容易联想到边长为1 的正方形的对角线长就是.教师引导学生利用尺规作图,自己在数轴上尝试画出和- 的点.追问:通过思考1、思考2你能发现什么呢?设计意图:从学生熟悉的无理数着手,让学生自主探究无理数在数轴上的表示方法;进一步发展数形结合思想,培养自主学习能力.设计意图:进一步发展数形结合思想,培养自主学习能力,发展学生的作图能力.2222222222师生活动:学生独立思考后小组讨论,选代表回答.预设1:每一个实数都可以用数轴上的一个点来表示;预设2:数轴上的每一点都表示一个实数.总结:实数和数轴上的点是一一对应的.例2如图所示,数轴上A,B两点表示的数分别为-1 和,点B关于点A的对称点为C,求点C所表示的实数.师生活动:学生独立思考解答问题,教师提示可以利用作图帮助计算,选一名学生板书,教师规范解题思路.例3如图所示,数轴上A,B两点表示的数分别为和5.1,则A,B两点之间表示整数的点共有()A.6 个B.5 个C.4 个D.3 个师生活动:数轴上的点与实数一一对应,结合数轴分析,可轻松得出结论.学生独立完成操作.比较大小教师叙述:与有理数一样,实数也可以比较大小:数轴上右边的点表示的实数比左边的点表示的实数大.与有理数一样,在实数范围内:正实数大于零,负实数小于零,正实数大于负实数.设计意图:掌握实数和数轴上的点是一一对应的的性质,培养总结归纳和交流合作能力.设计意图:提高学生的运用能力和解题能力,渗透数形结合思想.设计意图:进一步掌握实数和数轴上的点是一一对应的的性质,锻炼学生的运用能力和解题能力.设计意图:学习并掌握实数范围内比较大小的方法.三、当堂练习例4 在数轴上表示下列各点,比较它们的大小,并用“ < ”连接它们.师生活动:学生独立完成习题,选学生回答,其他同学判断正误,教师总结解题技巧:熟记常见数的算术平方根的约数值有助于解题. 三、当堂练习 1. 下列说法正确的是( )A. a 一定是正实数B. 是有理数C. 是有理数D. 数轴上任一点都对应一个有理数2.把下列各数填入相应的括号内: (1)有理数: (2)无理数: (3)整数: (4)负数: (5)分数: (6)实数:3. 比较下列各组数的大小. -3;设计意图:锻炼并掌握实数范围内比较大小的方法,提高解题能力.设计意图:考查学生对实数的概念及性质的掌握.设计意图:帮助学生巩固梳理有理数、无理数、正数、负数、分数、实数的概念.设计意图:考查学生运用立方根几何意义的进行计算的能力.板书设计第1课时 实数无限不循环小数叫做无理数.★实数和数轴上的点是一一对应的.正实数大于零,负实数小于零,正实数大于负实数.课后小结教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.221722(1)π 3.146(2)31.731,;,;52(3)53223(4)23--,;,;(1)π 3.146(2)31.731,;,;52(3)53223(4)23--,;,;本节课学习了实数的有关概念和实数的分类,把我们所学过的数在有理。
人教版数学七年级下册6.3《实数》教学设计一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数知识的基础上,进一步学习实数的定义、性质和运算。
本节内容是整个初中数学的重要基础,对学生来说是全新的概念。
教材从学生的实际出发,通过引入无理数的概念,让学生感受实数的广泛性,进而引入实数的概念,使学生对实数有一个直观的认识。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的知识,对数的运算、大小比较等有一定的基础。
但实数是一个全新的概念,与有理数有很大的区别。
学生在学习过程中,可能对无理数的概念、实数的性质和运算产生困惑。
因此,在教学过程中,要注重引导学生从实际出发,理解实数的定义,掌握实数的性质和运算。
三. 教学目标1.了解实数的定义,掌握实数的性质和运算。
2.能够运用实数解决实际问题,提高解决问题的能力。
3.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.实数的定义和性质。
2.实数的运算。
五. 教学方法1.情境教学法:通过生活实例,引导学生从实际出发,理解实数的定义和性质。
2.互动教学法:引导学生参与课堂讨论,提高学生的思维能力和解决问题的能力。
3.实践操作法:通过大量的练习,让学生掌握实数的运算方法。
六. 教学准备1.准备相关的生活实例,用于导入新课。
2.准备PPT,展示实数的性质和运算。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如计算房屋面积、身高、体重等,引导学生从实际出发,了解无理数的概念。
进而引出实数的概念,让学生对实数有一个直观的认识。
2.呈现(10分钟)通过PPT展示实数的性质和运算,让学生对实数有一个全面的认识。
主要包括实数的定义、性质(如正实数、负实数、零实数等)和运算(如加法、减法、乘法、除法等)。
3.操练(10分钟)让学生进行实数运算的练习,巩固所学知识。
可以设置一些具有挑战性的题目,让学生在解决问题过程中,加深对实数运算的理解。
人教版七年级数学下册6.3.1《实数的概念》教学设计一. 教材分析人教版七年级数学下册6.3.1《实数的概念》是学生在掌握了有理数的基础上,进一步对实数进行学习。
本节内容主要介绍实数的概念,包括实数的定义、实数的性质等。
教材通过实例和问题,引导学生理解实数的意义,并能够运用实数进行简单的运算和解决问题。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的概念和运算方法,具备一定的数学基础。
但实数概念相对抽象,学生可能存在一定的理解难度。
因此,在教学过程中,需要结合学生的实际情况,通过实例和问题,引导学生理解和掌握实数的概念。
三. 教学目标1.理解实数的定义,掌握实数的性质。
2.能够运用实数进行简单的运算和解决问题。
3.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.实数的定义和性质。
2.实数的运算方法。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过问题引导学生思考,实例帮助学生理解,小组合作促进学生交流和讨论。
六. 教学准备1.教材、PPT等相关教学资料。
2.实例和问题。
3.小组合作学习分组。
七. 教学过程1. 导入(5分钟)通过提问方式引导学生回顾有理数的概念和性质,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了有理数,那么有理数能表示所有的数吗?还有哪些数是有理数无法表示的?”2. 呈现(15分钟)利用PPT展示实数的定义和性质,结合实例进行讲解。
例如,通过数轴展示实数,解释实数包括有理数和无理数,以及实数的性质如大小关系、加减乘除等。
3. 操练(15分钟)让学生进行实数的运算练习,巩固所学知识。
例如,给出一些实数的运算题目,让学生独立完成,然后集体讲解答案。
4. 巩固(10分钟)通过问题和小测验的形式,巩固学生对实数的理解和掌握。
例如,提出一些关于实数的问题,让学生回答,或者让学生解决一些实际问题,运用实数进行计算。
5. 拓展(10分钟)引导学生思考实数在实际生活中的应用,拓展学生的思维。
《实数》【教学目标】知识与技能:了解无理数和实数的概念以及实数的分类;知道实数与数轴上的点具有一一对应的关系.过程与方法:在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系.情感态度与价值观:通过了解数系扩充体会数系扩充对人类发展的作用;敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.教学重点:了解无理数和实数的概念;对实数进行分类.教学难点:对无理数的认识.【教学过程】一、复习引入无理数:利用计算器把下列有理数3,53-,847,119,95写成小数的形式,它们有什么特征? 发现上面的有理数都可以写成有限小数或无限循环小数的形式归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式, 反过来,任何有限小数或者无限循环小数也都是有理数.通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数, 把无限不循环小数叫做无理数.二、实数及其分类:1、实数的概念:有理数和无理数统称为实数.2、实数的分类:按照定义分类如下:实数:⎪⎩⎪⎨⎧⎩⎨⎧数)无理数(无限不循环小小数)(有限小数或无限循环分数整数有理数按照正负分类如下:实数:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数零负无理数正有理数正实数 3、实数与数轴上点的关系:我们知道每个有理数都可以用数轴上的点来表示.物理是合乎是否也可以用数轴上的点表示出来吗?活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来.活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是2以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示2,与负半轴的交点就是2-.事实上通过这种做法,我们可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数.归纳:①实数与数轴上的点是一一对应的.即没一个实数都可以用数轴上的点来表示; 反过来,数轴上的每一个点都表示一个实数.②对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.三、应用:例1、下列实数中,无理数有哪些?2,172,37.0 -,14.3,35,0,⋅⋅⋅11121211211121.10,π,2)4(-. 解:无理数有:2,35,π注:①带根号的数不一定是无理数,比如2)4(-,它其实是有理数4;②无限小数不一定是无理数,无限不循环小数一定是无理数.比如⋅⋅⋅11121211211121.10. 例2、把无理数5在数轴上表示出来. 分析:类比2的表示方法,我们需要构造出长度为5的线段,从而以它为半径画弧,与数轴正半轴的交点就表示5.有理数集合 无理数集合 解:如图所示, OA =2,AB =1. 由勾股定理可知:5=OB ,以原点O 为圆心,以OB 长度为半径画弧,与数轴的正半轴交于点C ,则点C 就表示5.四、随堂练习:1、判断下列说法是否正确:⑴无限小数都是无理数;⑵无理数都是无限小数;⑶带根号的数都是无理数;⑷所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示有理数; ⑸所有实数都可以用数轴上的点来表示,反过来,数轴上的所有的点都表示实数.2、把下列各数分别填在相应的集合里:1415926.3,7,8-,32,6.0,0,36,3π,⋅⋅⋅313113111.0.3、比较下列各组实数的大小:(1)4,15 (2)π,1416.3五、课堂小结1、无理数、实数的意义及实数的分类.2、实数与数轴的对应关系 .六、布置作业教学反思:关于无理数的认识是非常抽象的,只要求学生了解无理数和实数的意义即可,学生对实数的认识是逐步加深的,以后还要讨论,所以本节课不易过难,教师要把握好难度.。
人教版初中数学七年级下册6.3 实数教案
思考:实数还可以怎样分类?
典例精析
例1.将下列各数分别填入下列相应的括号内:
,
93
,7,π
16,-,5-,
83
-4,9
,0,250.3232232223⋅⋅⋅14
,
无理数:{ } 有理数:{ } 正实数:{ } 负实数:{ }
方法总结:对每个数都要进行判断,分类标准不同结果不同.
探究点2:实数与数轴上的点
问题8:如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点从原点到达A 点,则数轴上表示点A 的数是多少?
问题9:你能在数轴上表示出2和 -
2吗?
方法总结:每一个实数都可以用数轴上的一个点来表示;
【教学提示】通过例题充分理解实数的分类。
【教学提示】引导学生观察OA 的长与园的关系,从而得到A 点所表示的数。
【教学提示】通过边长为1的小正方形的对角线的长为2,引导学生自
己归纳在数轴上画出
2和 -
2。
【教学提示】通过例题,让学生体会数轴上的点与实数
A
0 -- 1 3 2 4
●
●
反过来,数轴上的每一点都表示一个实数.
★实数和数轴上的点是一一对应的.
例2:如图所示,数轴上A ,B 两点表示的数分别为 和5.1,则A ,B 两点之间表示整数的点共有( ) A .6个 B .5个 C .4个 D .3个 探究点3:实数的大小比较 知识要点:实数的大小比较与有理数规定的大小一样,数轴上右边的点表示的实数比左边的点表示的实数大. 问题10:不用计算器,5与2比较哪个大?与3比较呢?
5,2可以分别看作是面积为5,4的正方形的边长,容易说明:面积较大的正方
形,它的边长也较大,因此25> 例3 试在数轴上标出π,35-,的大致位置,并借助数轴比较它们的大小. 例4 比较下列各组数的大小: ()
;与31-121 () 3.-10-2与 探究点4:实数的性质 知识要点:在实数范围内 ,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样. 例5:分别求下列各数的相反数、倒数和绝对值. .11 (3) ; 225 (2) ; 64 )1(3-
课堂小结
基础训练
1.判断快枪手——看谁最快最准!
(1)实数不是有理数就是无理数. ( ) (2)无理数都是无限不循环小数. ( ) (3)带根号的数都是无理数. ( ) (4)无理数都是无限小数. ( )
一一对应。
【教学提示】提醒学生把未知的要转化为已知,从而用来解决问题。
【教学提示】体会
比较大小的不同的
方法
【教学提示】通过例题让学生体会在实数范围内,相反数、绝对值、倒数的意义和有理数范围内的相反数、绝
对值、倒数的意义
完全一样。
让学生根据框架回忆本节课所学的内容
【教学提示】通过当堂检测来消化理
(5)无理数一定都带根号. ()
(6)3644;
-=()
(7)2的绝对值是2
-;()
(8)3
-的相反数是3. ()
2.你能分辩下列各数是哪个家庭的成员吗?试试看?
⋅⋅⋅
73
0.37377377
8
-
5
-
2
2
5
-
7
4
1
2
9
4
3
3
20
3,
,
,
,
,
,
,
,
,
,
,π
正数:{ };
负数:{ };
3.比较37与6的大小.
作业:
解本节课的内容。